

MENG366

Signal Flow Graph

Dr. Saeed Asiri saeed@asiri.net

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

- Compact alternative *notation to the block diagram*.
- It characterizes the system by a network of directed branches and associated transfer functions.
- The two ways of depicting signal are equivalent.

asiri

@profsaeedasiri

Signal Flow Graph

MENG366 - Prof. Saeed Asiri

asiri@net

@profsaeedasiri

9/3/2023

3

اقرأباتم ركك

Signal Flow Graph

asiri@net

- Block diagrams are used as schematic representations of mathematical models
- The various pieces correspond to mathematical entities
- Can be rearranged to help simplify the equations used to model the system
- We will focus on one type of schematic diagram feedback control systems

• Processes are represented by the blocks in block diagrams:

- Processes must have at least one input variable and at least one output variable
- Reclassify processes without input or output:

- Many systems measure their output and use this measurement to control system behavior
- This is known as feedback control the output is "fed back" into the system
- The summing junction is a special process that compares the input and the feedback
- Inputs to summing junction must have same units!

Block Diagram Models

(a) **block**

 $X_{5}(s) = X_{1}(s) - X_{2}(s) + X_{3}(s) - X_{4}(s)$

(c) pickoff point

(b) Summer

(a)

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

Block Diagram Models

Y(s) = G(s)E(s) $E(s) = R(s) \pm H(s)Y(s)$ $Y(s) = G(s)[R(s) \pm H(s)Y(s)] = G(s)R(s) \pm G(s)H(s)Y(s)$ $T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 \mp G(s)H(s)}$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

(b) Changing a summer sign

(c) Moving a pickoff point back

(d) Moving a pickoff point forward

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

10

(a) Insertion or removal of unity gain

اقرأياتهم دكمج

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

asiri@net

@profsaeedasiri

A AG AG

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

13

اقرأياتم ركك

Example 1

9/3/2023

Block Diagram Models

Example 2

@profsaeedasiri

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

Example 3

asiri@net

@profsaeedasiri

Example 3 cont.

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

Introduction to Signal Flow

- Alternative method to block diagram representation, developed by Samuel Jefferson Mason.
- Advantage: the availability of a flow graph gain formula, also called Mason's gain formula.
- A signal-flow graph consists of a network in which nodes are connected by directed branches.
- It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

Fundamentals of Signal Flow Graphs

• Consider a simple equation below and draw its signal flow graph:

y = ax

• The signal flow graph of the equation is shown below;

- Every variable in a signal flow graph is designed by a **Node**.
- Every transmission function in a signal flow graph is designed by a **Branch**.
- Branches are always **unidirectional**.
- The arrow in the branch denotes the **direction** of the signal flow.

@profsaeedasiri

 $Y_1(s) = G_{11}(s) \cdot R_1(s) + G_{12}(s) \cdot R_2(s)$

 $Y_2(s) = G_{21}(s) \cdot R_1(s) + G_{22}(s) \cdot R_2(s)$

@profsaeedasiri

Signal-Flow Graph Models

 r_1 and r_2 are inputs and x_1 and x_2 are outputs

 $a_{11} \cdot x_1 + a_{12} \cdot x_2 + r_1 = x_1$

 $a_{21} \cdot x_1 + a_{22} \cdot x_2 + r_2 = x_2$

@profsaeedasiri

Signal-Flow Graph Models

 x_o is input and x_4 is output

 $x_{1} = ax_{0} + bx_{1} + cx_{2}$ $x_{2} = dx_{1} + ex_{3}$ $x_{3} = fx_{0} + gx_{2}$ $x_{4} = hx_{3}$

@profsaeedasiri

Signal-Flow Graph Models

Construct the signal flow graph for the following set of simultaneous equations.

 $x_2 = A_{21}x_1 + A_{23}x_3$ $x_3 = A_{31}x_1 + A_{32}x_2 + A_{33}x_3$ $x_4 = A_{42}x_2 + A_{43}x_3$

- There are four variables in the equations (i.e., x_1, x_2, x_3 , and x_4) therefore four nodes are required to construct the signal flow graph.
- Arrange these four nodes from left to right and connect them with the associated branches.

