aisur]@rbrer

MENG366

Signal Flow Graph

Dr. Saeed Asiri
saeed@asiri.net

Signal Flow Graph

- Compact alternative notation to the block diagram.
- It characterizes the system by a network of directed branches and associated transfer functions.
- The two ways of depicting signal are equivalent.

Signal Flow Graph

Block

Summer and pickoff

(a)

Node

(b)

Signal Flow Graph

Block Diagram Models

- Block diagrams are used as schematic representations of mathematical models
- The various pieces correspond to mathematical entities
- Can be rearranged to help simplify the equations used to model the system
- We will focus on one type of schematic diagram - feedback control systems

Block Diagram Models

- Processes are represented by the blocks in block diagrams:

- Processes must have at least one input variable and at least one output variable
- Reclassify processes without input or output:

Block Diagram Models

- Many systems measure their output and use this measurement to control system behavior
- This is known as feedback control - the output is "fed back" into the system
- The summing junction is a special process that compares the input and the feedback
- Inputs to summing junction must have same units!

Block Diagram Models

(a) block

$$
X_{5}(s)=X_{1}(s)-X_{2}(s)+X_{3}(s)-X_{4}(s)
$$

(c) pickoff point
(b) summer

(a)

Block Diagram Models

$$
\begin{aligned}
Y(s) & =G(s) E(s) \\
E(s) & =R(s) \pm H(s) Y(s) \\
Y(s) & =G(s)[R(s) \pm H(s) Y(s)]=G(s) R(s) \pm G(s) H(s) Y(s) \\
T(s) & =\frac{Y(s)}{R(s)}=\frac{G(s)}{1 \mp G(s) H(s)}
\end{aligned}
$$

Block Diagram Models

(e) Combining or expanding summations

(b) Changing a summer sign

(c) Moving a pickoff point back

Block Diagram Models

Block Diagram Models

Block Diagram Models

Block Diagram Models

Example 1

(b)

(c)

(d)

Example 2

Block Diagram Models

Block Diagram Models

Example 2 cont.

Block Diagram Models

Example 3

Block Diagram Models

Example 3 cont.

(b)

Introduction to Signal Flow

- Alternative method to block diagram representation, developed by Samuel Jefferson Mason.
- Advantage: the availability of a flow graph gain formula, also called Mason's gain formula.
- A signal-flow graph consists of a network in which nodes are connected by directed branches.
- It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

Fundamentals of Signal Flow Graphs

- Consider a simple equation below and draw its signal flow graph:

$$
y=a x
$$

- The signal flow graph of the equation is shown below;

- Every variable in a signal flow graph is designed by a Node.
- Every transmission function in a signal flow graph is designed by a Branch.
- Branches are always unidirectional.
- The arrow in the branch denotes the direction of the signal flow.

Signal-Flow Graph Models

$$
\begin{aligned}
& Y_{1}(s)=G_{11}(s) \cdot R_{1}(s)+G_{12}(s) \cdot R_{2}(s) \\
& Y_{2}(s)=G_{21}(s) \cdot R_{1}(s)+G_{22}(s) \cdot R_{2}(s)
\end{aligned}
$$

Signal-Flow Graph Models

r_{1} and r_{2} are inputs and x_{1} and x_{2} are outputs

$$
\begin{aligned}
& a_{11} \cdot x_{1}+a_{12} \cdot x_{2}+r_{1}=x_{1} \\
& a_{21} \cdot x_{1}+a_{22} \cdot x_{2}+r_{2}=x_{2}
\end{aligned}
$$

Signal-Flow Graph Models

x_{0} is input and x_{4} is output

$$
\begin{aligned}
& x_{1}=a x_{0}+b x_{1}+c x_{2} \\
& x_{2}=d x_{1}+e x_{3} \\
& x_{3}=f x_{0}+g x_{2} \quad \square \\
& x_{4}=h x_{3}
\end{aligned}
$$

Signal-Flow Graph Models

Construct the signal flow graph for the following set of simultaneous equations.

$$
x_{2}=A_{21} x_{1}+A_{23} x_{3} \quad x_{3}=A_{31} x_{1}+A_{32} x_{2}+A_{33} x_{3} \quad x_{4}=A_{42} x_{2}+A_{43} x_{3}
$$

- There are four variables in the equations (i.e., x_{1}, x_{2}, x_{3}, and x_{4}) therefore four nodes are required to construct the signal flow graph.
- Arrange these four nodes from left to right and connect them with the associated branches.

