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MARK the definitions and then CALCULTAE the numerical values of the 

following specifications:

a) Delay time, td 

b) Rise time, tr 

c) Peak time, tp

d) Settling time, ts for 2%

e) Maximum overshoot, Mp

f) Steady state response. yss

g) Steady state error, ess

h) Maximum amplitude, ymax

i) Percentage overshoot

j) Natural Frequency, ωn

k) Damped Natural Frequency, ωd

l) Damping Ratio, ζ



@profsaeedasiri 10/8/2023MENG366 -  Prof. Saeed Asiri
3

MARK the definitions and then CALCULTAE the numerical values of the 

following specifications:

a) Delay time, td 

b) Rise time, tr 

c) Peak time, tp

d) Settling time, ts for 2%

e) Maximum overshoot, Mp

f) Steady state response. yss

g) Steady state error, ess

h) Maximum amplitude, ymax

i) Percentage overshoot

j) Natural Frequency, ωn

k) Damped Natural Frequency, ωd

l) Damping Ratio, ζ



@profsaeedasiri 10/8/2023MENG366 -  Prof. Saeed Asiri
4

Introduction

• Errors in a control system can be attributed to many factors: 
– Imperfections in the system components 

(e.g. static friction, amplifier drift, aging, deterioration, etc…)

– Changes in the reference inputs → 
cause errors during transient periods & may cause steady-state errors.

• In this section, we shall investigate a type of steady-state 
error that is caused by the incapability of a system to 
follow particular types of inputs.
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Steady-State Errors with Respect to 
Types of Inputs

• Any physical control system inherently suffers steady-state response to 
certain types of inputs.

• A system may have no steady-state error to a step input, but the same 
system exhibit nonzero steady-state error to a ramp input.

• Whether a given unity feedback system will exhibit steady-state error 
for a given type of input depends on the type of  loop gain of the 
system.
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Classification of Control System

• Control systems may be classified according to their ability to track polynomial 
inputs, or in other words, their ability to reach zero steady-state to step-inputs, 
ramp inputs, parabolic inputs and so on.

• This is a reasonable classification scheme because actual inputs may frequently be 
considered combinations of such inputs.

• The magnitude of the steady-state errors due to these individual inputs are 
indicative of the goodness of the system. 
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Steady-State Error 

• Error:

• Using the FVT, the steady-state error is given by:

𝑌(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)

𝑒𝑠𝑠 = lim
𝑡→∞

𝑒 (𝑡) = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠𝑅(𝑠)
1

1 + 𝐺(𝑠)

FVT

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) ⇒ 𝐸(𝑠) = 𝑅(𝑠) − 𝑌(𝑠) =
𝑅(𝑠)

1 + 𝐺(𝑠)

The Unity Feedback Control Case



@profsaeedasiri 10/8/2023MENG366 -  Prof. Saeed Asiri
8

Steady-state error to polynomial input
- Unity Feedback Control -

• Consider a polynomial input:

• The steady-state error is then given by:

𝑟(𝑡) = 𝑡𝑘−1𝑢(𝑡) ⇒ 𝑅(𝑠) =
1

𝑠𝑘

𝑒𝑠𝑠 = lim
𝑠→0

𝑠
1

𝑠𝑘
1

1 + 𝐺(𝑠)
= lim

𝑠→0

𝑠

𝑠𝑘
1

1 + 𝐺(𝑠)
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System Type

A unity feedback system is defined to be type k if 

the feedback system guarantees:

 
𝑒𝑠𝑠 = 0 𝑓𝑜𝑟 𝑅(𝑠) =

1

𝑠𝑘

𝑒𝑠𝑠 < ∞ 𝑓𝑜𝑟 𝑅(𝑠) =
1

𝑠𝑘+1
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System Type (cont’d)

• Since, for an input 

the system is called a type k system if:

lim
𝑠→0

𝑠

𝑠𝑘
1

1 + 𝐺(𝑠)
= 0

lim
𝑠→0

𝑠

𝑠𝑘+1
1

1 + 𝐺(𝑠)

< ∞

𝑅(𝑠) =
1

𝑠𝑘

𝑒𝑠𝑠 = lim
𝑠→0

𝑠
1

𝑠𝑘
1

1 + 𝐺(𝑠)
= lim

𝑠→0

𝑠

𝑠𝑘
1

1 + 𝐺(𝑠)
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Example 1: Unity feedback 

• Given a stable system whose the open-loop transfer function is:

                                                                 subjected to inputs 

• Step function:

• Ramp function:

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠 (𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
=
𝐺0(𝑠)

𝑠

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

𝑠

1

1 +
𝐺0(𝑠)
𝑠

= lim
𝑠→0

𝑠

𝑠

𝑠

𝑠 + 𝐺0(𝑠)
=

0

0 + 𝐺0(0)
= 0

𝑅(𝑠) =
1

𝑠𝑘

𝑅(𝑠) = Τ1 𝑠 , 𝑘 = 1

𝑅(𝑠) = Τ1 𝑠2 , 𝑘 = 2

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

𝑠2
1

1 +
𝐺0(𝑠)
𝑠

= lim
𝑠→0

𝑠

𝑠2
𝑠

𝑠 + 𝐺0(𝑠)
= lim

𝑠→0

1

𝑠 + 𝐺0(𝑠)
=

1

𝐺0(0)
≠ 0

→ The system is type 1

(𝑝𝑖 ≠ 0)
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Example 2: Unity feedback
• Given a stable system whose the open-loop transfer function is:

                                                                   subjected to inputs 

• Step function:

• Ramp function:

• Parabola function:

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠2(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
=
𝐺0(𝑠)

𝑠2

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

𝑠

1

1 +
𝐺0(𝑠)
𝑠2

= lim
𝑠→0

𝑠

𝑠

𝑠2

𝑠2 + 𝐺0(𝑠)
=

0

0 + 𝐺0(0)
= 0

𝑅(𝑠) =
1

𝑠𝑘

𝑅(𝑠) = Τ1 𝑠 , 𝑘 = 1

𝑅(𝑠) = Τ1 𝑠2 , 𝑘 = 2

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

𝑠2
1

1 +
𝐺0(𝑠)
𝑠2

= lim
𝑠→0

𝑠

𝑠2
𝑠2

𝑠2 + 𝐺0(𝑠)
= lim

𝑠→0

𝑠

𝑠2 + 𝐺0(𝑠)
=

0

𝐺0(0)
= 0

→ type 2𝑒𝑠𝑠 = lim
𝑠→0

𝑠

𝑠3
1

1 +
𝐺0(𝑠)
𝑠2

= lim
𝑠→0

𝑠

𝑠3
𝑠2

𝑠2 + 𝐺0(𝑠)
=

1

𝐺0(0)
≠ 0

𝑅(𝑠) = Τ1 𝑠3 , 𝑘 = 3

(𝑝𝑖 ≠ 0)
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Example 3: Unity feedback

• Given a stable system whose the open loop transfer function is:

                                                                 subjected to inputs 

• Step function:

• Impulse function:

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
= 𝐺0(𝑠)

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

𝑠

1

1 + 𝐺0(𝑠)
=

1

1 + 𝐺0(0)
≠ 0

𝑅(𝑠) =
1

𝑠𝑘

𝑅(𝑠) = Τ1 𝑠 , 𝑘 = 1

𝑅(𝑠) = 1, 𝑘 = 0

𝑒𝑠𝑠 = lim
𝑠→0

𝑠

1

1

1 + 𝐺0(𝑠)
=

0

𝐺0(0)
= 0

→ The system is type 0

(𝑝𝑖 ≠ 0)
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Summary – Unity Feedback

• Assuming               , unity system loop transfers such as: 

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
= 𝐺0(𝑠)

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠 (𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
=
𝐺0(𝑠)

𝑠

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠2(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
=
𝐺0(𝑠)

𝑠2

→ type 1

→ type 2

→ type 0

𝐺(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠𝑛(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
=
𝐺0(𝑠)

𝑠𝑛 → type n

𝑝𝑖 ≠ 0
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General Rule – Unity Feedback

• An unity feedback system is of type k if the open-loop transfer 
function of the system has:

k poles at s=0

In other words, 

• An unity feedback system is of type k if the open-loop transfer 
function of the system has:

k integrators 
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Error Constants

• A  stable unity feedback system is type k with respect to reference inputs if the open 
loop transfer function has k poles at the origin:

     Then the error constant is given by:

• The higher the constants, the smaller the steady-state error.

