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Preface

This book introduces students to the theory and practice of control systems engineer-
ing. The text emphasizes the practical application of the subject to the analysis and
design of feedback systems.

The study of control systems engineering is essential for students pursuing
degrees in electrical, mechanical, aerospace, biomedical, or chemical engineering.
Control systems are found in a broad range of applications within these disciplines,
from aircraft and spacecraft to robots and process control systems.

Control Systems Engineering is suitable for upper-division college and univer-
sity engineering students and for those who wish to master the subject matter
through self-study. The student using this text should have completed typical lower-
division courses in physics and mathematics through differential equations. Other
required background material, including Laplace transforms and linear algebra, is
incorporated in the text, either within chapter discussions or separately in the
appendixes or on the book’s Companion Web site. This review material can be
omitted without loss of continuity if the student does not require it.

Key Features

The key features of this sixth edition are:

� Standardized chapter organization

� Qualitative and quantitative explanations

� Examples, Skill-Assessment Exercises, and Case Studies throughout the text

� WileyPLUS content management system for students and professors

� Cyber Exploration Laboratory and Virtual Experiments
� Abundant illustrations

� Numerous end-of-chapter problems

� Emphasis on design

� Flexible coverage

� Emphasis on computer-aided analysis and design including MATLAB11 and
LabVIEW12

1 MATLAB is a registered trademark of The MathWorks, Inc.
2 LabVIEW is a registered trademark of National Instruments Corporation.

ix
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� Icons identifying major topics

Let us look at each feature in more detail.

Standardized Chapter Organization

Each chapter begins with a list of chapter learning outcomes, followed by a list
of case study learning outcomes that relate to specific student performance in
solving a practical case study problem, such as an antenna azimuth position control
system.

Topics are then divided into clearly numbered and labeled sections containing
explanations, examples, and, where appropriate, skill-assessment exercises with
answers. These numbered sections are followed by one or more case studies, as
will be outlined in a few paragraphs. Each chapter ends with a brief summary, several
review questions requiring short answers, a set of homework problems, and
experiments.

Qualitative and Quantitative Explanations

Explanations are clear and complete and, where appropriate, include a brief review
of required background material. Topics build upon and support one another in a
logical fashion. Groundwork for new concepts and terminology is carefully laid to
avoid overwhelming the student and to facilitate self-study.

Although quantitative solutions are obviously important, a qualitative or
intuitive understanding of problems and methods of solution is vital to producing
the insight required to develop sound designs. Therefore, whenever possible, new
concepts are discussed from a qualitative perspective before quantitative analysis
and design are addressed. For example, in Chapter 8 the student can simply look at
the root locus and describe qualitatively the changes in transient response that will
occur as a system parameter, such as gain, is varied. This ability is developed with the
help of a few simple equations from Chapter 4.

Examples, Skill-Assessment Exercises, and Case Studies

Explanations are clearly illustrated by means of numerous numbered and labeled
Examples throughout the text. Where appropriate, sections conclude with Skill-
Assessment Exercises. These are computation drills, most with answers that test
comprehension and provide immediate feedback. Complete solutions can be found
at www.wiley.com/college/nise.

Broader examples in the form of Case Studies can be found after the last
numbered section of every chapter, with the exception of Chapter 1. These case
studies arc practical application problems that demonstrate the concepts introduced
in the chapter. Each case study concludes with a ‘‘Challenge’’ problem that students
may work in order to test their understanding of the material.

One of the case studies, an antenna azimuth position control system, is
carried throughout the book. The purpose is to illustrate the application of new
material in each chapter to the same physical system, thus highlighting the
continuity of the design process. Another, more challenging case study, involving

x Preface

www.wiley.com/college/nise
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an Unmannered Free-Swimming Submersible Vehicle, is developed over the
course of five chapters.

WileyPLUS Content Management System
for Students and Professors

WileyPLUS is an online suite of resources, including the full text, for students and
instructors. For the sixth edition of Control Systems Engineering, this suite offers
professors who adopt the book with WileyPLUS the ability to create homework
assignments based on algorithmic problems or multi-part questions, which guide the
student through a problem. Instructors also have the capability to integrate assets,
such as the simulations, into their lecture presentations. Students will find a Read,
Study, and Practice zone to help them work through problems based on the ones
offered in the text.

Control Solutions (prepared by JustAsk) are included in the WileyPLUS
platform. The student will find simulations and Control Solutions in the Read,
Study, and Practice zone. The Control Solutions are highlighted in the text with a
WileyPLUS icon.

A new addition to the WileyPLUS platform for this edition are National
Instruments and Quanser Virtual Laboratories. You will find references to them in
sidebar entries throughout the textbook.

Visit www.wiley.com or contact your local Wiley representative for
information.

Cyber Exploration Laboratory and Virtual
Experiments

Computer experiments using MATLAB, Simulink13 and the Control System
Toolbox are found at the end of the Problems sections under the sub-heading
Cyber Exploration Laboratory. New to this edition is LabVIEW, which is also used
for experiments within the Cyber Exploration Laboratory section of the chapters.
The experiments allow the reader to verify the concepts covered in the chapter via
simulation. The reader also can change parameters and perform ‘‘what if’’ explora-
tion to gain insight into the effect of parameter and configuration changes. The
experiments are written with stated Objectives, Minimum Required Software Pack-
ages, as well as Prelab, Lab, and Postlab tasks and questions. Thus, the experiments
may be used for a laboratory course that accompanies the class. Cover sheets for
these experiments are available at www.wiley.com.college/nise.

In addition, and new to this sixth edition, are Virtual Experiments. These
experiments are more tightly focused than the Cyber Exploration Laboratory
experiments and use LabVIEW and Quanser virtual hardware to illustrate
immediate discussion and examples. The experiments are referenced in sidebars
throughout some chapters.

3 Simulink is a registered trademark of The MathWorks, Inc.

Preface xi

www.wiley.com
www.wiley.com.college/nise
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Abundant Illustrations

The ability to visualize concepts and processes is critical to the student’s under-
standing. For this reason, approximately 800 photos, diagrams, graphs, and tables
appear throughout the book to illustrate the topics under discussion.

Numerous End-of-Chapter Problems

Each chapter ends with a variety of homework problems that allow students to test
their understanding of the material presented in the chapter. Problems vary in
degree of difficulty and complexity, and most chapters include several practical, real-
life problems to help maintain students’ motivation. Also, the homework problems
contain progressive analysis and design problems that use the same practical systems
to demonstrate the concepts of each chapter.

Emphasis on Design

This textbook places a heavy emphasis on design. Chapters 8, 9, 11, 12 and 13 focus
primarily on design. But. even in chapters that emphasize analysis, simple design
examples are included wherever possible.

Throughout the book, design examples involving physical systems are identi-
fied by the icon shown in the margin. End-of-chapter problems that involve the
design of physical systems are included under the separate heading Design Problems,
and also in chapters covering design, under the heading Progressive Analysis and
Design Problems. In these examples and problems, a desired response is specified,
and the student must evaluate certain system parameters, such as gain, or specify a
system configuration along with parameter values. In addition, the text includes
numerous design examples and problems (not identified by an icon) that involve
purely mathematical systems.

Because visualization is so vital to understanding design, this text carefully
relates indirect design specifications to more familiar ones. For example, the less
familiar and indirect phase margin is carefully related to the more direct and familiar
percent overshoot before being used as a design specification.

For each general type of design problem introduced in the text, a methodology
for solving the problem is presented—in many cases in the form of a step-by-step
procedure, beginning with a statement of design objectives. Example problems serve
to demonstrate the methodology by following the procedure, making simplifying
assumptions, and presenting the results of the design in tables or plots that compare
the performance of the original system to that of the improved system. This
comparison also serves as a check on the simplifying assumptions.

Transient response design topics are covered comprehensively in the text. They
include:

� Design via gain adjustment using the root locus

� Design of compensation and controllers via the root locus

� Design via gain adjustment using sinusoidal frequency response methods

� Design of compensation via sinusoidal frequency response methods

xii Preface
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� Design of controllers in state space using pole-placement techniques

� Design of observers in state-space using pole-placement techniques

� Design of digital control systems via gain adjustment on the root locus

� Design of digital control system compensation via s-plane design and the
Tustin transformation

Steady-state error design is covered comprehensively in this textbook and
includes:

� Gain adjustment

� Design of compensation via the root locus

� Design of compensation via sinusoidal frequency response methods

� Design of integral control in state space

Finally, the design of gain to yield stability is covered from the following
perspectives:

� Routh-Hurwitz criterion

� Root locus

� Nyquist criterion

� Bode plots

Flexible Coverage

The material in this book can be adapted for a one-quarter or a one-semester course.
The organization is flexible, allowing the instructor to select the material that best
suits the requirements and time constraints of the class.

Throughout the book, state-space methods are presented along with the
classical approach. Chapters and sections (as well as examples, exercises, review
questions, and problems) that cover state space are marked by the icon shown in the
margin and can be omitted without any loss of continuity. Those wishing to add a
basic introduction to state-space modeling can include Chapter 3 in the syllabus.

In a one-semester course, the discussions of slate-space analysis in Chapters 4,
5, 6 and 7, as well as state-space design in Chapter 12, can be covered along with the
classical approach. Another option is to teach state space separately by gathering the
appropriate chapters and sections marked with the State Space icon into a single unit
that follows the classical approach. In a one-quarter course, Chapter 13, ‘‘Digital
Control Systems,’’ could be eliminated.

Emphasis on Computer-Aided Analysis
and Design

Control systems problems, particularly analysis and design problems using the root
locus, can be tedious, since their solution involves trial and error. To solve these
problems, students should be given access to computers or programmable calcula-
tors configured with appropriate software. In this sixth edition, MATLAB continues
to be integrated into the text as an optional feature. In addition, and new to this

Preface xiii
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edition, we have included LabVIEW as an option to computer-aided analysis and
design.

Many problems in this text can be solved with either a computer or a hand-held
programmable calculator. For example, students can use the programmable calcu-
lator to (1) determine whether a point on the s-plane is also on the root locus, (2) find
magnitude and phase frequency response data for Nyquist and Bode diagrams, and
(3) convert between the following representations of a second-order system:

� Pole location in polar coordinates

� Pole location in Cartesian coordinates

� Characteristic polynomial

� Natural frequency and damping ratio

� Settling time and percent overshoot

� Peak time and percent overshoot

� Settling time and peak time

Handheld calculators have the advantage of easy accessibility for homework
and exams. Please consult Appendix H, located at www.wiley.com/college/nise, for a
discussion of computational aids that can be adapted to handheld calculators.

Personal computers are better suited for more computation-intensive appli-
cations, such as plotting time responses, root loci, and frequency response curves, as
well as finding state-transition matrices. These computers also give the student a
real-world environment in which to analyze and design control systems. Those not
using MATLAB or LabVIEW can write their own programs or use other programs,
such as Program CC. Please consult Appendix H at www.wiley.com/college/nise for a
discussion of computational aids that can be adapted for use on computers that do
not have MATLAB or LabVIEW installed.

Without access to computers or programmable calculators, students cannot
obtain meaningful analysis and design results and the learning experience will be
limited.

Icons Identifying Major Topics

Several icons identify coverage and optional material. The icons are summarized as
follows:

Control Solutions for the student are identified with a WileyPLUS icon. These
problems, developed by JustAsk, are worked in detail and offer explanations of
every facet of the solution.

The MATLAB icon identifies MATLAB discussions, examples, exercises, and
problems. MATLAB coverage is provided as an enhancement and is not required to
use the text.

The Simulink icon identifies Simulink discussions, examples, exercises, and
problems. Simulink coverage is provided as an enhancement and is not required to
use the text.

The GUI Tool icon identifies MATLAB GUI Tools discussions, examples,
exercises, and problems. The discussion of the tools, which includes the LTI Viewer,
the Simulink LTIViewer, and the SISO Design Tool, is provided as an enhancement
and is not required to use the text.

xiv Preface
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The Symbolic Math icon identifies Symbolic Math Toolbox discussions, exam-
ples, exercises, and problems. Symbolic Math Toolbox coverage is provided as an
enhancement and is not required to use the text.

The LabVIEW icon identifies LabVIEW discussions, examples, exercises, and
problems. LabVIEW is provided as an enhancement and is not required to use the text.

The State Space icon highlights state-space discussions, examples, exercises, and
problems. State-space material is optional and can be omitted without loss of continuity.

The Design icon clearly identifies design problems involving physical systems.

New to This Edition

The following list describes the key changes in this sixth edition
End-of-chapter problems More than 20% of the end-of-chapter problems

are either new or revised. Also, an additional Progressive Analysis and Design
Problem has been added at the end of the chapter problems. The new progressive
problem analyzes and designs a hybrid electric vehicle.

MATLAB The use of MATLAB for computer-aided analysis and design con-
tinues to be integrated into discussions and problems as an optional feature in the sixth
edition. The MATLAB tutorial has been updated to MATLAB Version 7.9 (R 2009b),
the Control System Toolbox Version 8.4, and the Symbolic Math Toolbox Version 5.3

In addition, MATLAB code continues to be incorporated in the chapters in the
form of sidebar boxes entitled TryIt.

Virtual Experiments Virtual experiments, developed by National Instru-
ments and Quanser, are included via sidebar references to experiments on Wiley-
PLUS. The experiments are performed with 3-D simulations of Quanser hardware
using developed LabVIEW VIs. Virtual Experiments are tightly focused and linked
to a discussion or example.

Cyber Exploration Laboratory Experiments using LabVIEW have been
added. Cyber Exploration Laboratory experiments are general in focus and are
envisioned to be used in an associated lab class.

