
MENG 366

System Dynamics and Control Laboratory

Experiment 4: Transfer Function of LTI Systems

Objectives: This experiment has following two objectives:

1. We will learn commands in MATLAB that would be used to represent the linear systems

in terms of transfer function or pole-zero gain representations.

2. We will also learn how to make preliminary analysis of such systems using plots of

poles and zeros locations as well as time response due to impulse, step and arbitrary

inputs.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft-Experiment

Deliverables

A complete lab report including the following:

• Summarized learning outcomes.

• MATLAB scripts and their results should be reported properly.

Mass-Spring System Model

The spring force is assumed to be either linear or can be approximated by a linear function

Fs(x)= Kx, B is the friction coefficient, x(t) is the displacement and Fa(t) is the applied force:

The differential equation for the above Mass-Spring system can be derived as follows

()

Transfer Function:

Applying the Laplace transformation while assuming the initial conditions are zeros, we get

Then the transfer function representation of the system is given by

F s) x (

M

F f (𝑣)

F a) (t

x(t)

M F a (t)

F f (𝑣)

F s (x)

Linear Time-Invariant Systems in MATLAB:

Control System Toolbox in MATLAB offers extensive tools to manipulate and analyze linear

time-invariant (LTI) models. It supports both continuous- and discrete-time systems. Systems

can be single-input/single-output (SISO) or multiple-input/multiple-output (MIMO). You can

specify LTI models as:

Transfer functions (TF), for example,

Note: All LTI models are represented as a ratio of polynomial functions

Examples of Creating LTI Models

Building LTI models with Control System Toolbox is straightforward. The following sections

show simple examples. Note that all LTI models, i.e. TF, ZPK and SS are also MATLAB

objects.

Example of Creating Transfer Function Models

You can create transfer function (TF) models by specifying numerator and denominator

coefficients. For example,

>>num = [1 0];

>>den = [1 2 1];

>>sys = tf(num,den)

Transfer function:

s

------------- s^2

+ 2 s + 1

A useful trick is to create the Laplace variable, s. That way, you can specify polynomials using

s as the polynomial variable.

>>s=tf('s');

>>sys= s/(s^2 + 2*s + 1)

43 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

Transfer function:

 s

------------- s^2

+ 2 s + 1

This is identical to the previous transfer function.

Example of Creating Zero-Pole-Gain Models

To create zero-pole-gain (ZPK) models, you must specify each of the three components in

vector format. For example,

>>sys = zpk([0],[-1 -1],[1])

Zero/pole/gain:

s -------

(s+1)^2

produces the same transfer function built in the TF example, but the representation is now ZPK.

This example shows a more complicated ZPK model.

>>sys=zpk([1 0], [-1 -3 -.28],[.776])

Zero/pole/gain:

0.776 s (s-1)

(s+1) (s+3) (s+0.28)

Plotting poles and zeros of a system:

pzmap

Compute pole-zero map of LTI models

pzmap(sys) pzmap(sys1,sys2,...,sysN)

[p,z] = pzmap(sys)

Description:

pzmap(sys) plots the pole-zero map of the

continuous- or discrete-time LTI model sys. For

SISO systems, pzmap plots the transfer function

poles and zeros. The poles are plotted as x's and the

zeros are plotted as o's.

pzmap(sys1,sys2,...,sysN) plots the pole-zero map of

several LTI models on a single figure. The LTI

models can have different numbers of inputs and

outputs. When invoked with left-hand arguments,

[p,z] = pzmap(sys) returns the system poles and

zeros in the column vectors p and z. No plot is drawn

on the screen. You can use the functions sgrid or

zgrid to plot lines of constant damping ratio and

natural frequency in the s- or z- plane.

Example

Plot the poles and zeros of the continuous-time system.

>>H = tf([2 5 1],[1 2 3]); sgrid

>>pzmap(H)

Simulation of Linear systems to different

inputs

impulse, step and lsim

You can simulate the LTI systems to inputs like

impulse, step and other standard inputs and see the

plot of the response in the figure window. MATLAB

command ‘impulse’ calculates the unit impulse

response of the system, ‘step’ calculates the unit step

response of the system and ‘lsim’ simulates the

(time) response of continuous or discrete linear

systems to arbitrary inputs. When invoked without

left-hand arguments, all three commands plots the

response on the screen. For example:

To obtain an impulse response

>> H = tf([2 5 1],[1 2 3]); >>impulse(H)

To obtain a step response type

>>step(H)

Time-interval specification:

To contain the response of the system you can also

specify the time interval to simulate the system to.

For example,

Or

Simulation to Arbitrary Inputs:

To simulates the (time) response of continuous or discrete linear systems to arbitrary inputs use

‘lsim’. When invoked without left-hand arguments, ‘lsim’ plots the response on the screen.

lsim(sys,u,t) produces a plot of the time response of the LTI model sys to the input time history

‘t’,’u’. The vector ‘t’ specifies the time samples for the simulation and consists of regularly

spaced time samples.

T = 0:dt:Tfinal

>> t = 0:0.01:10;

>> impulse(H,t)

>> step(H,t)

The matrix u must have as many rows as time

samples (length(t)) and as many columns as system

inputs. Each row u(I,☺ specifies the input value(s) at

the time sample t(i).

Simulate and plot the response of the system

to a square wave with

period of four seconds.

First generate the square wave with gensig. Sample

every 0.1 second during 10 seconds:

>>[u,t] = gensig(‘square’,4,10,0.1);

Then simulate with lsim.

>> H = tf([2 5 1],[1 2 3])

Transfer function: 2

s^2 + 5 s + 1

 s^2 + 2 s + 3

>> lsim(H,u,t)