𝐺(𝑠) =
(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠𝑘(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯
=
𝐺0(𝑠)

𝑠𝑘

𝐾𝑘 = lim
𝑠→0

𝑠𝑘 𝐺 𝑠 = 𝐺0 0
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Error Constants

• For a Type 0 System, the error constant, called position constant, is given by:

• For  a Type 1 System, the error constant, called velocity constant, is given by:

• For a Type 2 System, the error constant, called acceleration constant, is given by:

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠)

𝐾𝑣 = lim
𝑠→0

𝑠 𝐺(𝑠)

𝐾𝑎 = lim
𝑠→0

𝑠2 𝐺(𝑠)

(dimensionless)

(sec−1)

(sec−2)
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Steady-State Errors as a function of 
System Type – Unity Feedback

System type Step input Ramp input Parabola input

Type 0

Type 1

Type 2

1

1 + 𝐾𝑝
∞

0
1

𝐾𝑣

1

𝐾𝑎

∞

∞

0 0
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Example:
• A temperature control system is found to have zero error to a constant 

tracking input and an error of 0.5oC to a tracking input that is linear in 
time, rising at the rate of 40oC/sec. 

• What is the system type?

• What is the steady-state error?

• What is the error constant?

The system is type 1

𝑒𝑠𝑠 = 0. 5𝑜𝐶 =
40𝑜𝐶/sec

𝐾𝑣

𝐾𝑣 =
40𝑜𝐶/sec

0. 5𝑜𝐶 sec−1

Error Constants
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Conclusion

• Classifying a system as k type indicates the ability of the 
system to achieve zero steady-state error to polynomials 
r(t) of degree less but not equal to k.

• The system is type k if the error is zero to all polynomials 
r(t) of degree less than k but non-zero for a polynomial of 
degree k.

Error Constants
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Conclusion

• A  stable unity feedback system is type k with respect to 
reference inputs if the loop transfer function has k poles at 
the origin:

• Then the error constant is given by:

𝐺(𝑠) =
(𝑠 − 𝑧1)(𝑠 − 𝑧2)⋯

𝑠𝑘(𝑠 − 𝑝1)(𝑠 − 𝑝2)⋯

𝐾𝑘 = lim
𝑠→0

𝑠𝑘 𝐺(𝑠)

Error Constants
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The Classical Three- Term Controllers
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Basic Operations of a Feedback Control

Think of what goes on in domestic hot water thermostat:

• The temperature of the water is measured.

• Comparison of the measured and the required values provides an error, e.g. “too 
hot’ or ‘too cold’.

• On the basis of error, a control algorithm decides what to do. 

→ Such an algorithm might be: 

– If the temperature is too high then turn the heater off. 

– If it is too low then turn the heater on 

• The adjustment chosen by the control algorithm is applied to some adjustable 
variable, such as the power input to the water heater. 
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Feedback Control Properties

• A feedback control system seeks to bring the measured quantity to its required 
value or set-point.

• The control system does not need to know why the measured value is not 
currently what is required, only that is so.

• There are two possible causes of such a disparity:

– The system has been disturbed. 

– The setpoint has changed. In the absence of external disturbance, a change in 
setpoint will introduce an error. The control system will act until the measured 
quantity reach its new setpoint. 
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The PID Algorithm

• The PID algorithm is the most popular feedback controller algorithm used. It is a 
robust easily understood algorithm that can provide excellent control 
performance despite the varied dynamic characteristics of processes.

• As the name suggests, the PID algorithm consists of three basic modes:

the Proportional mode,

 the Integral mode

& the Derivative mode.
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P, PI or PID Controller

• When utilizing the PID algorithm, it is necessary to decide which modes are to 
be used (P, I or D) and then specify the parameters (or settings) for each mode 
used.

• Generally, three basic algorithms are used: P, PI or PID.

• Controllers are designed to eliminate the need for continuous operator 
attention.

→ Cruise control in a car and a house thermostat 
are common examples of how controllers are used to
 automatically adjust some variable to hold a measurement
 (or process variable) to a desired variable (or set-point) 
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Controller Output

• The variable being controlled is the output of the controller (and the input of the 
plant): 

• The output of the controller will change in response to a change in measurement 
or set-point (that said a change in the tracking error)

provides excitation to the plant system to be controlled
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PID Controller

• In the s-domain, the PID controller may be represented as:

• In the time domain:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖න
0

𝑡

𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑈(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠
+ 𝐾𝑑𝑠 𝐸(𝑠)

proportional gain integral gain derivative gain



@profsaeedasiri 10/8/2023MENG366 -  Prof. Saeed Asiri
29

PID Controller

• In the time domain:

• The signal u(t) will be sent to the plant, and a new output y(t) will be obtained. 
This new output y(t) will be sent back to the sensor again to find the new error 
signal e(t). The controllers takes this new error signal and computes its derivative 
and its integral gain. This process goes on and on.