MATLAB’s Simulink The use of Simulink to show the effects of nonlinear-
ities upon the time response of open-loop and closed-loop systems appears again in
this sixth edition. We also continue to use Simulink to demonstrate how to simulate
digital systems. Finally, the Simulink tutorial has been updated to Simulink 7.4

Chapter 11 Lag-lead compensator design using Nichols charts has been
added to Section 11.5.

LabVIEW New to this edition is LabVIEW. A tutorial for this tool is
included in Appendix D. LabVIEW is used in Cyber Exploration Laboratory
experiments and other problems throughout the textbook.

Book Companion Site (BCS) at www
.wiley.com/college/nise

The BCS for the sixth edition includes various student and instructor resources. This
free resource can be accessed by going to www.wiley.com/college/nise and clicking
on Student Companion Site. Professors also access their password-protected re-
sources on the Instructor Companion Site available through this url. Instructors
should contact their Wiley sales representative for access.
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For the Student:

� All M-files used in the MATLAB, Simulink, GUI Tools, and Symbolic Math
Toolbox tutorials, as well as the TryIt exercises

� Copies of the Cyber Exploration Laboratory experiments for use as experi-
ment cover sheets

� Solutions to the Skill-Assessment Exercises in the text

� LabVIEW Virtual Experiments and LabVIEW VIs used in Appendix D

For the Instructor;

� PowerPoint14 files containing the figures from the textbook

� Solutions to end-of-chapter problem sets

� Simulations, developed by JustAsk, for inclusion in lecture presentations

Book Organization by Chapter

Many times it is helpful lo understand an author’s reasoning behind the organization
of the course material. The following paragraphs hopefully shed light on this topic.

The primary goal of Chapter 1 is to motivate students. In this chapter, students
learn about the many applications of control systems in everyday life and about the
advantages of study and a career in this field. Control systems engineering design
objectives, such as transient response, steady-state error, and stability, are intro-
duced, as is the path to obtaining these objectives. New and unfamiliar terms also are
included in the Glossary.

Many students have trouble with an early step in the analysis and design sequence:
transforming a physical system into a schematic. This step requires many simplifying
assumptions based on experience the typical college student does not yet possess.
Identifying some of these assumptions in Chapter 1 helps to fill the experience gap.

Chapters 2, 3, and 5 address the representation of physical systems. Chapters 2 and 3
cover modeling of open-loop systems, using frequency response techniques and state-
space techniques, respectively. Chapter 5 discusses the representation and reduction of
systems formed of interconnected open-loop subsystems. Only a representative sample of
physical systems can be covered in a textbook of this length. Electrical, mechanical (both
translational and rotational), and electromechanical systems are used as examples of
physical systems that are modeled, analyzed, and designed. Linearization of a nonlinear
system—one technique used by the engineer to simplify a system in order to represent it
mathematically—is also introduced.

Chapter 4 provides an introduction to system analysis, that is, finding and
describing the output response of a system. It may seem more logical to reverse the
order of Chapters 4 and 5, to present the material in Chapter 4 along with other
chapters covering analysis. However, many years of teaching control systems have
taught me that the sooner students see an application of the study of system
representation, the higher their motivation levels remain.

Chapters 6, 7, 8, and 9 return to control systems analysis and design with the
study of stability (Chapter 6), steady-state errors (Chapter 7), and transient response
of higher-order systems using root locus techniques (Chapter 8). Chapter 9 covers
design of compensators and controllers using the root locus.

4 PowerPoint is a registered trademark of Microsoft Corporation.
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Chapters 10 and 11 focus on sinusoidal frequency analysis and design. Chapter
10, like Chapter 8, covers basic concepts for stability, transient response, and steady-
state-error analysis. However, Nyquist and Bode methods are used in place of root
locus. Chapter 11, like Chapter 9, covers the design of compensators, but from the
point of view of sinusoidal frequency techniques rather than root locus.

An introduction to state-space design and digital control systems analysis and
design completes the text in Chapters 12 and 13, respectively. Although these
chapters can be used as an introduction for students who will be continuing their
study of control systems engineering, they are useful by themselves and as a
supplement to the discussion of analysis and design in the previous chapters. The
subject matter cannot be given a comprehensive treatment in two chapters, but the
emphasis is clearly outlined and logically linked to the rest of the book.
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Introduction

1

Chapter Learning Outcomes

After completing this chapter, the student will be able to:

� Define a control system and describe some applications (Section 1.1)

� Describe historical developments leading to modern day control theory (Section 1.2)

� Describe the basic features and configurations of control systems (Section 1.3)

� Describe control systems analysis and design objectives (Section 1.4)

� Describe a control system’s design process (Sections 1.5–1.6)

� Describe the benefit from studying control systems (Section 1.7)

Case Study Learning Outcomes

� You will be introduced to a running case study—an antenna azimuth position control
system—that will serve to illustrate the principles in each subsequent chapter. In this
chapter, the system is used to demonstrate qualitatively how a control systemworks
as well as to define performance criteria that are the basis for control systems
analysis and design.

1
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1.1 Introduction

Control systems are an integral part of modern society. Numerous applications are
all around us: The rockets fire, and the space shuttle lifts off to earth orbit; in
splashing cooling water, a metallic part is automatically machined; a self-guided
vehicle delivering material to workstations in an aerospace assembly plant glides
along the floor seeking its destination. These are just a few examples of the
automatically controlled systems that we can create.

We are not the only creators of automatically controlled systems; these systems
also exist in nature. Within our own bodies are numerous control systems, such as the
pancreas, which regulates our blood sugar. In time of ‘‘fight or flight,’’ our adrenaline
increases along with our heart rate, causing more oxygen to be delivered to our cells.
Our eyes follow a moving object to keep it in view; our hands grasp the object and
place it precisely at a predetermined location.

Even the nonphysical world appears to be automatically regulated. Models
have been suggested showing automatic control of student performance. The input
to the model is the student’s available study time, and the output is the grade. The
model can be used to predict the time required for the grade to rise if a sudden
increase in study time is available. Using this model, you can determine whether
increased study is worth the effort during the last week of the term.

Control System Definition
A control system consists of subsystems and processes (or plants) assembled for the
purpose of obtaining a desired output with desired performance, given a specified

input. Figure 1.1 shows a control system in its simplest form, where the
input represents a desired output.

For example, consider an elevator. When the fourth-floor button is
pressed on the first floor, the elevator rises to the fourth floor with a
speed and floor-leveling accuracy designed for passenger comfort. The
push of the fourth-floor button is an input that represents our desired

output, shown as a step function in Figure 1.2. The performance of the elevator can be
seen from the elevator response curve in the figure.

Two major measures of performance are apparent: (1) the transient response
and (2) the steady-state error. In our example, passenger comfort and passenger
patience are dependent upon the transient response. If this response is too fast,
passenger comfort is sacrificed; if too slow, passenger patience is sacrificed. The
steady-state error is another important performance specification since passenger
safety and convenience would be sacrificed if the elevator did not properly level.

Control
system

Output; response

Actual response

Input; stimulus

Desired response

FIGURE 1.1 Simplified description of a
control system

FIGURE 1.2 Elevator response
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Advantages of Control Systems
With control systems we can move large equipment with precision that
would otherwise be impossible. We can point huge antennas toward
the farthest reaches of the universe to pick up faint radio signals;
controlling these antennas by hand would be impossible. Because of
control systems, elevators carry us quickly to our destination, auto-
matically stopping at the right floor (Figure 1.3). We alone could not
provide the power required for the load and the speed; motors provide
the power, and control systems regulate the position and speed.

We build control systems for four primary reasons:

1. Power amplification

2. Remote control

3. Convenience of input form

4. Compensation for disturbances

For example, a radar antenna, positioned by the low-power rotation
of a knob at the input, requires a large amount of power for its output
rotation. A control system can produce the needed power amplifica-
tion, or power gain.

Robots designed by control system principles can compensate
for human disabilities. Control systems are also useful in remote or
dangerous locations. For example, a remote-controlled robot arm can
be used to pick up material in a radioactive environment. Figure 1.4
shows a robot arm designed to work in contaminated environments.

Control systems can also be used to provide convenience by
changing the form of the input. For example, in a temperature control
system, the input is a position on a thermostat. The output is heat.
Thus, a convenient position input yields a desired thermal output.

Another advantage of a control system is the ability to compensate
for disturbances. Typically, we control such variables as temperature in

FIGURE 1.3 a. Early elevators
were controlled by hand ropes
or an elevator operator. Here a
rope is cut to demonstrate the
safety brake, an innovation in
early elevators (# Bettman/
Corbis); b. One of two modern
Duo-liftelevatorsmakesitsway
up the Grande Arche in Paris.
Two elevators are driven by one
motor, with each car acting as a
counterbalance to the other.
Today, elevators are fully auto-
matic, using control systems to
regulate position and velocity.

FIGURE 1.4 Rover was built to work in
contaminated areas at Three Mile Island in
Middleton, Pennsylvania, where a nuclear
accident occurred in 1979. The remote-controlled
robot’s long arm can be seen at the front of the
vehicle.

1.1 Introduction 3
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thermal systems, position and velocity in mechanical systems, and voltage, current, or
frequency in electrical systems. The system must be able to yield the correct output even
with a disturbance. For example, consider an antenna system that points in a commanded
direction. If wind forces the antenna from its commanded position, or if noise enters
internally, the system must be able to detect the disturbance and correct the antenna’s
position. Obviously, the system’s input will not change to make the correction. Conse-
quently, the system itself must measure the amount that the disturbance has repositioned
the antenna and then return the antenna to the position commanded by the input.

1.2 A History of Control Systems

Feedback control systems are older than humanity. Numerous biological control
systems were built into the earliest inhabitants of our planet. Let us now look at a
brief history of human-designed control systems.1

Liquid-Level Control
The Greeks began engineering feedback systems around 300 B.C. Awater clock invented
by Ktesibios operated by having water trickle into a measuring container at a constant
rate. The level of water in the measuring container could be used to tell time. For water to
trickle at a constant rate, the supply tank had to be kept at a constant level. This was
accomplished using a float valve similar to the water-level control in today’s flush toilets.

Soon after Ktesibios, the idea of liquid-level control was applied to an oil lamp
by Philon of Byzantium. The lamp consisted of two oil containers configured
vertically. The lower pan was open at the top and was the fuel supply for the flame.
The closed upper bowl was the fuel reservoir for the pan below. The containers were
interconnected by two capillary tubes and another tube, called a vertical riser, which
was inserted into the oil in the lower pan just below the surface. As the oil burned,
the base of the vertical riser was exposed to air, which forced oil in the reservoir
above to flow through the capillary tubes and into the pan. The transfer of fuel from
the upper reservoir to the pan stopped when the previous oil level in the pan was
reestablished, thus blocking the air from entering the vertical riser. Hence, the
system kept the liquid level in the lower container constant.

Steam Pressure and Temperature Controls
Regulationofsteampressurebeganaround1681withDenisPapin’s inventionofthesafety
valve. The concept was further elaborated on by weighting the valve top. If the upward
pressure from the boiler exceeded the weight, steam was released, and the pressure
decreased.If itdidnotexceedtheweight, thevalvedidnotopen,andthepressureinsidethe
boiler increased. Thus, the weight on the valve top set the internal pressure of the boiler.

Also in the seventeenth century, Cornelis Drebbel in Holland invented a purely
mechanical temperature control system for hatching eggs. The device used a vial of
alcohol and mercury with a floater inserted in it. The floater was connected to a damper
that controlled a flame. A portion of the vial was inserted into the incubator to sense
the heat generated by the fire. As the heat increased, the alcohol and mercury
expanded, raising the floater, closing the damper, and reducing the flame. Lower
temperature caused the float to descend, opening the damper and increasing the flame.

Speed Control
In 1745, speed control was applied to a windmill by Edmund Lee. Increasing winds
pitched the blades farther back, so that less area was available. As the wind

1 See Bennett (1979) and Mayr (1970) for definitive works on the history of control systems.
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decreased, more blade area was available. William Cubitt improved on the idea in
1809 by dividing the windmill sail into movable louvers.

Also in the eighteenth century, James Watt invented the flyball speed governor to
control the speed of steam engines. In this device, two spinning flyballs rise as rotational
speed increases. A steam valve connected to the flyball mechanism closes with the
ascending flyballs and opens with the descending flyballs, thus regulating the speed.

Stability, Stabilization, and Steering
Control systems theory as we know it today began to crystallize in the latter half of the
nineteenth century. In 1868, James Clerk Maxwell published the stability criterion for a
third-order system based on the coefficients of the differential equation. In 1874, Edward
John Routh, using a suggestion from William Kingdon Clifford that was ignored earlier
by Maxwell, was able to extend the stability criterion to fifth-order systems. In 1877, the
topic for the Adams Prize was ‘‘The Criterion of Dynamical Stability.’’ In response,
Routh submitted a paper entitled ATreatise on the Stability of a Given State of Motion
and won the prize. This paper contains what is now known as the Routh-Hurwitz
criterion for stability, which we will study in Chapter 6. Alexandr Michailovich Lyapunov
also contributed to the development and formulation of today’s theories and practice of
control system stability. A student of P. L. Chebyshev at the University of St. Petersburg
in Russia, Lyapunov extended the work of Routh to nonlinear systems in his 1892
doctoral thesis, entitled The General Problem of Stability of Motion.

During the second half of the 1800s, the development of control systems
focused on the steering and stabilizing of ships. In 1874, Henry Bessemer, using a
gyro to sense a ship’s motion and applying power generated by the ship’s hydraulic
system, moved the ship’s saloon to keep it stable (whether this made a difference to
the patrons is doubtful). Other efforts were made to stabilize platforms for guns as
well as to stabilize entire ships, using pendulums to sense the motion.