- Another way to arrange this graph
 is shown in the figure.

Terminologies:

Signal-Flow Graph Models

- An input node or source contain only the outgoing branches. i.e., X_{1}
- An outpuit node or sink contain only the incoming branches. i.e., X_{4}
- A path is a continuous, unidirectional succession of branches along which no node is passed more than ones. i.e., $\quad X_{1}$ to X_{2} to X_{3} to $X_{4} \quad X_{1}$ to X_{2} to $X_{4} \quad X_{2}$ to X_{3} to X_{4}
- A forward path is a path from the input node to the output node. i.e., X_{1} to X_{2} to X_{3} to X_{4}, and X_{1} to X_{2} to X_{4}, are forward paths.
- A feedlback path or feedback loop is a path which originates and terminates on the same node. i.e.; X_{2} to X_{3} and back to X_{2} is a feedback path.

Terminologies:

Signal-Flow Graph Models

- A self-loop is a feedback loop consisting of a single branch. i.e.; A_{33} is a self loop.
- The gain of a branch is the transmission function of that branch.
- The path gain is the product of branch gains encountered in traversing a path. i.e. the gain of forwards path X_{1} to X_{2} to X_{3} to X_{4} is $A_{21} A_{32} A_{43}$
- The loop gain is the product of the branch gains of the loop. i.e., the loop gain of the feedback loop from X_{2} to X_{3} and back to X_{2} is $A_{32} A_{23}$
- Two loops, paths, or loop and a path are said to be non-touching if they have no nodes in common.

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following
a) Input node.
b) Output node.
c) Forward paths.

d) Feedback paths (loops).
e) Determine the loop gains of the feedback loops.
f) Determine the path gains of the forward paths.
g) Non-touching loops

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following

- There are two forward path gains;

1. $G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{7}(s)$
2. $G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{6}(s) G_{7}(s)$

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following

- There are four loops

4. $G_{4}(s) G_{6}(s) H_{3}(s)$

5. $G_{4}(s) G_{5}(s) H_{3}(s)$

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following

- Nontouching loop

1. $\left[G_{2}(s) H_{1}(s)\right]\left[G_{4}(s) H_{2}(s)\right]$
2. $\left[G_{2}(s) H_{1}(s)\right]\left[G_{4}(s) G_{5}(s) H_{3}(s)\right]$
3. $\left[G_{2}(s) H_{1}(s)\right]\left[G_{4}(s) G_{6}(s) H_{3}(s)\right]$

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following
a) Input node.
b) Output node.
c) Forward paths.
d) Feedback paths.

e) Self loop.
f) Determine the loop gains of the feedback loops.
g) Determine the path gains of the forward paths.

Signal-Flow Graph Models

Input and output Nodes
a) Input node

b) Output node X_{8}
(c) Forward Paths

$$
X_{1} \text { to } X_{2} \text { to } X_{3} \text { to } X_{4} \text { to } X_{5} \text { to } X_{6} \text { to } X_{7} \text { to } X_{8}
$$

$$
X_{1} \text { to } X_{2} \text { to } X_{7} \text { to } X_{8}
$$

$$
X_{1} \text { to } X_{2} \text { to } X_{4} \text { to } X_{5} \text { to } X_{6} \text { to } X_{7} \text { to } X_{8}
$$

Signal-Flow Graph Models

(d) Feedback Paths or Loops

Signal-Flow Graph Models

(d) Feedback Paths or Loops

Signal-Flow Graph Models

(d) Feedback Paths or Loops

Signal-Flow Graph Models

(d) Feedback Paths or Loops

Signal-Flow Graph Models

(e) Self Loop(s)