9/3/2023

MENG366 - Prof. Saeed Asiri

ullet

@profsaeedasiri

Signal-Flow Graph Models

Terminologies:

- An input node or source contain only the outgoing branches. i.e., X_1
- An output node or sink contain only the incoming branches. i.e., X_4
- A path is a continuous, unidirectional succession of branches along which no node is passed more than ones. i.e., X_1 to X_2 to X_3 to X_4 X_1 to X_2 to X_4 X_2 to X_4 X_2 to X_4 X_2 to X_4
- A forward path is a path from the input node to the output node. i.e., X_1 to X_2 to X_3 to X_4 , and X_1 to X_2 to X_4 , are forward paths.
- A feedback path or feedback loop is a path which originates and terminates on the same node. i.e.; X_2 to X_3 and back to X_2 is a feedback path.

Signal-Flow Graph Models

Terminologies:

- A self-loop is a feedback loop consisting of a single branch. i.e.; A_{33} is a self loop.
- The gain of a branch is the transmission function of that branch.
- The **path gain** is the product of branch gains encountered in traversing a path. i.e. the gain of forwards path X_1 to X_2 to X_3 to X_4 is $A_{21}A_{32}A_{43}$
- The loop gain is the product of the branch gains of the loop. i.e., the loop gain of the feedback loop from X_2 to X_3 and back to X_2 is $A_{32}A_{23}$.
- Two loops, paths, or loop and a path are said to be **non-touching** if they have no nodes in common. A_{42}

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths (loops).
- e) Determine the loop gains of the feedback loops.
- f) Determine the path gains of the forward paths.
- g) Non-touching loops

@profsaeedasiri

Consider the signal flow graph below and identify the following

• There are two forward path gains;

1. $G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)$ **2.** $G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s)$

Signal-Flow Graph Models

Consider the signal flow graph below and identify the following

• There are four loops

Consider the signal flow graph below and identify the following

- Nontouching loop gains;
- **1.** $[G_2(s)H_1(s)][G_4(s)H_2(s)]$
- **2.** $[G_2(s)H_1(s)][G_4(s)G_5(s)H_3(s)]$
- **3.** $[G_2(s)H_1(s)][G_4(s)G_6(s)H_3(s)]$

30

C(s)

Consider the signal flow graph below and identify the following

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths.
- e) Self loop.
- f) Determine the loop gains of the feedback loops.
- g) Determine the path gains of the forward paths.

@profsaeedasiri

Input and output Nodes

@profsaeedasiri

Signal-Flow Graph Models

(c) Forward Paths

 X_1 to X_2 to X_3 to X_4 to X_5 to X_6 to X_7 to X_8

 X_1 to X_2 to X_7 to X_8

 X_1 to X_2 to X_4 to X_5 to X_6 to X_7 to X_8

@profsaeedasiri

Signal-Flow Graph Models

@profsaeedasiri

Signal-Flow Graph Models

(d) Feedback Paths or Loops

@profsaeedasiri

(d) Feedback Paths or Loops

(d) Feedback Paths or Loops

@profsaeedasiri

(e) Self Loop(s)

(f) Loop Gains of the Feedback Loops

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

(g) Path Gains of the Forward Paths

A₇₂

A42 A54 A65 A76

Mason's Rule (Mason, 1953)

- The block diagram reduction technique requires successive application of fundamental relationships in order to arrive at the system transfer function.
- On the other hand, Mason's rule for reducing a signal-flow graph to a single transfer function requires the application of one formula.
- The formula was derived by S. J. Mason when he related the signal-flow graph to the simultaneous equations that can be written from the graph.

Mason's Rule

• The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is;

$$\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_i \Delta_i}{\Delta}$$

Where

- n = number of forward paths. $P_i = \text{the } i^{\text{th}} \text{ forward-path gain.}$ $\Delta = \text{Determinant of the system}$ $\Delta_i = \text{Determinant of the } i^{\text{th}} \text{ forward path}$
- Δ is called the signal flow graph determinant or characteristic function. Since Δ =0 is the system characteristic equation.

MENG366 - Prof. Saeed Asiri

asiri@net

Mason's Rule

 $\Delta = 1$ - (sum of all individual loop gains) + (sum of the products of the gains of all possible two loops that do not touch each other) – (sum of the products of the gains of all possible three loops that do not touch each other) + ... and so forth with sums of higher number of non-touching loop gains

 Δ_i = value of Δ for the part of the block diagram that does not touch the i-th forward path ($\Delta_i = 1$ if there are no non-touching loops to the i-th path.)