Twentieth-Century Developments
It was not until the early 1900s that automatic steering of ships was achieved. In 1922,
the Sperry Gyroscope Company installed an automatic steering system that used the
elements of compensation and adaptive control to improve performance. However,
much of the general theory used today to improve the performance of automatic
control systems is attributed to Nicholas Minorsky, a Russian born in 1885. It was his
theoretical development applied to the automatic steering of ships that led to what
we call today proportional-plus-integral-plus-derivative (PID), or three-mode, con-
trollers, which we will study in Chapters 9 and 11.

In the late 1920s and early 1930s, H. W. Bode and H. Nyquist at Bell Telephone
Laboratories developed the analysis of feedback amplifiers. These contributions
evolved into sinusoidal frequency analysis and design techniques currently used for
feedback control system, and are presented in Chapters 10 and 11.

In 1948, Walter R. Evans, working in the aircraft industry, developed a
graphical technique to plot the roots of a characteristic equation of a feedback
system whose parameters changed over a particular range of values. This technique,
now known as the root locus, takes its place with the work of Bode and Nyquist in
forming the foundation of linear control systems analysis and design theory. We will
study root locus in Chapters 8, 9, and 13.

Contemporary Applications
Today, control systems find widespread application in the guidance, navigation, and
control of missiles and spacecraft, as well as planes and ships at sea. For example,

1.2 A History of Control Systems 5
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modern ships use a combination of electrical, mechanical, and hydraulic components
to develop rudder commands in response to desired heading commands. The rudder
commands, in turn, result in a rudder angle that steers the ship.

We find control systems throughout the process control industry, regulating
liquid levels in tanks, chemical concentrations in vats, as well as the thickness of
fabricated material. For example, consider a thickness control system for a steel
plate finishing mill. Steel enters the finishing mill and passes through rollers. In the
finishing mill, X-rays measure the actual thickness and compare it to the desired
thickness. Any difference is adjusted by a screw-down position control that changes
the roll gap at the rollers through which the steel passes. This change in roll gap
regulates the thickness.

Modern developments have seen widespread use of the digital computer as
part of control systems. For example, computers in control systems are for industrial
robots, spacecraft, and the process control industry. It is hard to visualize a modern
control system that does not use a digital computer.

The space shuttle contains numerous control systems operated by an onboard
computer on a time-shared basis. Without control systems, it would be impossible to
guide the shuttle to and from earth’s orbit or to adjust the orbit itself and support life
on board. Navigation functions programmed into the shuttle’s computers use data
from the shuttle’s hardware to estimate vehicle position and velocity. This informa-
tion is fed to the guidance equations that calculate commands for the shuttle’s flight
control systems, which steer the spacecraft. In space, the flight control system
gimbals (rotates) the orbital maneuvering system (OMS) engines into a position
that provides thrust in the commanded direction to steer the spacecraft. Within the
earth’s atmosphere, the shuttle is steered by commands sent from the flight control
system to the aerosurfaces, such as the elevons.

Within this large control system represented by navigation, guidance, and
control are numerous subsystems to control the vehicle’s functions. For example, the
elevons require a control system to ensure that their position is indeed that which
was commanded, since disturbances such as wind could rotate the elevons away from
the commanded position. Similarly, in space, the gimbaling of the orbital maneu-
vering engines requires a similar control system to ensure that the rotating engine
can accomplish its function with speed and accuracy. Control systems are also used to
control and stabilize the vehicle during its descent from orbit. Numerous small jets
that compose the reaction control system (RCS) are used initially in the exoatmo-
sphere, where the aerosurfaces are ineffective. Control is passed to the aerosurfaces
as the orbiter descends into the atmosphere.

Inside the shuttle, numerous control systems are required for power and
life support. For example, the orbiter has three fuel-cell power plants that
convert hydrogen and oxygen (reactants) into electricity and water for use by
the crew. The fuel cells involve the use of control systems to regulate temperature
and pressure. The reactant tanks are kept at constant pressure as the quantity
of reactant diminishes. Sensors in the tanks send signals to the control systems
to turn heaters on or off to keep the tank pressure constant (Rockwell Interna-
tional, 1984).

Control systems are not limited to science and industry. For example, a home
heating system is a simple control system consisting of a thermostat containing a
bimetallic material that expands or contracts with changing temperature. This
expansion or contraction moves a vial of mercury that acts as a switch, turning
the heater on or off. The amount of expansion or contraction required to move the
mercury switch is determined by the temperature setting.

6 Chapter 1 Introduction
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Home entertainment systems also have built-in control systems. For example,
in an optical disk recording system microscopic pits representing the information are
burned into the disc by a laser during the recording process. During playback, a
reflected laser beam focused on the pits changes intensity (Figure 1.5). The light
intensity changes are converted to an electrical signal and processed as sound or
picture. A control system keeps the laser beam positioned on the pits, which are cut
as concentric circles.

There are countless other examples of control systems, from the everyday to
the extraordinary. As you begin your study of control systems engineering, you will
become more aware of the wide variety of applications.

1.3 System Configurations

In this section, we discuss two major configurations of control systems: open loop
and closed loop. We can consider these configurations to be the internal architecture
of the total system shown in Figure 1.1. Finally, we show how a digital computer
forms part of a control system’s configuration.

Protective
layer

Objective lens

Reflective
layer

(aluminum)

Transparent plastic
substrate

(acrylic resin)

(a)

Laser diode

Cylindrical
lens

Coupling lens
Grating

Prism 1/4-wavelength plate

Tracking mirror

Objective
lens

Tangential mirror

Fixed mirrorPhotodiode

Disc

Toric lens

(b)

FIGURE 1.5 Optical playback
system: a. objective lens read-
ing pits on an optical disc;
b. optical path for playback,
showing tracking mirror
rotated by a control system to
keep the laser beam positioned
on the pits (Pioneer Electronics
(USA), Inc.)
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Open-Loop Systems
A generic open-loop system is shown in Figure 1.6(a). It starts with a subsystem
called an input transducer, which converts the form of the input to that used by the
controller. The controller drives a process or a plant. The input is sometimes called
the reference, while the output can be called the controlled variable. Other signals,
such as disturbances, are shown added to the controller and process outputs via
summing junctions, which yield the algebraic sum of their input signals using
associated signs. For example, the plant can be a furnace or air conditioning system,
where the output variable is temperature. The controller in a heating system consists
of fuel valves and the electrical system that operates the valves.

The distinguishing characteristic of an open-loop system is that it cannot
compensate for any disturbances that add to the controller’s driving signal (Distur-
bance 1 in Figure 1.6(a)). For example, if the controller is an electronic amplifier and
Disturbance 1 is noise, then any additive amplifier noise at the first summing
junction will also drive the process, corrupting the output with the effect of the
noise. The output of an open-loop system is corrupted not only by signals that add to
the controller’s commands but also by disturbances at the output (Disturbance 2 in
Figure 1.6(a)). The system cannot correct for these disturbances, either.

Open-loop systems, then, do not correct for disturbances and are simply
commanded by the input. For example, toasters are open-loop systems, as anyone
with burnt toast can attest. The controlled variable (output) of a toaster is the color
of the toast. The device is designed with the assumption that the toast will be darker
the longer it is subjected to heat. The toaster does not measure the color of the toast;
it does not correct for the fact that the toast is rye, white, or sourdough, nor does it
correct for the fact that toast comes in different thicknesses.

Other examples of open-loop systems are mechanical systems consisting of a
mass, spring, and damper with a constant force positioning the mass. The greater the
force, the greater the displacement. Again, the system position will change with a
disturbance, such as an additional force, and the system will not detect or correct for
the disturbance. Or assume that you calculate the amount of time you need to study
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or Plant
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variable

Disturbance 1 Disturbance 2

Summing
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Summing
junction
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+ +Input
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Disturbance 1 Disturbance 2

Summing
junction

Summing
junction

(b)

Error
or

Actuating
signal

Summing
junction

+Input
transducer

–
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FIGURE 1.6 Block diagrams of control systems: a. open-loop system; b. closed-loop system
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for an examination that covers three chapters in order to get an A. If the professor
adds a fourth chapter—a disturbance—you are an open-loop system if you do not
detect the disturbance and add study time to that previously calculated. The result of
this oversight would be a lower grade than you expected.

Closed-Loop (Feedback Control) Systems
The disadvantages of open-loop systems, namely sensitivity to disturbances and
inability to correct for these disturbances, may be overcome in closed-loop systems.
The generic architecture of a closed-loop system is shown in Figure 1.6(b).

The input transducer converts the form of the input to the form used by the
controller. An output transducer, or sensor, measures the output response and
converts it into the form used by the controller. For example, if the controller
uses electrical signals to operate the valves of a temperature control system, the
input position and the output temperature are converted to electrical signals. The
input position can be converted to a voltage by a potentiometer, a variable resistor,
and the output temperature can be converted to a voltage by a thermistor, a device
whose electrical resistance changes with temperature.

The first summing junction algebraically adds the signal from the input to the
signal from the output, which arrives via the feedback path, the return path from the
output to the summing junction. In Figure 1.6(b), the output signal is subtracted from
the input signal. The result is generally called the actuating signal. However, in
systems where both the input and output transducers have unity gain (that is, the
transducer amplifies its input by 1), the actuating signal’s value is equal to the actual
difference between the input and the output. Under this condition, the actuating
signal is called the error.

The closed-loop system compensates for disturbances by measuring the output
response, feeding that measurement back through a feedback path, and comparing
that response to the input at the summing junction. If there is any difference between
the two responses, the system drives the plant, via the actuating signal, to make a
correction. If there is no difference, the system does not drive the plant, since the
plant’s response is already the desired response.

Closed-loop systems, then, have the obvious advantage of greater accuracy
than open-loop systems. They are less sensitive to noise, disturbances, and changes in
the environment. Transient response and steady-state error can be controlled more
conveniently and with greater flexibility in closed-loop systems, often by a simple
adjustment of gain (amplification) in the loop and sometimes by redesigning the
controller. We refer to the redesign as compensating the system and to the resulting
hardware as a compensator. On the other hand, closed-loop systems are more
complex and expensive than open-loop systems. A standard, open-loop toaster
serves as an example: It is simple and inexpensive. A closed-loop toaster oven is
more complex and more expensive since it has to measure both color (through light
reflectivity) and humidity inside the toaster oven. Thus, the control systems engineer
must consider the trade-off between the simplicity and low cost of an open-loop
system and the accuracy and higher cost of a closed-loop system.

In summary, systems that perform the previously described measurement and
correction are called closed-loop, or feedback control, systems. Systems that do not
have this property of measurement and correction are called open-loop systems.

Computer-Controlled Systems
In many modern systems, the controller (or compensator) is a digital computer. The
advantage of using a computer is that many loops can be controlled or compensated
by the same computer through time sharing. Furthermore, any adjustments of the

1.3 System Configurations 9
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compensator parameters required to yield a desired response can be made by
changes in software rather than hardware. The computer can also perform supervi-
sory functions, such as scheduling many required applications. For example, the
space shuttle main engine (SSME) controller, which contains two digital computers,
alone controls numerous engine functions. It monitors engine sensors that provide
pressures, temperatures, flow rates, turbopump speed, valve positions, and engine
servo valve actuator positions. The controller further provides closed-loop control of
thrust and propellant mixture ratio, sensor excitation, valve actuators, spark igniters,
as well as other functions (Rockwell International, 1984).

1.4 Analysis and Design Objectives

In Section 1.1 we briefly alluded to some control system performance specifications,
such as transient response and steady-state error. We now expand upon the topic of
performance and place it in perspective as we define our analysis and design
objectives.

Analysis is the process by which a system’s performance is determined. For
example, we evaluate its transient response and steady-state error to determine if
they meet the desired specifications. Design is the process by which a system’s
performance is created or changed. For example, if a system’s transient response and
steady-state error are analyzed and found not to meet the specifications, then we
change parameters or add additional components to meet the specifications.

A control system is dynamic: It responds to an input by undergoing a transient
response before reaching a steady-state response that generally resembles the input.
We have already identified these two responses and cited a position control system (an
elevator) as an example. In this section, we discuss three major objectives of systems
analysis and design: producing the desired transient response, reducing steady-state
error, and achieving stability. We also address some other design concerns, such as cost
and the sensitivity of system performance to changes in parameters.

Transient Response
Transient response is important. In the case of an elevator, a slow transient response
makes passengers impatient, whereas an excessively rapid response makes them

uncomfortable. If the elevator oscillates about the arrival
floor for more than a second, a disconcerting feeling can
result. Transient response is also important for structural
reasons: Too fast a transient response could cause perma-
nent physical damage. In a computer, transient response
contributes to the time required to read from or write to
the computer’s disk storage (see Figure 1.7). Since read-
ing and writing cannot take place until the head stops, the
speed of the read/write head’s movement from one track
on the disk to another influences the overall speed of the
computer.

In this book, we establish quantitative definitions
for transient response. We then analyze the system for its
existing transient response. Finally, we adjust parameters
or design components to yield a desired transient
response—our first analysis and design objective.

FIGURE 1.7 Computer hard disk drive, showing disks and
read/write head
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Steady-State Response
Another analysis and design goal focuses on the steady-state response. As we have
seen, this response resembles the input and is usually what remains after the transients
have decayed to zero. For example, this response may be an elevator stopped near the
fourth floor or the head of a disk drive finally stopped at the correct track. We are
concerned about the accuracy of the steady-state response. An elevator must be level
enough with the floor for the passengers to exit, and a read/write head not positioned
over the commanded track results in computer errors. An antenna tracking a satellite
must keep the satellite well within its beamwidth in order not to lose track. In this text
we define steady-state errors quantitatively, analyze a system’s steady-state error, and
then design corrective action to reduce the steady-state error—our second analysis
and design objective.