X_{7} to X_{7}

Signal-Flow Graph Models

(f) Loop Gains of the Feedback Loops

Signal-Flow Graph Models

(g) Path Gains of the Forward Paths

\boldsymbol{A}_{72}
$A_{42} A_{54} A_{65} A_{76}$

Mason's Rule (Mason, 1953)

- The block diagram reduction technique requires successive application of fundamental relationships in order to arrive at the system transfer function.
- On the other hand, Mason's rule for reducing a signal-flow graph to a single transfer function requires the application of one formula.
- The formula was derived by S. J. Mason when he related the signal-flow graph to the simultaneous equations that can be written from the graph.

Mason's Rule

- The transfer function, $C(s) / R(s)$, of a system represented by a signal-flow graph is;

$$
\frac{C(s)}{R(s)}=\frac{\sum_{i=1}^{n} P_{i} \Delta_{i}}{\Delta}
$$

Where
n = number of forward paths.
$P_{i}=$ the $i^{\text {th }}$ forward-path gain.
$\Delta=$ Determinant of the system
$\Delta_{i}=$ Determinant of the $i^{\text {th }}$ forward path

- Δ is called the signal flow graph determinant or characteristic function. Since $\Delta=0$ is the system characteristic equation.

Mason's Rule

$$
\frac{C(s)}{R(s)}=\frac{\sum_{i=1}^{n} P_{i} \Delta_{i}}{\Delta}
$$

$\Delta=1$ - (sum of all individual loop gains) + (sum of the products of the gains of all possible two loops that do not touch each other) - (sum of the products of the gains of all possible three loops that do not touch each other) $+\ldots$ and so forth with sums of higher number of non-touching loop gains
$\Delta_{i}=$ value of Δ for the part of the block diagram that does not touch the i-th forward path ($\Delta_{\mathrm{i}}=1$ if there are no non-touching loops to the i-th path.)

Signal-Flow Graph Models

Systematic approach

1. Calculate forward path gain P_{i} for each forward path i.
2. Calculate all loop transfer functions
3. Consider non-touching loops 2 at a time
4. Consider non-touching loops 3 at a time
5. etc
6. Calculate Δ from steps $2,3,4$ and 5
7. Calculate Δ_{i} as portion of Δ not touching forward path i

Signal-Flow Graph Models

Example. 1

There are two forward paths:

$$
P_{1}=G_{1} G_{2} G_{4} \quad P_{2}=G_{1} G_{3} G_{4}
$$

Therefore,

$$
\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}
$$

There are three feedback loops

$$
L_{1}=G_{1} G_{4} H_{1}, \quad L_{2}=-G_{1} G_{2} G_{4} H_{2}, \quad L_{3}=-G_{1} G_{3} G_{4} H_{2}
$$

Signal-Flow Graph Models

Example. 1

There are no non-touching loops, therefore

$$
\begin{aligned}
& \Delta=1-(\text { sum of all individual loop gains) } \\
& \Delta=1-\left(L_{1}+L_{2}+L_{3}\right) \\
& \Delta=1-\left(G_{1} G_{4} H_{1}-G_{1} G_{2} G_{4} H_{2}-G_{1} G_{3} G_{4} H_{2}\right)
\end{aligned}
$$

Signal-Flow Graph Models

Example. 1

Eliminate forward path-1

$$
\begin{aligned}
& \Delta_{1}=1-(\text { sum of all individual loop gains })+\ldots \\
& \Delta_{1}=1
\end{aligned}
$$

Eliminate forward path-2

$$
\begin{aligned}
& \Delta_{2}=1-(\text { sum of all individual loop gains })+\ldots \\
& \Delta_{2}=1
\end{aligned}
$$