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖න
0

𝑡

𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
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Definitions
• In the time domain:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖න
0

𝑡

𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

= 𝐾𝑝 𝑒(𝑡) +
1

𝑇𝑖
න
0

𝑡

𝑒(𝑡)𝑑𝑡 + 𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑤ℎ𝑒𝑟𝑒 𝑇𝑖 =
𝐾𝑝

𝐾𝑖
, 𝑇𝑑 =

𝐾𝑑
𝐾𝑖

proportional gain integral gain

derivative gain

derivative time constantintegral time constant

PID Controller
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Controller Effects
• A proportional controller (P) reduces error responses to disturbances, but still 

allows a steady-state error.

• When the controller includes a term proportional to the integral of the error (I), 
then the steady state error to a constant input is eliminated, although typically at 
the cost of deterioration in the dynamic response.

• A derivative control typically makes the system better damped and more stable.

PID Controller
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Closed-loop Response
Rise time Maximum 

overshoot

Settling 

time

Steady-

state error

P Decrease Increase Small 

change

Decrease

I Decrease Increase Increase Eliminate

D Small 

change

Decrease Decrease Small 

change

• Note that these correlations may not be exactly accurate, 
because P, I and D gains are dependent of each other.

PID Controller
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Example:
• Suppose we have a simple mass, spring, damper problem.

• The dynamic model is such as:

• Taking the Laplace Transform, we obtain:

• The Transfer function is then given by:

𝑚 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘𝑥 = 𝑓

𝑚𝑠2𝑋(𝑠) + 𝑏𝑠𝑋(𝑠) + 𝑘𝑋(𝑠) = 𝐹(𝑠)

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2 + 𝑏𝑠 + 𝑘

Open Loop System
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• Let 

• By plugging these values in the transfer function:

• The goal of this problem is to show you how each of 

                              contribute to obtain:

 fast rise time,

     minimum overshoot, 

no steady-state error.

𝑚 = 1𝑘𝑔, 𝑏 = 10𝑁. 𝑠/𝑚, 𝑘 = 20𝑁/𝑚, 𝑓 = 1𝑁

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑠2 + 10𝑠 + 20

𝐾𝑝, 𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑

Example:

Open Loop System
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• The (open) loop transfer function is given by:

• The steady-state value for the output is:

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑠2 + 10𝑠 + 20

𝑥𝑠𝑠 = lim
𝑡→∞

𝑥 (𝑡) = lim
𝑠→0

𝑠 𝑋(𝑠) = lim
𝑠→0

𝑠 𝐹(𝑠)
𝑋(𝑠)

𝐹(𝑠)
=

1

20

Example:

Open Loop System
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• 1/20=0.05 is the final value 
of the output to an unit step 
input.

• This corresponds to a 
steady-state error of 95%, 
quite large!

• The settling time is about 
1.5 sec.

Example:

Open Loop System
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Proportional Controller

• The closed loop transfer function is given by:

𝑋(𝑠)

𝐹(𝑠)
=

𝐾𝑝
𝑠2 + 10𝑠 + 20

1 +
𝐾𝑝

𝑠2 + 10𝑠 + 20

=
𝐾𝑝

𝑠2 + 10𝑠 + (20 + 𝐾𝑝)

Example:

Closed Loop System
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• Let 

• The above plot shows that 
the proportional controller
reduced both the rise time 
and the steady-state error, 
increased the overshoot, and 
decreased the settling time 
by small amount.

𝐾𝑝 = 300

Proportional Controller

Example:

Closed Loop System
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• The closed loop transfer function is given by:

𝑋(𝑠)

𝐹(𝑠)
=

𝐾𝑝 + 𝐾𝑑𝑠

𝑠2 + 10𝑠 + 20

1 +
𝐾𝑝 + 𝐾𝑑𝑠

𝑠2 + 10𝑠 + 20

=
𝐾𝑝 + 𝐾𝑑𝑠

𝑠2 + (10 + 𝐾𝑑)𝑠 + (20 + 𝐾𝑝)

PD Controller

Example:

Closed Loop System
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• Let 

• This plot shows that the proportional 
derivative controller reduced both the 
overshoot and the settling time, and 
had small effect on the rise time and the 
steady-state error. 