Stability
Discussion of transient response and steady-state error is moot if the system does not
have stability. In order to explain stability, we start from the fact that the total response
of a system is the sum of the natural response and the forced response. When you
studied linear differential equations, you probably referred to these responses as the
homogeneous and theparticular solutions, respectively. Natural response describes the
way the system dissipates or acquires energy. The form or nature of this response is
dependent only on the system, not the input. On the other hand, the form or nature of
the forced response is dependent on the input. Thus, for a linear system, we can write

Total response ¼ Natural response þ Forced response ð1:1Þ2

For a control system to be useful, the natural response must (1) eventually
approach zero, thus leaving only the forced response, or (2) oscillate. In some systems,
however, the natural response grows without bound rather than diminish to zero or
oscillate. Eventually, the natural response is so much greater than the forced response
that the system is no longer controlled. This condition, called instability, could lead to
self-destruction of the physical device if limit stops are not part of the design. For
example, the elevator would crash through the floor or exit through the ceiling; an
aircraft would go into an uncontrollable roll; or an antenna commanded to point to a
target would rotate, line up with the target, but then begin to oscillate about the target
with growing oscillations and increasing velocity until the motor or amplifiers reached
their output limits or until the antenna was damaged structurally. A time plot of an
unstable system would show a transient response that grows without bound and without
any evidence of a steady-state response.

Control systems must be designed to be stable. That is, their natural response
must decay to zero as time approaches infinity, or oscillate. In many systems the
transient response you see on a time response plot can be directly related to the
natural response. Thus, if the natural response decays to zero as time approaches
infinity, the transient response will also die out, leaving only the forced response. If
the system is stable, the proper transient response and steady-state error character-
istics can be designed. Stability is our third analysis and design objective.

2 You may be confused by the words transient vs. natural, and steady-state vs. forced. If you look at Figure
1.2, you can see the transient and steady-state portions of the total response as indicated. The transient
response is the sum of the natural and forced responses, while the natural response is large. If we plotted
the natural response by itself, we would get a curve that is different from the transient portion of Figure 1.2.
The steady-state response of Figure 1.2 is also the sum of the natural and forced responses, but the natural
response is small. Thus, the transient and steady-state responses are what you actually see on the plot; the
natural and forced responses are the underlying mathematical components of those responses.

1.4 Analysis and Design Objectives 11
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Other Considerations
The three main objectives of control system analysis and design have already been
enumerated. However, other important considerations must be taken into account. For
example, factors affecting hardware selection, such as motor sizing to fulfill power
requirements and choice of sensors for accuracy, must be considered early in the design.

Finances are another consideration. Control system designers cannot create
designs without considering their economic impact. Such considerations as budget
allocations and competitive pricing must guide the engineer. For example, if your
product is one of a kind, you may be able to create a design that uses more expensive
components without appreciably increasing total cost. However, if your design will be
used for many copies, slight increases in cost per copy can translate into many more
dollars for your company to propose during contract bidding and to outlay before sales.

Another consideration is robust design. System parameters considered con-
stant during the design for transient response, steady-state errors, and stability
change over time when the actual system is built. Thus, the performance of the
system also changes over time and will not be consistent with your design. Un-
fortunately, the relationship between parameter changes and their effect on per-
formance is not linear. In some cases, even in the same system, changes in parameter
values can lead to small or large changes in performance, depending on the system’s
nominal operating point and the type of design used. Thus, the engineer wants to
create a robust design so that the system will not be sensitive to parameter changes.
We discuss the concept of system sensitivity to parameter changes in Chapters 7 and
8. This concept, then, can be used to test a design for robustness.

Case Study

Introduction to a Case Study

Now that our objectives are stated, how do we meet them? In this section we will
look at an example of a feedback control system. The system introduced here will
be used in subsequent chapters as a running case study to demonstrate the
objectives of those chapters. A colored background like this will identify the
case study section at the end of each chapter. Section 1.5, which follows this first
case study, explores the design process that will help us build our system.

Antenna Azimuth: An Introduction to Position Control Systems
A position control system converts a position input command to a position output
response. Position control systems find widespread applications in antennas, robot
arms, and computer disk drives. The radio telescope antenna in Figure 1.8 is one
example of a system that uses position control systems. In this section, we will look in
detail at an antenna azimuth position control system that could be used to position a
radio telescope antenna. We will see how the system works and how we can effect
changes in its performance. The discussion here will be on a qualitative level, with the
objective of getting an intuitive feeling for the systems with which we will be dealing.

An antenna azimuth position control system is shown in Figure 1.9(a), with a
more detailed layout and schematic in Figures 1.9(b) and 1.9(c), respectively.
Figure 1.9(d) shows a functional block diagram of the system. The functions are
shown above the blocks, and the required hardware is indicated inside the blocks.
Parts of Figure 1.9 are repeated on the front endpapers for future reference.

FIGURE 1.8 The search for
extraterrestrial life is being
carried out with radio antennas
like the one pictured here. A
radio antenna is an example of
a system with position
controls.
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The purpose of this system is to have the azimuth angle output of the antenna,
uoðtÞ, follow the input angle of the potentiometer, uiðtÞ. Let us look at Figure 1.9(d)
and describe how this system works. The input command is an angular displace-
ment. The potentiometer converts the angular displacement into a voltage.

(a)
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Potentiometer
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FIGURE 1.9 Antenna azimuth
position control system:
a. system concept; b. detailed
layout; c. schematic;
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Similarly, the output angular displacement is converted to a voltage by the potentiome-
ter in the feedback path. The signal and power amplifiers boost the difference between
the input and output voltages. This amplified actuating signal drives the plant.

The system normally operates to drive the error to zero. When the input and output
match, the error will be zero, and the motor will not turn. Thus, the motor is driven only
whentheoutputandtheinputdonotmatch.Thegreaterthedifferencebetweentheinput
and the output, the larger the motor input voltage, and the faster the motor will turn.

If we increase the gain of the signal amplifier, will there be an increase in the
steady-state value of the output? If the gain is increased, then for a given actuating
signal, the motor will be driven harder. However, the motor will still stop when the
actuating signal reaches zero, that is, when the output matches the input. The
difference in the response, however, will be in the transients. Since the motor is
driven harder, it turns faster toward its final position. Also, because of the increased
speed, increased momentum could cause the motor to overshoot the final value and
be forced by the system to return to the commanded position. Thus, the possibility
exists for a transient response that consists of damped oscillations (that is, a sinusoidal
response whose amplitude diminishes with time) about the steady-state value if the
gain is high. The responses for low gain and high gain are shown in Figure 1.10.

FIGURE 1.9 (Continued)
d. functional block diagram
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We have discussed the transient response of the position control system. Let us
now direct our attention to the steady-state position to see how closely the output
matches the input after the transients disappear.

We define steady-state error as the difference between the input and the output
after the transients have effectively disappeared. The definition holds equally well
for step, ramp, and other types of inputs. Typically, the steady-state error decreases
with an increase in gain and increases with a decrease in gain. Figure 1.10 shows
zero error in the steady-state response; that is, after the transients have disap-
peared, the output position equals the commanded input position. In some systems,
the steady-state error will not be zero; for these systems, a simple gain adjustment
to regulate the transient response is either not effective or leads to a trade-off
between the desired transient response and the desired steady-state accuracy.

To solve this problem, a controller with a dynamic response, such as an electrical
filter, is used along with an amplifier. With this type of controller, it is possible to
design both the required transient response and the required steady-state accuracy
without the trade-off required by a simple setting of gain. However, the controller
is now more complex. The filter in this case is called a compensator. Many systems
also use dynamic elements in the feedback path along with the output transducer to
improve system performance.

In summary, then, our design objectives and the system’s performance revolve
around the transient response, the steady-state error, and stability. Gain adjust-
ments can affect performance and sometimes lead to trade-offs between the
performance criteria. Compensators can often be designed to achieve performance
specifications without the need for trade-offs. Now that we have stated our
objectives and some of the methods available to meet those objectives, we describe
the orderly progression that leads us to the final system design.

1.5 The Design Process

In this section, we establish an orderly sequence for the design of feedback control
systems that will be followed as we progress through the rest of the book. Figure 1.11
shows the described process as well as the chapters in which the steps are discussed.

The antenna azimuth position control system discussed in the last section is
representative of control systems that must be analyzed and designed. Inherent in
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FIGURE 1.11 The control system design process
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Figure 1.11 is feedback and communication during each phase. For example, if
testing (Step 6) shows that requirements have not been met, the system must be
redesigned and retested. Sometimes requirements are conflicting and the design
cannot be attained. In these cases, the requirements have to be respecified and the
design process repeated. Let us now elaborate on each block of Figure 1.11.

Step 1: Transform Requirements Into a Physical System
We begin by transforming the requirements into a physical system. For example, in
the antenna azimuth position control system, the requirements would state the
desire to position the antenna from a remote location and describe such features as
weight and physical dimensions. Using the requirements, design specifications, such
as desired transient response and steady-state accuracy, are determined. Perhaps an
overall concept, such as Figure 1.9(a), would result.

Step 2: Draw a Functional Block Diagram
The designer now translates a qualitative description of the system into a functional
block diagram that describes the component parts of the system (that is, function and/or
hardware) and shows their interconnection. Figure 1.9(d) is an example of a functional
block diagram for the antenna azimuth position control system. It indicates functions
such as input transducer and controller, as well as possible hardware descriptions such
as amplifiers and motors. At this point the designer may produce a detailed layout of
the system, such as that shown in Figure 1.9(b), from which the next phase of the
analysis and design sequence, developing a schematic diagram, can be launched.

Step 3: Create a Schematic
As we have seen, position control systems consist of electrical, mechanical, and
electromechanical components. After producing the description of a physical
system, the control systems engineer transforms the physical system into a schematic
diagram. The control system designer can begin with the physical description, as
contained in Figure 1.9(a), to derive a schematic. The engineer must make approxi-
mations about the system and neglect certain phenomena, or else the schematic will
be unwieldy, making it difficult to extract a useful mathematical model during the
next phase of the analysis and design sequence. The designer starts with a simple
schematic representation and, at subsequent phases of the analysis and design
sequence, checks the assumptions made about the physical system through analysis
and computer simulation. If the schematic is too simple and does not adequately
account for observed behavior, the control systems engineer adds phenomena to the
schematic that were previously assumed negligible. A schematic diagram for the
antenna azimuth position control system is shown in Figure 1.9(c).

When we draw the potentiometers, we make our first simplifying assumption
by neglecting their friction or inertia. These mechanical characteristics yield a
dynamic, rather than an instantaneous, response in the output voltage. We assume
that these mechanical effects are negligible and that the voltage across a potenti-
ometer changes instantaneously as the potentiometer shaft turns.

A differential amplifier and a power amplifier are used as the controller to
yield gain and power amplification, respectively, to drive the motor. Again, we
assume that the dynamics of the amplifiers are rapid compared to the response time
of the motor; thus, we model them as a pure gain, K.

A dc motor and equivalent load produce the output angular displacement. The
speed of the motor is proportional to the voltage applied to the motor’s armature
circuit. Both inductance and resistance are part of the armature circuit. In showing
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just the armature resistance in Figure 1.9(c), we assume the effect of the armature
inductance is negligible for a dc motor.

The designer makes further assumptions about the load. The load consists of a
rotating mass and bearing friction. Thus, the model consists of inertia and viscous
damping whose resistive torque increases with speed, as in an automobile’s shock
absorber or a screen door damper.

The decisions made in developing the schematic stem from knowledge of the
physical system, the physical laws governing the system’s behavior, and practical
experience. These decisions are not easy; however, as you acquire more design
experience, you will gain the insight required for this difficult task.

Step 4: Develop a Mathematical Model (Block Diagram)
Once the schematic is drawn, the designer uses physical laws, such as Kirchhoff’s
laws for electrical networks and Newton’s law for mechanical systems, along with
simplifying assumptions, to model the system mathematically. These laws are

Kirchhoff’s voltage law The sum of voltages around a closed path equals zero.

Kirchhoff’s current law The sum of electric currents flowing from a node equals zero.

Newton’s laws The sum of forces on a body equals zero;3 the sum of moments on
a body equals zero.

Kirchhoff’s and Newton’s laws lead to mathematical models that describe the
relationship between the input and output of dynamic systems. One such model
is the linear, time-invariant differential equation, Eq. (1.2):

dmcðtÞ
dtn

þ dn�1
dm�1cðtÞ
dtn�1

þ � � � þ d0cðtÞ ¼ bm
dmrðtÞ
dtm

þ bm�1
dm�1rðtÞ
dtm�1

þ � � � þ b0rðtÞ

ð1:2Þ4

Many systems can be approximately described by this equation, which relates the
output, c(t), to the input, r(t), by way of the system parameters, ai and bj. We assume
the reader is familiar with differential equations. Problems and a bibliography are
provided at the end of the chapter for you to review this subject.

Simplifying assumptions made in the process of obtaining a mathematical
model usually leads to a low-order form of Eq. (1.2). Without the assumptions the
system model could be of high order or described with nonlinear, time-varying, or
partial differential equations. These equations complicate the design process and
reduce the designer’s insight. Of course, all assumptions must be checked and all
simplifications justified through analysis or testing. If the assumptions for simplifi-
cation cannot be justified, then the model cannot be simplified. We examine some of
these simplifying assumptions in Chapter 2.