Signal-Flow Graph Models

Example. 1

$$
\begin{aligned}
\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} & =\frac{G_{1} G_{2} G_{4}+G_{1} G_{3} G_{4}}{1-G_{1} G_{4} H_{1}+G_{1} G_{2} G_{4} H_{2}+G_{1} G_{3} G_{4} H_{2}} \\
& =\frac{G_{1} G_{4}\left(G_{2}+G_{3}\right)}{1-G_{1} G_{4} H_{1}+G_{1} G_{2} G_{4} H_{2}+G_{1} G_{3} G_{4} H_{2}}
\end{aligned}
$$

Signal-Flow Graph Models

Example. 2

1. Calculate forward path gains for each forward path.
2. Calculate all loop gains.
3. Consider two non-touching loops.
$L_{1} L_{3} \quad \mathbf{L}_{1} L_{4}$
$\mathbf{L}_{2} \mathbf{L}_{4} \quad \mathbf{L}_{2} \mathbf{L}_{3}$

Signal-Flow Graph Models

Example. 2

4. Consider three non-touching loops. None.
5. Calculate Δ from steps $2,3,4$.

$$
\begin{aligned}
\Delta= & 1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right) \\
\Delta= & 1-\left(G_{2} H_{2}+H_{3} G_{3}+G_{6} H_{6}+G_{7} H_{7}\right)+ \\
& \left(G_{2} H_{2} G_{6} H_{6}+G_{2} H_{2} G_{7} H_{7}+H_{3} G_{3} G_{6} H_{6}+H_{3} G_{3} G_{7} H_{7}\right)
\end{aligned}
$$

Signal-Flow Graph Models

Example. 2

Eliminate forward path-1

$$
\begin{aligned}
& \Delta_{1}=1-\left(L_{3}+L_{4}\right) \\
& \Delta_{1}=1-\left(G_{6} H_{6}+G_{7} H_{7}\right)
\end{aligned}
$$

Eliminate forward path-2

$$
\Delta_{2}=1-\left(L_{1}+L_{2}\right)
$$

$$
\Delta_{2}=1-\left(G_{2} H_{2}+G_{3} H_{3}\right)
$$

Signal-Flow Graph Models

Example. 2

$$
\begin{gathered}
\frac{Y(s)}{R(s)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
\frac{Y(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4}\left[1-\left(G_{6} H_{6}+G_{7} H_{7}\right)\right]+G_{5} G_{6} G_{7} G_{8}\left[1-\left(G_{2} H_{2}+G_{3} H_{3}\right)\right]}{1-\left(G_{2} H_{2}+H_{3} G_{3}+G_{6} H_{6}+G_{7} H_{7}\right)+\left(G_{2} H_{2} G_{6} H_{6}+G_{2} H_{2} G_{7} H_{7}+H_{3} G_{3} G_{6} H_{6}+H_{3} G_{3} G_{7} H_{7}\right)}
\end{gathered}
$$

Signal-Flow Graph Models

Example. 3

- Find the transfer function, $\mathrm{C}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$, for the signal-flow graph in figure below.

Signal-Flow Graph Models

Example. 3

- There is only one forward Path.

$$
P_{1}=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s)
$$

Signal-Flow Graph Models

Example. 3

- There are four feedback loops.

$\begin{array}{llll}\mathrm{L} 1 & G_{2}(s) H_{1}(s) & \text { L3. } & G_{7}(s) H_{4}(s) \\ \mathrm{L} 2 & G_{4}(s) H_{2}(s) & \text { L4. } & G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)\end{array}$

Signal-Flow Graph Models

Example. 3

Non-touching loops taken two at a time.


```
L 1 and \(\mathrm{L} 2: G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) \mathrm{L} 2\) and \(\mathrm{L} 3: G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\)
L1 and L3: \(G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)\)
```


Signal-Flow Graph Models

Example. 3

Non-touching loops taken three at a time.

$$
\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3: G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)
$$

Signal-Flow Graph Models

Example. 3

$$
\begin{aligned}
\Delta= & 1-\left[G_{2}(s) H_{1}(s)+G_{4}(s) H_{2}(s)\right. \\
& \left.+G_{7}(s) H_{4}(s)+G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)\right] \\
& +\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s)+G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)\right. \\
& \left.+G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right] \\
& -\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right]
\end{aligned}
$$