Systematic approach

- 1. Calculate forward path gain P_i for each forward path *i*.
- 2. Calculate all loop transfer functions
- 3. Consider non-touching loops 2 at a time
- 4. Consider non-touching loops 3 at a time
- 5. etc
- 6. Calculate Δ from steps 2,3,4 and 5
- 7. Calculate Δ_i as portion of Δ not touching forward path *i*

asiri@net

Signal-Flow Graph Models

Example.1

Therefore,	<u>C</u>	$\underline{P_1\Delta_1 + P_2\Delta_2}$
	\overline{R}	Δ

There are three feedback loops

$$L_1 = G_1 G_4 H_1, \quad L_2 = -G_1 G_2 G_4 H_2, \quad L_3 = -G_1 G_3 G_4 H_2$$

@profsaeedasiri

Example.1

There are no non-touching loops, therefore

 $\Delta = 1$ - (sum of all individual loop gains)

$$\Delta = 1 - \left(L_1 + L_2 + L_3\right)$$

$$\Delta = 1 - \left(G_1 G_4 H_1 - G_1 G_2 G_4 H_2 - G_1 G_3 G_4 H_2\right)$$

MENG366 - Prof. Saeed Asiri

Eliminate forward path-2

 $\Delta_2 = 1$ - (sum of all individual loop gains)+... $\Delta_2 = 1$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023 **47**

Example.1

$$\frac{C}{R} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} = \frac{G_1 G_2 G_4 + G_1 G_3 G_4}{1 - G_1 G_4 H_1 + G_1 G_2 G_4 H_2 + G_1 G_3 G_4 H_2}$$
$$= \frac{G_1 G_4 (G_2 + G_3)}{1 - G_1 G_4 H_1 + G_1 G_2 G_4 H_2 + G_1 G_3 G_4 H_2}$$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

Example.2

- **1.** Calculate forward path gains for each forward path.
- 2. Calculate all loop gains.
- **3.** Consider two non-touching loops.

 $\begin{array}{cccc} L_1L_3 & L_1L_4 \\ L_2L_4 & L_2L_3 \end{array}$

@profsaeedasiri

Example.2

- 4. Consider three non-touching loops. None.
- 5. Calculate Δ from steps 2,3,4.

$$\begin{split} &\Delta = 1 - \left(L_1 + L_2 + L_3 + L_4\right) + \left(L_1 L_3 + L_1 L_4 + L_2 L_3 + L_2 L_4\right) \\ &\Delta = 1 - \left(G_2 H_2 + H_3 G_3 + G_6 H_6 + G_7 H_7\right) + \\ &\left(G_2 H_2 G_6 H_6 + G_2 H_2 G_7 H_7 + H_3 G_3 G_6 H_6 + H_3 G_3 G_7 H_7\right) \end{split}$$

Example.2

Eliminate forward path-1

$$\Delta_1 = 1 - (L_3 + L_4)$$

$$\Delta_1 = 1 - (G_6 H_6 + G_7 H_7)$$

Eliminate forward path-2

 $\Delta_2 = 1 - \left(L_1 + L_2\right)$

$$\Delta_2 = 1 - (G_2 H_2 + G_3 H_3)$$

51

Example.2

$$\frac{Y(s)}{R(s)} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta}$$

$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3 G_4 \left[1 - \left(G_6 H_6 + G_7 H_7\right)\right] + G_5 G_6 G_7 G_8 \left[1 - \left(G_2 H_2 + G_3 H_3\right)\right]}{1 - \left(G_2 H_2 + H_3 G_3 + G_6 H_6 + G_7 H_7\right) + \left(G_2 H_2 G_6 H_6 + G_2 H_2 G_7 H_7 + H_3 G_3 G_6 H_6 + H_3 G_3 G_7 H_7\right)}$$

MENG366 - Prof. Saeed Asiri

9/3/2023

Example.3

• Find the transfer function, C(s)/R(s), for the signal-flow graph in figure below.

الأربي المربي ويربع المكان عيد العرب ويربع المكان عيد العرب

Signal-Flow Graph Models

Example.3

MENG366 - Prof. Saeed Asiri

Example.3

• There are four feedback loops.

MENG366 - Prof. Saeed Asiri

Example.3

Non-touching loops taken two at a time.

L1 and L2: $G_2(s)H_1(s)G_4(s)H_2(s)$ L2 and L3: $G_4(s)H_2(s)G_7(s)H_4(s)$ L1 and L3: $G_2(s)H_1(s)G_7(s)H_4(s)$

@profsaeedasiri

Example.3

Non-touching loops taken three at a time.