In addition to the differential equation, the transfer function is another way of
mathematically modeling a system. The model is derived from the linear, time-invariant
differential equation using what we call the Laplace transform. Although the transfer

3 Alternately,
P

forces ¼ Ma. In this text the force, Ma, will be brought to the left-hand side of the
equation to yield

P
forces ¼ 0 (D’Alembert’s principle). We can then have a consistent analogy between

force and voltage, and Kirchhoff’s and Newton’s laws (that is,
P

forces ¼ 0;
P

voltages ¼ 0).
4 The right-hand side of Eq. (1.2) indicates differentiation of the input, r(t). In physical systems,
differentiation of the input introduces noise. In Chapters 3 and 5 we show implementations and
interpretations of Eq. (1.2) that do not require differentiation of the input.
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function can be used only for linear systems, it yields more intuitive information than the
differential equation. We will be able to change system parameters and rapidly sense the
effect of these changes on the system response. The transfer function is also useful in
modeling the interconnection of subsystems by forming a block diagram similar to Figure
1.9(d) but with a mathematical function inside each block.

Still another model is the state-space representation. One advantage of state-
space methods is that they can also be used for systems that cannot be described by
linear differential equations. Further, state-space methods are used to model systems
for simulation on the digital computer. Basically, this representation turns an nth-
order differential equation into n simultaneous first-order differential equations. Let
this description suffice for now; we describe this approach in more detail in Chapter 3.

Finally, we should mention that to produce the mathematical model for a system,
we require knowledge of the parameter values, such as equivalent resistance, induc-
tance, mass, and damping, which is often not easy to obtain. Analysis, measurements,
or specifications from vendors are sources that the control systems engineer may use
to obtain the parameters.

Step 5: Reduce the Block Diagram
Subsystem models are interconnected to form block diagrams of larger systems, as in
Figure 1.9(d), where each block has a mathematical description. Notice that many
signals, such as proportional voltages and error, are internal to the system. There are
also two signals—angular input and angular output—that are external to the system.
In order to evaluate system response in this example, we need to reduce this large
system’s block diagram to a single block with a mathematical description that
represents the system from its input to its output, as shown in Figure 1.12. Once the
block diagram is reduced, we are ready to analyze and design the system.

Step 6: Analyze and Design
The next phase of the process, following block diagram reduction, is analysis and
design. If you are interested only in the performance of an individual subsystem, you
can skip the block diagram reduction and move immediately into analysis and
design. In this phase, the engineer analyzes the system to see if the response
specifications and performance requirements can be met by simple adjustments
of system parameters. If specifications cannot be met, the designer then designs
additional hardware in order to effect a desired performance.

Test input signals are used, both analytically and during testing, to verify the design.
It is neither necessarily practical nor illuminating to choose complicated input signals to
analyze a system’s performance. Thus, the engineer usually selects standard test inputs.
These inputs are impulses, steps, ramps, parabolas, and sinusoids, as shown in Table 1.1.

An impulse is infinite at t ¼ 0 and zero elsewhere. The area under the unit impulse
is 1. An approximation of this type of waveform is used to place initial energy into a
system so that the response due to that initial energy is only the transient response of a
system. From this response the designer can derive a mathematical model of the system.

A step input represents a constant command, such as position, velocity, or
acceleration. Typically, the step input command is of the same form as the output. For
example, if the system’s output is position, as it is for the antenna azimuth position
control system, the step input represents a desired position, and the output represents
the actual position. If the system’s output is velocity, as is the spindle speed for a video
disc player, the step input represents a constant desired speed, and the output
represents the actual speed. The designer uses step inputs because both the transient
response and the steady-state response are clearly visible and can be evaluated.

Mathematical
description

Angular
output

Angular
input

FIGURE 1.12 Equivalent block
diagram for the antenna azimuth
position control system
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The ramp input represents a linearly increasing command. For example, if the
system’s output is position, the input ramp represents a linearly increasing position,
such as that found when tracking a satellite moving across the sky at constant speed.
If the system’s output is velocity, the input ramp represents a linearly increasing
velocity. The response to an input ramp test signal yields additional information
about the steady-state error. The previous discussion can be extended to parabolic
inputs, which are also used to evaluate a system’s steady-state error.

Sinusoidal inputs can also be used to test a physical system to arrive at a
mathematical model. We discuss the use of this waveform in detail in Chapters 10
and 11.

We conclude that one of the basic analysis and design requirements is to
evaluate the time response of a system for a given input. Throughout the book you
will learn numerous methods for accomplishing this goal.

The control systems engineer must take into consideration other characteristics
about feedback control systems. For example, control system behavior is altered by
fluctuations in component values or system parameters. These variations can be

TABLE 1.1 Test waveforms used in control systems

Input Function Description Sketch Use

Impulse dðtÞ dðtÞ ¼ 1 for 0� < t < 0þ
¼ 0 elsewhereZ 0þ

0�
dðtÞdt ¼ 1 δ

f(t)

t

(t)

Transient response
Modeling

Step uðtÞ uðtÞ ¼ 1 for t > 0

¼ 0 for t < 0

f(t)

t

Transient response
Steady-state error

Ramp tuðtÞ tuðtÞ ¼ t for t � 0

¼ 0 elsewhere

f(t)

t

Steady-state error

Parabola 1

2
t2uðtÞ 1

2
t2uðtÞ ¼ 1

2
t2 for t � 0

¼ 0 elsewhere

f(t)

t

Steady-state error

Sinusoid sinvt f(t)

t

Transient response
Modeling
Steady-state error
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caused by temperature, pressure, or other environmental changes. Systems must be
built so that expected fluctuations do not degrade performance beyond specified
bounds. A sensitivity analysis can yield the percentage of change in a specification as a
function of a change in a system parameter. One of the designer’s goals, then, is to build
a system with minimum sensitivity over an expected range of environmental changes.

In this section we looked at some control systems analysis and design considera-
tions. We saw that the designer is concerned about transient response, steady-state error,
stability, and sensitivity. The text pointed out thatalthough the basis of evaluating system
performance is the differential equation, other methods, such as transfer functions and
state space, will be used. The advantages of these new techniques over differential
equations will become apparent as we discuss them in later chapters.

1.6 Computer-Aided Design

Now that we have discussed the analysis and design sequence, let us discuss the use of
the computer as a computational tool in this sequence. The computer plays an
important role in the design of modern control systems. In the past, control system
design was labor intensive. Many of the tools we use today were implemented
through hand calculations or, at best, using plastic graphical aid tools. The process
was slow, and the results not always accurate. Large mainframe computers were then
used to simulate the designs.

Today we are fortunate to have computers and software that remove the
drudgery from the task. At our own desktop computers, we can perform analysis,
design, and simulation with one program. With the ability to simulate a design
rapidly, we can easily make changes and immediately test a new design. We can play
what-if games and try alternate solutions to see if they yield better results, such as
reduced sensitivity to parameter changes. We can include nonlinearities and other
effects and test our models for accuracy.

MATLAB
The computer is an integral part of modern control system design, and many computa-
tional tools are available for your use. In this book we use MATLAB and the MATLAB
Control System Toolbox, which expands MATLAB to include control system–specific
commands. In addition, presented are several MATLAB enhancements that give added
functionality to MATLAB and the Control Systems Toolbox. Included are (1) Simulink,
which uses a graphical user interface (GUI); (2) the LTI Viewer, which permits
measurements to be made directly from time and frequency response curves; (3) the
SISO Design Tool, a convenient and intuitive analysis and design tool; and (4) the
Symbolic Math Toolbox, which saves labor when making symbolic calculations required
in control system analysis and design. Some of these enhancements may require
additional software available from The MathWorks, Inc.

MATLAB is presented as an alternate method of solving control system
problems. You are encouraged to solve problems first by hand and then by
MATLAB so that insight is not lost through mechanized use of computer programs.
To this end, many examples throughout the book are solved by hand, followed by
suggested use of MATLAB.

As an enticement to begin using MATLAB, simple program statements that
you can try are suggested throughout the chapters at appropriate locations. Through-
out the book, various icons appear in the margin to identify MATLAB references
that direct you to the proper program in the proper appendix and tell you what you
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will learn. Selected end-of-chapter problems and Case Study Challenges to be solved
using MATLAB have also been marked with appropriate icons. The following list
itemizes the specific components of MATLAB used in this book, the icon used to
identify each, and the appendix in which a description can be found:

MATLAB/Control System Toolbox tutorials and code are found in
Appendix B and identified in the text with the MATLAB icon shown
in the margin.

Simulink tutorials and diagrams are found in Appendix C and
identified in the text with the Simulink icon shown in the margin.

MATLAB GUI tools, tutorials, and examples are in Appendix E at
www.wiley.com/college/nise and identified in the text with the GUI
Tool icon shown in the margin. These tools consist of the LTI
Viewer and the SISO Design Tool.

Symbolic Math Toolbox tutorials and code are found in Appendix F at
www.wiley.com/college/nise and identified in the text with the
Symbolic Math icon shown in the margin.

MATLAB code itself is not platform specific. The same code runs on PCs and
workstations that support MATLAB. Although there are differences in installing
and managing MATLAB files, we do not address them in this book. Also, there are
many more commands in MATLAB and the MATLAB toolboxes than are covered
in the appendixes. Please explore the bibliographies at the end of the applicable
appendixes to find out more about MATLAB file management and MATLAB
instructions not covered in this textbook.

LabVIEW
LabVIEW is a programming environment presented as an alternative to MATLAB.
This graphical alternative produces front panels of virtual instruments on your
computer that are pictorial reproductions of hardware instruments, such as wave-
form generators or oscilloscopes. Underlying the front panels are block diagrams.
The blocks contain underlying code for the controls and indicators on the front
panel. Thus, a knowledge of coding is not required. Also, parameters can be easily
passed or viewed from the front panel.

A LabVIEW tutorial is in Appendix D and all LabVIEW material is
identified with the LabVIEW icon shown in the margin.

You are encouraged to use computational aids throughout this book. Those not
using MATLAB or LabVIEW should consult Appendix H at www.wiley.com/
college/nise for a discussion of other alternatives. Now that we have introduced
control systems to you and established a need for computational aids to perform
analysis and design, we will conclude with a discussion of your career as a control
systems engineer and look at the opportunities and challenges that await you.

1.7 The Control Systems Engineer

Control systems engineering is an exciting field in which to apply your engineer-
ing talents, because it cuts across numerous disciplines and numerous functions
within those disciplines. The control engineer can be found at the top level of
large projects, engaged at the conceptual phase in determining or implementing
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overall system requirements. These requirements include total system perform-
ance specifications, subsystem functions, and the interconnection of these func-
tions, including interface requirements, hardware and software design, and test
plans and procedures.

Many engineers are engaged in only one area, such as circuit design or software
development. However, as a control systems engineer, you may find yourself
working in a broad arena and interacting with people from numerous branches
of engineering and the sciences. For example, if you are working on a biological
system, you will need to interact with colleagues in the biological sciences, mechan-
ical engineering, electrical engineering, and computer engineering, not to mention
mathematics and physics. You will be working with these engineers at all levels of
project development from concept through design and, finally, testing. At the design
level, the control systems engineer can be performing hardware selection, design,
and interface, including total subsystem design to meet specified requirements. The
control engineer can be working with sensors and motors as well as electronic,
pneumatic, and hydraulic circuits.

The space shuttle provides another example of the diversity required of the
systems engineer. In the previous section, we showed that the space shuttle’s control
systems cut across many branches of science: orbital mechanics and propulsion,
aerodynamics, electrical engineering, and mechanical engineering. Whether or not
you work in the space program, as a control systems engineer you will apply broad-
based knowledge to the solution of engineering control problems. You will have the
opportunity to expand your engineering horizons beyond your university curriculum.

You are now aware of future opportunities. But for now, what advantages does
this course offer to a student of control systems (other than the fact that you need it
to graduate)? Engineering curricula tend to emphasize bottom-up design. That is,
you start from the components, develop circuits, and then assemble a product. In top-
down design, a high-level picture of the requirements is first formulated; then the
functions and hardware required to implement the system are determined. You will
be able to take a top-down systems approach as a result of this course.

A major reason for not teaching top-down design throughout the curriculum is
the high level of mathematics initially required for the systems approach. For
example, control systems theory, which requires differential equations, could not
be taught as a lower-division course. However, while progressing through bottom-up
design courses, it is difficult to see how such design fits logically into the large picture
of the product development cycle.

After completing this control systems course, you will be able to stand back and
see how your previous studies fit into the large picture. Your amplifier course or
vibrations course will take on new meaning as you begin to see the role design work
plays as part of product development. For example, as engineers, we want to describe
the physical world mathematically so that we can create systems that will benefit
humanity. You will find that you have indeed acquired, through your previous courses,
the ability to model physical systems mathematically, although at the time you might
not have understood where in the product development cycle the modeling fits. This
course will clarify the analysis and design procedures and show you how the
knowledge you acquired fits into the total picture of system design.

Understanding control systems enables students from all branches of engineer-
ing to speak a common language and develop an appreciation and working
knowledge of the other branches. You will find that there really is not much
difference among the branches of engineering as far as the goals and applications
are concerned. As you study control systems, you will see this commonality.
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Summary

Control systems contribute to every aspect of modern society. In our homes we find
them in everything from toasters to heating systems to VCRs. Control systems also
have widespread applications in science and industry, from steering ships and planes
to guiding missiles and the space shuttle. Control systems also exist naturally; our
bodies contain numerous control systems. Even economic and psychological system
representations have been proposed based on control system theory. Control
systems are used where power gain, remote control, or conversion of the form of
the input is required.

A control system has an input, a process, and an output. Control systems can be
open loop or closed loop. Open-loop systems do not monitor or correct the output for
disturbances; however, they are simpler and less expensive than closed-loop systems.
Closed-loop systems monitor the output and compare it to the input. If an error is
detected, the system corrects the output and hence corrects the effects of disturbances.