𝐾𝑝 = 300, 𝐾𝑑 = 10

PD Controller

Example:

Closed Loop System
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• The closed loop transfer function is given by:

𝑋(𝑠)

𝐹(𝑠)
=

𝐾𝑝 + 𝐾𝑖/𝑠

𝑠2 + 10𝑠 + 20

1 +
𝐾𝑝 + 𝐾𝑖/𝑠

𝑠2 + 10𝑠 + 20

=
𝐾𝑝𝑠 + 𝐾𝑖

𝑠3 + 10𝑠2 + (20 + 𝐾𝑝)𝑠 + 𝐾𝑖

PI Controller

Example:

Closed Loop System
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• Let 

• We have reduced the proportional gain because 
the integral controller also reduces the rise time 
and increases the overshoot as the proportional 
controller does (double effect).

• The above response shows that the integral 
controller eliminated the steady-state error. 

𝐾𝑝 = 30, 𝐾𝑖 = 70

PI Controller

Example:

Closed Loop System
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• The closed loop transfer function is given by:

𝑋(𝑠)

𝐹(𝑠)
=

𝐾𝑝 + 𝐾𝑑𝑠 + 𝐾𝑖/𝑠

𝑠2 + 10𝑠 + 20

1 +
𝐾𝑝 + 𝐾𝑑𝑠 + 𝐾𝑖/𝑠

𝑠2 + 10𝑠 + 20

=
𝐾𝑑𝑠

2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠3 + (10 + 𝐾𝑑)𝑠
2 + (20 + 𝐾𝑝)𝑠 + 𝐾𝑖

PID Controller

Example:

Closed Loop System
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• Let 

• Now, we have obtained 
the system with no 
overshoot, fast rise time, 
and no steady-state error.

𝐾𝑝 = 350, 𝐾𝑖 = 300,

𝐾𝑑 = 5500

PID Controller

Example:

Closed Loop System
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PDP

PI PID

Closed Loop System
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PID Controller Functions

• Output feedback

→ from Proportional action

 compare output with set-point

• Eliminate steady-state offset (=error)

→ from Integral action

    apply constant control even when error is zero

• Anticipation

   → From Derivative action

        react to rapid rate of change before errors grows too big
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Effect of Proportional, 
Integral & Derivative Gains on the

Dynamic Response
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Proportional Controller 

• Pure gain (or attenuation) since:

the controller input is error

the controller output is a proportional gain 

𝐸(𝑠)𝐾𝑝 = 𝑈(𝑠) ⇒ 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡)
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Change in gain in P controller

• Increase in gain:

 → Upgrade both steady-

          state and transient 

          responses

  → Reduce steady-state 

          error

 → Reduce stability!

P Controller with high gain
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Integral Controller 

• Integral of error with a constant gain

→ increase the system type by 1

→ eliminate steady-state error for a unit step input

→ amplify overshoot and oscillations

𝐸(𝑠)
𝐾𝑖
𝑠
= 𝑈(𝑠) ⇒ 𝑢(𝑡) = 𝐾𝑖න

0

𝑡

𝑒(𝑡) 𝑑𝑡
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Change in gain for PI controller

• Increase in gain:

 → Do not upgrade steady-

          state responses

  → Increase slightly 

          settling time 

 → Increase oscillations 

          and overshoot!
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Derivative Controller 

• Differentiation of error with a constant gain

→ detect rapid change in output

→ reduce overshoot and oscillation

→ do not affect the steady-state response

𝐸(𝑠)𝐾𝑑𝑠 = 𝑈(𝑠) ⇒ 𝑢(𝑡) = 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
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Effect of change for gain PD controller

• Increase in gain:

 → Upgrade transient 

          response

  → Decrease the peak and 

           rise time

 → Increase overshoot 

         and settling time!
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Changes in gains for PID Controller
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Conclusions

• Increasing the proportional feedback gain reduces steady-state errors, but high 
gains almost always destabilize the system.

• Integral control provides robust reduction in steady-state errors, but often 
makes the system less stable.

• Derivative control usually increases damping and improves stability, but has 
almost no effect on the steady state error

• These 3 kinds of control combined from the classical PID controller
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Conclusion - PID

• The standard PID controller is described by 
the equation:

𝑈(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠
+ 𝐾𝑑𝑠 𝐸(𝑠)

𝑜𝑟 𝑈(𝑠) = 𝐾𝑝 1 +
1

𝑇𝑖
𝑠 + 𝑇𝑑𝑠 𝐸(𝑠)
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Application of PID Control

• PID regulators provide reasonable control of most industrial processes, provided 
that the performance demands is not too high.

• PI control are generally adequate when plant/process dynamics are essentially of 
1st - order.

• PID control are generally ok if dominant plant dynamics are of 2nd-order.

• More elaborate control strategies needed if process has long time delays, or 
lightly-damped vibrational modes 
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