L1, L2, L3: $G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

asiri@net

Signal-Flow Graph Models

Example.3

$$\begin{split} \Delta &= 1 - [G_2(s)H_1(s) + G_4(s)H_2(s) \\ &+ G_7(s)H_4(s) + G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)G_7(s)G_8(s)] \\ &+ [G_2(s)H_1(s)G_4(s)H_2(s) + G_2(s)H_1(s)G_7(s)H_4(s) \\ &+ G_4(s)H_2(s)G_7(s)H_4(s)] \\ &- [G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)] \end{split}$$

asiri@net

Signal-Flow Graph Models

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023 **59**

Example.4

asiri@net

Signal-Flow Graph Models

asiri@net

Signal-Flow Graph Models

MENG366 - Prof. Saeed Asiri

 $L_{1}L_{3}$

 $L_{1}L_{4}$

 $L_{1}L_{5}$

 $L_{1}L_{6}$

 $L_{1}L_{8}$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

MENG366 - Prof. Saeed Asiri

MENG366 - Prof. Saeed Asiri

Block Diagram to Signal-Flow Graph

Then: $\Delta = 1 + 2G_2 + 4G_1G_2$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

Block Diagram to Signal-Flow Graph

Example. 6:

We have

$$\frac{C(s)}{R(s)} = \frac{\sum p_k \Delta_k}{\Delta} \\ = \frac{G_2 - G_1 + 2G_1G_2}{1 + 2G_2 + 4G_1G_2}$$

asiri@net

Block Diagram to Signal-Flow Graph

• The signal flow graph of the above block diagram is shown below.

- There are two forward paths. The path gains are $P_1 = G_1G_2G_3$ and $P_2 = G_4$
- The three feedback loop gains are

$$P_{11} = -G_2H_1, P_{21} = G_1G_2H_1, P_{31} = -G_2G_3H_2.$$

• No loops are non-touching, hence

$$\Delta = 1 - (P_{11} + P_{21} + P_{31})$$

- Because the loops touch the nodes of P1, hence $\Delta_1 = 1$
- Since no loops touch the nodes of P2, therefore $\Delta_2 = \Delta$.

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

asiri@net **Block Diagram to Signal-Flow Graph** Example. 7: H2 G_4 The signal flow graph is shown in the figure. • G_3 G_1 G_2 The two forward path gains are ٠ H, $P_1 = G_1 G_2 G_3$ and $P_2 = G_1 G_4$ The five feedback loop gains are ٠ There are no non-touching loops, hence ٠ $P_{11} = G_1 G_2 H_1, P_{21} = G_2 G_3 H_2, P_{31} = -G_1 G_2 G_3,$

- $P_{41} = G_4 H_2$, and $P_{51} = -G_1 G_4$.
- All feedback loops touches the two forward ٠ paths, hence $\Delta_1 = \Delta_2 = 1$

$$\Delta = 1 - (P_{11} + P_{21} + P_{31} + P_{41} + P_{51})$$

= 1 + G₁G₂G₃ - G₁G₂H₁ - G₂G₃H₂ - G₄H₂ + G₁G₄
G₂G₂G₃ + G₂G₄

$$\frac{C}{R} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} = \frac{G_1 G_2 G_3 + G_1 G_4}{1 + G_1 G_2 G_3 - G_1 G_2 H_1 - G_2 G_3 H_2 - G_4 H_2 + G_1 G_4}$$

MENG366 - Prof. Saeed Asiri

@profsaeedasiri

9/3/2023

Electrical System to Signal-Flow Graph

1/sC

@profsaeedasiri

7′

المراجع ا

Electrical System to Signal-Flow Graph

Example. 9:

neit

asiri

MENG366 - Prof. Saeed Asiri

المراجعة العرب بالمعالمة عند العرب المعالمة عند العرب

Electrical System to Signal-Flow Graph

Example. 9:

The forward path gain is $P_1 = k_1/AB$. The feedback loop gain is $P_{11} = k_1^2/AB$. then $\Delta = 1 - P_{11} = (AB - k_1^2)/AB$ and $\Delta_1 = 1$. Finally,

$$\frac{X_2}{F} = \frac{P_1 \Delta_1}{\Delta} = \frac{k_1}{AB - k_1^2} = \frac{k_1}{\left(M_1 s^2 + f_1 s + k_1\right) \left(M_2 s^2 + f_2 s + k_1 + k_2\right) - k_1^2}$$