Control systems analysis and design focuses on three primary objectives:

1. Producing the desired transient response

2. Reducing steady-state errors

3. Achieving stability

A system must be stable in order to produce the proper transient and steady-
state response. Transient response is important because it affects the speed of the
system and influences human patience and comfort, not to mention mechanical
stress. Steady-state response determines the accuracy of the control system; it
governs how closely the output matches the desired response.

The design of a control system follows these steps:

Step 1 Determine a physical system and specifications from requirements.

Step 2 Draw a functional block diagram.

Step 3 Represent the physical system as a schematic.

Step 4 Use the schematic to obtain a mathematical model, such as a block diagram.

Step 5 Reduce the block diagram.

Step 6 Analyze and design the system to meet specified requirements and specifica-
tions that include stability, transient response, and steady-state performance.

In the next chapter we continue through the analysis and design sequence and learn
how to use the schematic to obtain a mathematical model.

Review Questions

1. Name three applications for feedback control systems.

2. Name three reasons for using feedback control systems and at least one reason
for not using them.

3. Give three examples of open-loop systems.

4. Functionally, how do closed-loop systems differ from open-loop systems?

5. State one condition under which the error signal of a feedback control system
would not be the difference between the input and the output.
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6. If the error signal is not the difference between input and output, by what
general name can we describe the error signal?

7. Name two advantages of having a computer in the loop.

8. Name the three major design criteria for control systems.

9. Name the two parts of a system’s response.

10. Physically, what happens to a system that is unstable?

11. Instability is attributable to what part of the total response?

12. Describe a typical control system analysis task.

13. Describe a typical control system design task.

14. Adjustments of the forward path gain can cause changes in the transient
response. True or false?

15. Name three approaches to the mathematical modeling of control systems.

16. Briefly describe each of your answers to Question 15.

Problems

1. A variable resistor, called a potentiome-
ter, is shown in Figure P1.1. The resist-
ance is varied by moving a wiper arm
along a fixed resistance. The resistance
from A to C is fixed, but the resistance from B to C
varies with the position of the wiper arm. If it takes
10 turns to move the wiper arm from A to C, draw a
block diagram of the potentiometer showing the
input variable, the output variable, and (inside the
block) the gain, which is a constant and is the amount
by which the input is multiplied to obtain the output.
[Section 1.4: Introduction to a Case Study]

–

+ 50 voltsθ i(t)Input angle,

Output
voltage, vo(t)

A

C

50 volts
B

FIGURE P1.1 Potentiometer

2. A temperature control system operates by sensing
the difference between the thermostat setting and

the actual temperature and then opening a fuel valve
an amount proportional to this difference. Draw a
functional closed-loop block diagram similar to Figure
1.9(d) identifying the input and output transducers,
the controller, and the plant. Further, identify the
input and output signals of all subsystems previously
described. [Section 1.4: Introduction to a Case Study]

3. An aircraft’s attitude varies in roll, pitch, and yaw as
defined in Figure P1.2. Draw a functional block dia-
gram for a closed-loop system that stabilizes the roll
as follows: The system measures the actual roll angle
with a gyro and compares the actual roll angle with
the desired roll angle. The ailerons respond to the roll-
angle error by undergoing an angular deflection. The
aircraft responds to this angular deflection, producing
a roll angle rate. Identify the input and output trans-
ducers, the controller, and the plant. Further, identify
the nature of each signal. [Section 1.4: Introduction to
a Case Study]

Roll angle

Pitch angle

Aileron
deflection up

Yaw angle

y

z

x

Aileron
deflection down

FIGURE P1.2 Aircraft attitude defined
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4. Many processes operate on rolled material that moves
from a supply reel to a take-up reel. Typically, these
systems, called winders, control the material so that it
travels at a constant velocity. Besides velocity, com-
plex winders also control tension, compensate for roll
inertia while accelerating or decelerating, and regulate
acceleration due to sudden changes. A winder is
shown in Figure P1.3. The force transducer measures
tension; the winder pulls against the nip rolls, which
provide an opposing force; and the bridle provides
slip. In order to compensate for changes in speed, the
material is looped around a dancer. The loop prevents
rapid changes from causing excessive slack or damag-
ing the material. If the dancer position is sensed by a
potentiometer or other device, speed variations due to
buildup on the take-up reel or other causes can be
controlled by comparing the potentiometer voltage to
the commanded speed. The system then corrects the
speed and resets the dancer to the desired position
(Ayers, 1988). Draw a functional block diagram for the
speed control system, showing each component and
signal. [Section 1.4: Introduction to a Case Study]

Process

Nip rolls

Force
transducer

Center-driven
unwinder

Surface winder
Dancer-position

feedback

Bridle

Dancer

FIGURE P1.3 Winder

5. In a nuclear power generating plant, heat from a
reactor is used to generate steam for turbines. The
rate of the fission reaction determines the amount of
heat generated, and this rate is controlled by rods
inserted into the radioactive core. The rods regulate
the flow of neutrons. If the rods are lowered into the
core, the rate of fission will diminish; if the rods are
raised, the fission rate will increase. By automatically

controlling the position of the rods, the amount of heat
generated by the reactor can be regulated. Draw a
functional block diagram for the nuclear reactor con-
trol system shown in Figure P1.4. Show all blocks and
signals. [Section 1.4: Introduction to a Case Study]

6. A university wants to establish a control system
model that represents the student population as
an output, with the desired student population as
an input. The administration determines the rate of
admissions by comparing the current and desired
student populations. The admissions office then uses
this rate to admit students. Draw a functional block
diagram showing the administration and the admis-
sions office as blocks of the system. Also show the
following signals: the desired student population,
the actual student population, the desired student
rate as determined by the administration, the actual
student rate as generated by the admissions office,
the dropout rate, and the net rate of influx. [Section
1.4: Introduction to a Case Study]

7. We can build a control system that will
automatically adjust a motorcycle’s ra-
dio volume as the noise generated by
the motorcycle changes. The noise gen-
erated by the motorcycle increases with speed. As
the noise increases, the system increases the volume
of the radio. Assume that the amount of noise can
be represented by a voltage generated by the
speedometer cable, and the volume of the radio
is controlled by a dc voltage (Hogan, 1988). If the
dc voltage represents the desired volume dis-
turbed by the motorcycle noise, draw the func-
tional block diagram of the automatic volume
control system, showing the input transducer,
the volume control circuit, and the speed trans-
ducer as blocks. Also show the following signals:
the desired volume as an input, the actual volume
as an output, and voltages representing speed,
desired volume, and actual volume. [Section 1.4:
Introduction to a Case Study]

8. Your bathtub at home is a control system that keeps
the water level constant. A constant flow from the
tap yields a constant water level, because the flow
rate through the drain increases as the water level
increases, and decreases as the water level de-
creases. After equilibrium has been reached, the
level can be controlled by controlling the input flow
rate. A low input flow rate yields a lower level, while
a higher input flow rate yields a higher level. [Sec-
tion 1.4: Introduction to a Case Study]

Rod

Radioactive core
Neutron
detector

Set
desired
power
level

Amplifier,
motor, and

drive system

FIGURE P1.4 Control of a nuclear reactor
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a. Sketch a control system that uses this principle to
precisely control the fluid level in a tank. Show
the intake and drain valves, the tank, any sensors
and transducers, and the interconnection of all
components.

b. Draw a functional block diagram of the system,
identifying the input and output signals of each
block.

9. A dynamometer is a device used to measure torque
and speed and to vary the load on rotating devices.
The dynamometer operates as follows to control the
amount of torque: A hydraulic actuator attached to
the axle presses a tire against a rotating flywheel.
The greater the displacement of the actuator, the
more force that is applied to the rotating flywheel. A
strain gage load cell senses the force. The displace-
ment of the actuator is controlled by an electrically
operated valve whose displacement regulates fluid
flowing into the actuator (D’Souza, 1988). Draw a
functional block diagram of a closed-loop system
that uses the described dynamometer to regulate
the force against the tire during testing. Show all
signals and systems. Include amplifiers that power
the valve, the valve, the actuator and load, and the
tire. [Section 1.4: Introduction to a Case Study]

10. During a medicaloperation an anesthe-
siologist controls the depth of un-
consciousness by controlling the
concentration of isoflurane in a vapor-
izedmixturewithoxygenandnitrousoxide.Thedepth
of anesthesia is measured by the patient’s blood
pressure. The anesthesiologist also regulates ventila-
tion, fluid balance, and the administration of other
drugs. In order to free the anesthesiologist to devote
more time to the latter tasks, and in the interest of the
patient’s safety, we wish to automate the depth of
anesthesia by automating the control of isoflurane
concentration. Draw a functional block diagram of
the system showing pertinent signals and subsystems
(Meier, 1992). [Section 1.4: Introduction to a Case
Study]

11. The vertical position, x(t), of the grinding wheel
shown in Figure P1.5 is controlled by a closed-loop
system. The input to the system is the desired
depth of grind, and the output is the actual depth
of grind. The difference between the desired depth
and the actual depth drives the motor, resulting in
a force applied to the work. This force results in a
feed velocity for the grinding wheel (Jenkins,
1997). Draw a closed-loop functional block

diagram for the grinding process, showing the
input, output, force, and grinder feed rate. [Section
1.4: Introduction to a Case Study]

y-axis
servo motor

x-axis
servo motor

Force transducer

PMAC

motor

control
PC

Cupped
grinding
wheel

Workpiece

z-axis
servo motor

Shaft
encoder

Eddy
current probe

FIGURE P1.5 Grinder system (Reprinted with
permission of ASME.)

12. A high-speed proportional solenoid valve is shown
in Figure P1.6. A voltage proportional to the desired
position of the spool is applied to the coil. The
resulting magnetic field produced by the current
in the coil causes the armature to move. A push pin
connected to the armature moves the spool. A
linear voltage differential transformer (LVDT)
that outputs a voltage proportional to displacement
senses the spool’s position. This voltage can be used
in a feedback path to implement closed-loop oper-
ation (Vaughan, 1996). Draw a functional block
diagram of the valve, showing input and output
positions, coil voltage, coil current, and spool force.
[Section 1.4: Introduction to a Case Study]

Bearings Armature
Pressure tube

LVDT

Nonmagnetic
section

SleeveReturn
spring

Spool Coil

FIGURE P1.6 High-speed proportional solenoid valve
(Reprinted with permission of ASME.)

13. The human eye has a biological control system that
varies the pupil diameter to maintain constant light
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intensity to the retina. As the light intensity in-
creases, the optical nerve sends a signal to the brain,
which commands internal eye muscles to decrease
the pupil’s eye diameter. When the light intensity
decreases, the pupil diameter increases.

a. Draw a functional block diagram of the light-pupil
system indicating the input, output, and intermedi-
ate signals; the sensor; the controller; and the
actuator. [Section 1.4: Introduction to a Case Study]

b. Under normal conditions the incident light
will be larger than the pupil, as shown in
Figure P1.7(a). If the incident light is smaller
than the diameter of the pupil as shown in
Figure P1.7(b), the feedback path is broken
(Bechhoefer, 2005). Modify your block diagram
from Part a. to show where the loop is broken.
What will happen if the narrow beam of light
varies in intensity, say in a sinusoidal fashion?

c. It has been found (Bechhoefer, 2005) that it takes
the pupil about 300 milliseconds to react to a
change in the incident light. If light shines off
center to the retina as shown in Figure P1.7(c),
describe the response of the pupil with delay
present and then without delay present.

(a) (b) (c)

FIGURE P1.7 Pupil is shown black; light beam is shown
white. a. Light beam diameter is larger than pupil. b. Light
beamdiameter is smaller thanpupil.c.Narrowlight beamis
illuminated at pupil’s edge.

14. A Segway16 Personal Transporter (PT) (Figure P1.8)
is a two-wheeled vehicle in which the human operator
stands vertically on a platform. As the driver leans left,
right, forward,orbackward,asetof sensitivegyroscopic
sensorssensethedesiredinput.Thesesignalsarefedtoa
computer that amplifies them and commands motors to
propel the vehicle in the desired direction. One very
important feature of the PTis its safety: The system will
maintain its vertical position within a specified angle
despite road disturbances, such as uphills and downhills
orevenif theoperatorover-leans inanydirection.Draw

a functional block diagram of the PT system that keeps
the system in a vertical position. Indicate the input and
output signals, intermediate signals, and main subsys-
tems. (http://segway.com)

FIGURE P1.8 The Segway Personal Transporter (PT)

15. In humans, hormone levels, alertness,
and core body temperature are syn-
chronized through a 24-hour circadian
cycle. Daytime alertness is at its best when sleep/
wake cycles are in synch with the circadian cycle.
Thus alertness can be easily affected with a distrib-
uted work schedule, such as the one to which astro-
nauts are subjected. It has been shown that the
human circadian cycle can be delayed or advanced
through light stimulus. To ensure optimal alertness,
a system is designed to track astronauts’ circadian
cycles and increase the quality of sleep during
missions. Core body temperature can be used as
an indicator of the circadian cycle. A computer
model with optimum circadian body temperature
variations can be compared to an astronaut’s body
temperatures. Whenever a difference is detected,
the astronaut is subjected to a light stimulus to
advance or delay the astronaut’s circadian cycle
(Mott, 2003). Draw a functional block diagram of
the system. Indicate the input and output signals,
intermediate signals, and main subsystems.