Eliminate forward path-

$$
\Delta_{1}=1-G_{7}(s) H_{4}(s)
$$

Signal-Flow Graph Models

Example. 4

There are three forward paths, therefore $\mathrm{n}=3$.

$$
\frac{C(s)}{R(s)}=\frac{\sum_{i=1}^{3} P_{i} \Delta_{i}}{\Delta}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}}{\Delta}
$$

Signal-Flow Graph Models

Example. 4

Signal-Flow Graph Models

Example. 4

$$
\begin{aligned}
L_{1} & =A_{32} A_{23} \\
L_{2} & =A_{43} A_{34} \\
L_{3} & =A_{54} A_{45} \\
L_{4} & =A_{65} A_{56}
\end{aligned}
$$

Signal-Flow Graph Models

Example. 4

$L_{1} L_{3}$
$L_{2} L_{4}$
$L_{3} L_{5} \quad L_{4} L_{6}$
$L_{7} L_{8}$
$L_{1} L_{4}$
$L_{2} L_{5}$
$L_{3} L_{6} \quad L_{4} L_{7}$
$L_{1} L_{5}$ $L_{2} L_{6}$
$L_{1} L_{6}$ $L_{2} L_{8}$
$L_{1} L_{8}$

Block Diagram to Signal-Flow Graph

Example. 5:

Block Diagram to Signal-Flow Graph

Example. 5:

Block Diagram to Signal-Flow Graph

Example. 6:

Block Diagram to Signal-Flow Graph

Example. 6:

7 loops:

$$
\begin{array}{lll}
{\left[G_{1} \cdot(-1)\right] ;} & {\left[G_{2} \cdot(-1)\right] ;} & {\left[G_{1} \cdot(-1) \cdot G_{2} \cdot 1\right] ;}
\end{array} \quad\left[(-1) \cdot G_{1} \cdot 1 \cdot(-1)\right] ;, ~ 子\left[(-1) \cdot G_{1} \cdot(-1) \cdot G_{2} \cdot 1 \cdot(-1)\right] ; \quad\left[1 \cdot G_{2} \cdot 1 \cdot(-1)\right] ; \quad\left[1 \cdot G_{2} \cdot 1 \cdot G_{1} \cdot 1 \cdot(-1)\right] .
$$

3 '2 non-touching loops':
$\left[G_{1} \cdot(-1)\right] \cdot\left[G_{2} \cdot(-1)\right] ; \quad\left[(-1) \cdot G_{1} \cdot 1 \cdot(-1)\right] \cdot\left[G_{2} \cdot(-1)\right] ;$
$\left[1 \cdot G_{2} \cdot 1 \cdot(-1)\right] \cdot\left[G_{1} \cdot(-1)\right]$.

Block Diagram to Signal-Flow Graph

Example. 6:

Then:

$$
\Delta=1+2 G_{2}+4 G_{1} G_{2}
$$

4 forward paths:

$$
p_{1}=(-1) \cdot G_{1} \cdot 1 \quad \Delta_{1}=1+G_{2}
$$

$$
p_{2}=(-1) \cdot G_{1} \cdot(-1) \cdot G_{2} \cdot 1 \quad \Delta_{2}=1
$$

$$
p_{3}=1 \cdot G_{2} \cdot 1 \quad \Delta_{3}=1+G_{1}
$$

$$
p_{4}=1 \cdot G_{2} \cdot 1 \cdot G_{1} \cdot 1 \quad \Delta_{4}=1
$$

Block Diagram to Signal-Flow Graph

Example. 6:

We have

$$
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{\sum p_{k} \Delta_{k}}{\Delta} \\
& =\frac{G_{2}-G_{1}+2 G_{1} G_{2}}{1+2 G_{2}+4 G_{1} G_{2}}
\end{aligned}
$$

Block Diagram to Signal-Flow Graph

Example. 7:

- The signal flow graph of the above block diagram is shown below.
- There are two forward paths. The path gains are

$$
P_{1}=G_{1} G_{2} G_{3} \text { and } P_{2}=G_{4}
$$

- The three feedback loop gains are

$$
P_{11}=-G_{2} H_{1}, P_{21}=G_{1} G_{2} H_{1}, P_{31}=-G_{2} G_{3} H_{2} .
$$

- No loops are non-touching, hence

$$
\Delta=1-\left(P_{11}+P_{21}+P_{31}\right)
$$

- Because the loops touch the nodes of $P 1$, hence

$$
\Delta_{1}=1
$$

- Since no loops touch the nodes of P2, therefore

$$
\Delta_{2}=\Delta .
$$

- Hence the control ratio $\mathrm{T}=\mathrm{C} / \mathrm{R}$ is

$$
T=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3}+G_{4}+G_{2} G_{4} H_{1}-G_{1} G_{2} G_{4} H_{1}+G_{2} G_{3} G_{4} H_{2}}{1+G_{2} H_{1}-G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}}
$$

Block Diagram to Signal-Flow Graph

Example. 7:

- The signal flow graph is shown in the figure.
- The two forward path gains are $P_{1}=G_{1} G_{2} G_{3}$ and $P_{2}=G_{1} G_{4}$
- The five feedback loop gains are
- There are no non-touching loops, hence
$P_{11}=G_{1} G_{2} H_{1}, P_{21}=G_{2} G_{3} H_{2}, P_{31}=-G_{1} G_{2} G_{3}$,
$P_{41}=G_{4} H_{2}$, and $P_{S 1}=-G_{1} G_{4}$.
- All feedback loops touches the two forward paths, hence $\quad \Delta_{1}=\Delta_{2}=1$ $\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3}+G_{1} G_{4}}{1+G_{1} G_{2} G_{3}-G_{1} G_{2} H_{1}-G_{2} G_{3} H_{2}-G_{4} H_{2}+G_{1} G_{4}}$

Electrical System to Signal-Flow Graph

Example. 8:

$$
\left.\begin{array}{l}
V_{1}(s)=\frac{1}{C s} I_{1}(s)+I_{1}(s) R \\
V_{2}(s)=I_{1}(s) R
\end{array}\right\} \longrightarrow C s V_{1}(s)-C s V_{2}(s)=I_{1}(s)
$$

Electrical System to Signal-Flow Graph

Example. 9:

$$
\begin{aligned}
& F=M_{1} s^{2} X_{1}+k_{1}\left(X_{1}-X_{2}\right) \\
& 0=M_{2} s^{2} X_{2}+k_{1}\left(X_{2}-X_{1}\right)+k_{2} X_{2}
\end{aligned}
$$

(i) $\quad F+k_{1} X_{2}=\left(M_{1} s^{2}+f_{1} s+k_{1}\right) X_{1}$
(ii) $\quad k_{1} X_{1}=\left(M_{2} s^{2}+f_{2} s+k_{1}+k_{2}\right) X_{2}$
(iii) $\left(\frac{1}{A}\right) F+\left(\frac{k_{1}}{A}\right) X_{2}=X_{1}$

(iv)

$$
\left(\frac{k_{1}}{B}\right) X_{1}=X_{2}
$$

Electrical System to Signal-Flow Graph

Example. 9:

The forward path gain is $P_{1}=k_{1} / A B$. The feedback loop gain is $P_{11}=k_{1}^{2} / A B$. then $\Delta=1-P_{11}=$ $\left(A B-k_{1}^{2}\right) / A B$ and $\Delta_{1}=1$. Finally,

$$
\frac{X_{2}}{F}=\frac{P_{1} \Delta_{1}}{\Delta}=\frac{k_{1}}{A B-k_{1}^{2}}=\frac{k_{1}}{\left(M_{1} s^{2}+f_{1} s+k_{1}\right)\left(M_{2} s^{2}+f_{2} s+k_{1}+k_{2}\right)-k_{1}^{2}}
$$