16. Tactile feedback is an important component in the
learning of motor skills such as dancing, sports,
and physical rehabilitation. A suit with white dots
recognized by a vision system to determine arm
joint positions with millimetric precision was de-
veloped. This suit is worn by both teacher and

6 Segway is a registered trademark of Segway, Inc. in the United States
and/or other countries.
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student to provide position information. (Lieber-
man, 2007). If there is a difference between the
teacher’s positions and that of the student, vibra-
tional feedback is provided to the student through
8 strategically placed vibrotactile actuators in the
wrist and arm, which take advantage of a sensory
effect known as cutaneous rabbit that tricks the
subject to feel uniformly spaced stimuli in places
where the actuators are not present. These stimuli
help the student adjust to correct the motion. In
summary, the system consists of an instructor and
a student having their movements followed by the
vision system. Their movements are fed into a
computer that finds the differences between their
joint positions and provides proportional vibra-
tional strength feedback to the student. Draw a
block diagram describing the system design.

17. Given the electric network shown in
Figure P1.9. [Review]

a. Write the differential equation for
the network if vðtÞ ¼ uðtÞ, a unit step.

b. Solve the differential equation for the current,
i(t), if there is no initial energy in the network.

c. Make a plot of your solution if R=L ¼ 1.
R

Lv(t) i(t)+
–

FIGURE P1.9 RL network

18. Repeat Problem 17 using the network shown in Fig-
ureP1.10.AssumeR ¼ 2 V; L ¼ 1 H,and1=LC ¼25.
[Review]

R

Cv(t) i(t)

L

+
–

FIGURE P1.10 RLC network

19. Solve the following differential equa-
tions using classical methods. Assume
zero initial conditions. [Review]

a.
dx

dt
þ 7x ¼ 5 cos 2t

b.
d2x

dt2
þ 6

dx

dt
þ 8x ¼ 5 sin 3t

c.
d2x

dt2
þ 8

dx

dt
þ 25x ¼ 10uðtÞ

20. Solve the following differential equa-
tions using classical methods and the
given initial conditions: [Review]

a.
d2x

dt2
þ 2

dx

dt
þ 2x ¼ sin2t

xð0Þ ¼ 2;
dx

dt
ð0Þ ¼ �3

b. d2x

dt2
þ 2

dx

dt
þ x ¼ 5e�2t þ t

xð0Þ ¼ 2;
dx

dt
ð0Þ ¼ 1

c. d2x

dt2
þ 4x ¼ t2

xð0Þ ¼ 1;
dx

dt
ð0Þ ¼ 2

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
21. High-speed rail pantograph. Some high-speed

rail systems are powered by electricity supplied
to a pantograph on the train’s roof from a cate-
nary overhead, as shown in Figure P1.11. The
force applied by the pantograph to the catenary
is regulated to avoid loss of contact due to exces-
sive transient motion. A proposed method to
regulate the force uses a closed-loop feedback
system, whereby a force, Fup, is applied to the
bottom of the pantograph, resulting in an output

Catenary

Pantograph
Train

FIGURE P1.11 High-speed rail system showing pantograph and catenary (Reprinted with permission of ASME.)
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force applied to the catenary at the top. The contact
between the head of the pantograph and the cate-
nary is represented by a spring. The output force is
proportional to the displacement of this spring,
which is the difference between the catenary and
pantograph head vertical positions (O’Connor,
1997). Draw a functional block diagram showing
the following signals: the desired output force as
the input; the force, Fup, applied to the bottom of the
pantograph; the difference in displacement between
the catenary and pantograph head; and the output
contact force. Also, show blocks representing the
input transducer, controller, actuator generating
Fup, pantograph dynamics, spring described above,
and output sensor. All forces and displacements are
measured from equilibrium.

22. Contol of HIV/AIDS. As of 2005, the number of
people living worldwide with Human Immuno-
deficiency Virus/Acquired Immune Deficiency Syn-
drome (HIV/AIDS) was estimated at 40 million,
with 5 million new infections per year and 3 million
deaths due to the disease (UNAIDS, 2005). Cur-
rently there is no known cure for the disease, and
HIV cannot be completely eliminated in an infected
individual. Drug combinations can be used to main-
tain the virus numbers at low levels, which helps
prevent AIDS from developing. A common treat-
ment for HIV is the administration of two types of
drugs: reverse transcriptase inhibitors (RTIs) and
protease inhibitors (PIs). The amount in which each
of these drugs is administered is varied according to
the amount of HIV viruses in the body (Craig,
2004). Draw a block diagram of a feedback system
designed to control the amount of HIV viruses in an
infected person. The plant input variables are the
amount of RTIs and PIs dispensed. Show blocks
representing the controller, the system under con-
trol, and the transducers. Label the corresponding
variables at the input and output of every block.

23. Hybrid vehicle. The use of hybrid cars is becoming
increasingly popular. A hybrid electric vehicle
(HEV) combines electric machine(s) with an inter-
nal combustion engine (ICE), making it possible
(along with other fuel consumption–reducing mea-
sures, such as stopping the ICE at traffic lights) to
use smaller and more efficient gasoline engines.
Thus, the efficiency advantages of the electric driv-
etrain are obtained, while the energy needed to
power the electric motor is stored in the onboard
fuel tank and not in a large and heavy battery pack.

There are various ways to arrange the flow of
power in hybrid car. In a serial HEV (Figure P1.12),
the ICE is not connected to the drive shaft. It drives
only the generator, which charges the batteries and/
or supplies power to the electric motor(s) through
an inverter or a converter.

Fuel 
tank

Electrical
storage

Generator

Combustion
engine

Electric
motor/generator

FIGURE P1.12 Serial hybrid-electric vehicle

The HEVs sold today are primarily of the par-
allel or split-power variety. If the combustion
engine can turn the drive wheels as well as the
generator, then the vehicle is referred to as a
parallel hybrid, because both an electric motor
and the ICE can drive the vehicle. A parallel hybrid
car (Figure P1.13) includes a relatively small bat-
tery pack (electrical storage) to put out extra power
to the electric motor when fast acceleration is
needed. See (Bosch 5th ed., 2000), (Bosch 7th
ed., 2007), (Edelson, 2008), (Anderson, 2009) for
more detailed information about HEV.

Fuel 
tank

Electrical
storage

Combustion
engine

Electric
motor/generator

FIGURE P1.13 Parallel hybrid drive

As shown in Figure P1.14, split-power hybrid cars
utilize a combination of series and parallel drives
(Bosch, 5th ed., 2007). These cars use a planetary
gear (3) as a split-power transmission to allow some of
the ICE power to be applied mechanically to the
drive. The other part is converted into electrical
energy through the alternator (7) and the inverter
(5) to feed the electric motor (downstream of the
transmission) and/or to charge the high-voltage

Problems 29
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battery (6). Depending upon driving conditions, the
ICE, the electric motor, or both propel the vehicle.

1 2

+ –

1. internal-combustion engine; 2. tank
3. planetary gear; 4. electric motor; 5. inverter;
6. battery; 7. alternator.

7

6 5

3 4

FIGURE P1.14 Split-power hybrid electric vehicle

Draw a functional block diagram for the cruise
(speed) control system of:

a. A serial hybrid vehicle, showing its major com-
ponents, including the speed sensor, electronic
control unit (ECU), inverter, electric motor, and
vehicle dynamics; as well as all signals, including
the desired vehicle speed, actual speed, control
command (ECU output), controlled voltage (in-
verter output), the motive force (provided by the
electric motor), and running resistive force7;

b. A parallel hybrid vehicle, showing its major com-
ponents, which should include also a block that
represents the accelerator, engine, and motor, as
well as the signals (including accelerator displace-
ment and combined engine/motor motive force);

c. A split-power HEV, showing its major compo-
nents and signals, including, in addition to those
listed in Parts a and b, a block representing the
planetary gear and its control, which, depending
upon driving conditions, would allow the ICE, the
electric motor, or both to propel the vehicle, that
is, to provide the necessary total motive force.

Cyber Exploration Laboratory

Experiment 1.1

Objective To verify the behavior of closed-loop systems as described in the
Chapter 1 Case Study.

Minimum Required Software Packages LabVIEW and the LabVIEW
Control Design and Simulation Module. Note: While no knowledge of LabVIEW
is required for this experiment, see Appendix D to learn more about LabVIEW,
which will be pursued in more detail in later chapters.

Prelab

1. From the discussion in the Case Study, describe the effect of the gain of a closed-
loop system upon transient response.

2. From the discussion in the Case Study about steady-state error, sketch a graph of
a step input superimposed with a step response output and show the steady-state
error. Assume any transient response. Repeat for a ramp input and ramp output
response. Describe the effect of gain upon the steady-state error.

Lab

1. Launch LabVIEW and open Find Examples . . .

7 These include the aerodynamic drag, rolling resistance, and climbing
resistance. The aerodynamic drag is a function of car speed, whereas
the other two are proportional to car weight.
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2. In the NI Example Finder window, open CDEx Effect of Controller Type.vi,
found by navigating to it thourgh Toolkits and Modules/Control and Simulation/
Control Design/Time Analysis/CDEx Effect of Controller Type vi.

3. On the tool bar click the circulating arrows located next to the solid arrow on the
left. The program is now running.

4. Move the slider Controller Gain and note the effect of high and low gains.

5. Change the controller by clicking the arrows for Controller Type and repeat
Step 4.

Postlab

1. Correlate the responses found in the experiment with those described in your
Prelab. Explore other examples provided in the LabVIEW example folders.
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Modeling in the
Frequency Domain 2

Chapter Learning Outcomes

After completing this chapter, the student will be able to:

� Find the Laplace transform of time functions and the inverse Laplace transform
(Sections 2.1–2.2)

� Find the transfer function from a differential equation and solve the differential
equation using the transfer function (Section 2.3)

� Find the transfer function for linear, time-invariant electrical networks (Section 2.4)

� Find the transfer function for linear, time-invariant translational mechanical systems
(Section 2.5)

� Find the transfer function for linear, time-invariant rotational mechanical systems
(Section 2.6)

� Find the transfer functions for gear systems with no loss and for gear systems with
loss (Section 2.7)

� Find the transfer function for linear, time-invariant electromechanical systems
(Section 2.8)

� Produce analogous electrical and mechanical circuits (Section 2.9)

� Linearize a nonlinear system in order to find the transfer function (Sections 2.10–
2.11)

33
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Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the transfer function of each subsystem.

� Given a model of a human leg or a nonlinear electrical circuit, you will be able to
linearize the model and then find the transfer function.

2.1 Introduction

In Chapter 1, we discussed the analysis and design sequence that included obtaining
the system’s schematic and demonstrated this step for a position control system. To
obtain a schematic, the control systems engineer must often make many simplifying
assumptions in order to keep the ensuing model manageable and still approximate
physical reality.

The next step is to develop mathematical models from schematics of physical
systems. We will discuss two methods: (1) transfer functions in the frequency domain
and (2) state equations in the time domain. These topics are covered in this chapter
and in Chapter 3, respectively. As we proceed, we will notice that in every case the
first step in developing a mathematical model is to apply the fundamental physical
laws of science and engineering. For example, when we model electrical networks,
Ohm’s law and Kirchhoff’s laws, which are basic laws of electric networks, will be
applied initially. We will sum voltages in a loop or sum currents at a node. When we
study mechanical systems, we will use Newton’s laws as the fundamental guiding
principles. Here we will sum forces or torques. From these equations we will obtain
the relationship between the system’s output and input.

In Chapter 1 we saw that a differential equation can describe the relationship
between the input and output of a system. The form of the differential equation and its
coefficients are a formulation or description of the system. Although the differential
equation relates the system to its input and output, it is not a satisfying representation
from a system perspective. Looking at Eq. (1.2), a general, nth-order, linear, time-
invariant differential equation, we see that the system parameters, which are the
coefficients, as well as the output, c(t), and the input, r(t), appear throughout the equation.

We would prefer a mathematical representation such as that shown in
Figure 2.1(a), where the input, output, and system are distinct and separate parts.
Also, we would like to represent conveniently the interconnection of several sub-
systems. For example, we would like to represent cascaded interconnections, as shown

FIGURE 2.1 a. Block diagram
representation of a system; b.
block diagram representation
of an interconnection of
subsystems

System
Input Output

(  )

Subsystem

(  )

Subsystem
Input

Subsystem
Output

a

b

r(t)

r(t)

c(t)

c(t)

Note:  The input, r(t), stands for reference input. 
 The output, c(t), stands for controlled variable.
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in Figure 2.1(b), where a mathematical function, called a transfer function, is inside
each block, and block functions can easily be combined to yield Figure 2.1 (a) for
ease of analysis and design. This convenience cannot be obtained with the
differential equation.

2.2 Laplace Transform Review

A system represented by a differential equation is difficult to model as a block
diagram. Thus, we now lay the groundwork for the Laplace transform, with which we
can represent the input, output, and system as separate entities. Further, their
interrelationship will be simply algebraic. Let us first define the Laplace transform
and then show how it simplifies the representation of physical systems (Nilsson, 1996).

The Laplace transform is defined as

L½ f ðtÞ� ¼ FðsÞ ¼
Z 1

0�
f ðtÞe�st dt ð2:1Þ

where s ¼ s þ jv, a complex variable. Thus, knowing f(t) and that the integral in Eq. (2.1)
exists, we can find a function, F(s), that is called the Laplace transform of f(t).1

The notation for the lower limit means that even if f(t) is discontinuous at t ¼ 0,
we can start the integration prior to the discontinuity as long as the integral
converges. Thus, we can find the Laplace transform of impulse functions. This
property has distinct advantages when applying the Laplace transform to the
solution of differential equations where the initial conditions are discontinuous
at t ¼ 0. Using differential equations, we have to solve for the initial conditions after
the discontinuity knowing the initial conditions before the discontinuity. Using the
Laplace transform we need only know the initial conditions before the discontinuity.
See Kailath (1980) for a more detailed discussion.

The inverse Laplace transform, which allows us to find f(t) given F(s), is

L�1½FðsÞ� ¼ 1

2pj

Z sþj1

s�j1
FðsÞestds ¼ f ðtÞuðtÞ ð2:2Þ

where
uðtÞ ¼ 1 t > 0

¼ 0 t < 0

is the unit step function. Multiplication of f(t) by u(t) yields a time function that is
zero for t < 0.

Using Eq. (2.1), it is possible to derive a table relating f(t) to F(s) for specific
cases. Table 2.1 shows the results for a representative sample of functions. If we use
the tables, we do not have to use Eq. (2.2), which requires complex integration, to
find f(t) given F(s).

1 The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge ifR1
0� jf ðtÞje�s1 t dt < 1. If jf ðtÞj < Mes2t; 0 < t < 1, the integral will converge if 1 > s1 > s2. We call s2

the abscissa of convergence, and it is the smallest value of s, where s ¼ s þ jv, for which the integral exists.

2.2 Laplace Transform Review 35
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In the following example we demonstrate the use of Eq. (2.1) to find the
Laplace transform of a time function.

Example 2.1

Laplace Transform of a Time Function

PROBLEM: Find the Laplace transform of f ðtÞ ¼ Ae�atuðtÞ.
SOLUTION: Since the time function does not contain an impulse function, we can
replace the lower limit of Eq. (2.1) with 0. Hence,

FðsÞ ¼
Z 1

0
f ðtÞe�st dt ¼

Z 1

0
Ae�ate�st dt ¼ A

Z 1

0
e�ðsþaÞt dt

¼ � A

sþ a
e�ðsþaÞt

����
1

t¼0

¼ A

sþ a
ð2:3Þ

In addition to the Laplace transform table, Table 2.1, we can use Laplace
transform theorems, listed in Table 2.2, to assist in transforming between f(t) and
F(s). In the next example, we demonstrate the use of the Laplace transform
theorems shown in Table 2.2 to find f(t) given F(s).

Example 2.2

Inverse Laplace Transform

PROBLEM: Find the inverse Laplace transform of F1ðsÞ ¼ 1=ðsþ 3Þ2.

SOLUTION: For this example we make use of the frequency shift theorem, Item 4
of Table 2.2, and the Laplace transform of f ðtÞ ¼ tuðtÞ, Item 3 of Table 2.1. If the
inverse transform of FðsÞ ¼ 1=s2 is tu(t), the inverse transform of Fðsþ aÞ ¼
1=ðsþ aÞ2 is e�attuðtÞ. Hence, f 1ðtÞ ¼ e�3ttuðtÞ.

TABLE 2.1 Laplace transform table

Item no. f(t) F(s)

1. d(t) 1

2. u(t)
1

s

3. tu(t) 1

s2

4. tnuðtÞ n!

sn þ 1

5. e�atuðtÞ 1

sþ a

6. sinvtuðtÞ v

s2 þ v2

7. cosvtuðtÞ s

s2 þ v2

36 Chapter 2 Modeling in the Frequency Domain
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Partial-Fraction Expansion
To find the inverse Laplace transform of a complicated function, we can convert the
function to a sum of simpler terms for which we know the Laplace transform of each
term. The result is called a partial-fraction expansion. If F1ðsÞ ¼ NðsÞ=DðsÞ, where
the order of N(s) is less than the order of D(s), then a partial-fraction expansion can
be made. If the order of N(s) is greater than or equal to the order of D(s), then N(s)
must be divided by D(s) successively until the result has a remainder whose
numerator is of order less than its denominator. For example, if

F1ðsÞ ¼ s3 þ 2s2 þ 6sþ 7

s2 þ sþ 5
ð2:4Þ

we must perform the indicated division until we obtain a remainder whose numera-
tor is of order less than its denominator. Hence,

F1ðsÞ ¼ sþ 1 þ 2

s2 þ sþ 5
ð2:5Þ

Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the
differentiation theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain

f 1ðtÞ ¼
ddðtÞ
dt

þ dðtÞ þL�1 2

s2 þ sþ 5

� �
ð2:6Þ

Using partial-fraction expansion, we will be able to expand functions like FðsÞ ¼
2=ðs2 þ sþ 5Þ into a sum of terms and then find the inverse Laplace transform for
each term. We will now consider three cases and show for each case how anF(s) can be
expanded into partial fractions.

TABLE 2.2 Laplace transform theorems

Item no. Theorem Name

1. L½ f ðtÞ� ¼ FðsÞ ¼ R10� f ðtÞe�stdt Definition

2. L½kf ðtÞ� ¼ kFðsÞ Linearity theorem

3. L½ f 1ðtÞ þ f 2ðtÞ� ¼ F1ðsÞ þ F2ðsÞ Linearity theorem

4. L½e�atf ðtÞ� ¼ Fðsþ aÞ Frequency shift theorem

5. L½ f ðt � TÞ� ¼ e�sTFðsÞ Time shift theorem

6. L½ f ðatÞ� ¼ 1

a
F

s

a

� �
Scaling theorem

7. L
df

dt

� �
¼ sFðsÞ � f ð0�Þ Differentiation theorem

8. L
d2f

dt2

" #
¼ s2FðsÞ � sf ð0�Þ � f 0ð0�Þ Differentiation theorem

9. L
dnf

dtn

� �
¼ snFðsÞ �

Xn
k¼1

sn�kf k�1ð0�Þ Differentiation theorem

10. L
R t

0� f ðtÞdt� � ¼ FðsÞ
s

Integration theorem

11. f ð1Þ ¼ lim
s!0

sFðsÞ Final value theorem1

12. f ð0þÞ ¼ lim
s!1 sFðsÞ Initial value theorem2

1For this theorem to yield correct finite results, all roots of the denominator ofF(s) must have negative real
parts, and no more than one can be at the origin.
2For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t ¼ 0 (that is, no
impulses or their derivatives at t ¼ 0).
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Case 1. Roots of the Denominator of F(s) Are Real and Distinct An example of an
F(s) with real and distinct roots in the denominator is

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ ð2:7Þ

The roots of the denominator are distinct, since each factor is raised only to unity
power. We can write the partial-fraction expansion as a sum of terms where each
factor of the original denominator forms the denominator of each term, and
constants, called residues, form the numerators. Hence,

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ ¼
K1

ðsþ 1Þ þ
K2

ðsþ 2Þ ð2:8Þ

To find K1, we first multiply Eq. (2.8) by ðsþ 1Þ, which isolates K1. Thus,

2

ðsþ 2Þ ¼ K1 þ ðsþ 1ÞK2

ðsþ 2Þ ð2:9Þ

Letting s approach �1 eliminates the last term and yields K1 ¼ 2. Similarly, K2 can be
found by multiplying Eq. (2.8) by ðsþ 2Þ and then letting sapproach�2; hence,K2 ¼ �2.

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(t) is the sum
of the inverse Laplace transform of each term, or

f ðtÞ ¼ ð2e�t � 2e�2tÞuðtÞ ð2:10Þ
In general, then, given an F(s) whose denominator has real and distinct roots, a

partial-fraction expansion,

FðsÞ ¼ NðsÞ
DðsÞ ¼

NðsÞ
ðsþ p1Þðsþ p2Þ � � � ðsþ pmÞ � � � ðsþ pnÞ

¼ K1

ðsþ p1Þ
þ K2

ðsþ p2Þ
þ � � � þ Km

ðsþ pmÞ
þ � � � þ Kn

ðsþ pnÞ
ð2:11Þ

can be made if the order of N(s) is less than the order of D(s). To evaluate each
residue, Ki, we multiply Eq. (2.11) by the denominator of the corresponding partial
fraction. Thus, if we want to find Km, we multiply Eq. (2.11) by ðsþ pmÞ and get

ðsþ pmÞFðsÞ ¼
ðsþ pmÞNðsÞ

ðsþ p1Þðsþ p2Þ � � � ðsþ pmÞ � � � ðsþ pnÞ

¼ ðsþ pmÞ
K1

ðsþ p1Þ
þ ðsþ pmÞ

K2

ðsþ p2Þ
þ � � � þKm þ � � �

þ ðsþ pmÞ
Kn

ðsþ pnÞ ð2:12Þ

If we let s approach �pm, all terms on the right-hand side of Eq. (2.12) go to zero
except the term Km, leaving

ðsþ pmÞNðsÞ
ðsþ p1Þðsþ p2Þ � � � ðsþ pmÞ � � � ðsþ pnÞ

����
s!�pm

¼ Km ð2:13Þ

The following example demonstrates the use of the partial-fraction expansion
to solve a differential equation. We will see that the Laplace transform reduces the
task of finding the solution to simple algebra.
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Example 2.3

Laplace Transform Solution of a Differential Equation

PROBLEM: Given the following differential equation, solve for y(t) if all initial
conditions are zero. Use the Laplace transform.

d2y

dt2
þ 12

dy

dt
þ 32y ¼ 32uðtÞ ð2:14Þ

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using
Item 2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(t) and
dy(t)=dt given by yð0�Þ ¼ 0 and _yð0�Þ ¼ 0, respectively. Hence, the Laplace
transform of Eq. (2.14) is

s2YðsÞ þ 12sYðsÞ þ 32YðsÞ ¼ 32

s
ð2:15Þ

Solving for the response, Y(s), yields

YðsÞ ¼ 32

sðs2 þ 12sþ 32Þ ¼
32

sðsþ 4Þðsþ 8Þ ð2:16Þ

To solve for y(t), we notice that Eq. (2.16) does not match any of the terms in Table
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
each of the resulting terms with F(s) in Table 2.1. Therefore,

YðsÞ ¼ 32

sðsþ 4Þðsþ 8Þ ¼
K1

s
þ K2

ðsþ 4Þ þ
K3

ðsþ 8Þ ð2:17Þ

where, from Eq. (2.13),

K1 ¼ 32

ðsþ 4Þðsþ 8Þ
����
s!0

¼ 1 ð2:18aÞ

K2 ¼ 32

sðsþ 8Þ
����
s!�4

¼ �2 ð2:18bÞ

K3 ¼ 32

sðsþ 4Þ
����
s!�8

¼ 1 ð2:18cÞ

Hence,

YðsÞ ¼ 1

s
� 2

ðsþ 4Þ þ
1

ðsþ 8Þ ð2:19Þ

Since each of the three component parts of Eq. (2.19) is represented as an
F(s) in Table 2.1, y(t) is the sum of the inverse Laplace transforms of each term.
Hence,

yðtÞ ¼ ð1 � 2e�4t þ e�8tÞuðtÞ ð2:20Þ
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StudentswhoareusingMATLABshouldnowrunch2p1throughch2p8
in Appendix B. This is your first MATLAB exercise. You will learn how
to use MATLAB to (1) represent polynomials, (2) find roots of poly-
nomials, (3) multiply polynomials, and (4) find partial-fraction
expansions. Finally, Example 2.3 will be solved using MATLAB.

The u(t) in Eq. (2.20) shows that the response is zero until t ¼ 0. Unless
otherwise specified, all inputs to systems in the text will not start until t ¼ 0. Thus,
output responses will also be zero until t ¼ 0. For convenience, we will leave off the
u(t) notation from now on. Accordingly, we write the output response as

yðtÞ ¼ 1 � 2e�4t þ e�8t ð2:21Þ

Case 2. Roots of the Denominator of F(s) Are Real and Repeated An example of
an F(s) with real and repeated roots in the denominator is

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ2
ð2:22Þ

The roots of ðsþ 2Þ2 in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case, the denominator root at �2 is a multiple
root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each
factor of the denominator forms the denominator of each term. In addition, each
multiple root generates additional terms consisting of denominator factors of
reduced multiplicity. For example, if

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ2
¼ K1

ðsþ 1Þ þ
K2

ðsþ 2Þ2
þ K3

ðsþ 2Þ ð2:23Þ

then K1 ¼ 2, which can be found as previously described. K2 can be isolated by
multiplying Eq. (2.23) by ðsþ 2Þ2, yielding

2

sþ 1
¼ ðsþ 2Þ2 K1

ðsþ 1Þ þK2 þ ðsþ 2ÞK3 ð2:24Þ

Letting s approach �2; K2 ¼ �2. To find K3 we see that if we differentiate Eq. (2.24)
with respect to s,

�2

ðsþ 1Þ2
¼ ðsþ 2Þs

ðsþ 1Þ2
K1 þK3 ð2:25Þ

K3 is isolated and can be found if we let s approach �2. Hence, K3 ¼ �2.
Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(t) is the sum

of the inverse Laplace transform of each term, or

f ðtÞ ¼ 2e�t � 2te�2t � 2e�2t ð2:26Þ

If the denominator root is of higher multiplicity than 2, successive differentiation
would isolate each residue in the expansion of the multiple root.

TryIt 2.1

Use the following MATLAB
and Control System Toolbox
statement to form the linear,
time-invariant (LTI) transfer
function of Eq. (2.22).

F=zpk([], [�1 �2 �2],2)

TryIt 2.2

Use the following MATLAB
statements to help you get
Eq. (2.26).

numf=2;
denf=poly([�1 �2 �2]);
[k,p,k]=residue...
(numf,denf)
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In general, then, given an F(s) whose denominator has real and repeated roots,
a partial-fraction expansion,

FðsÞ ¼ NðsÞ
DðsÞ

¼ NðsÞ
ðsþ p1Þrðsþ p2Þ � � � ðsþ pnÞ

¼ K1

ðsþ p1Þr
þ K2

ðsþ p1Þr�1
þ � � � þ Kr

ðsþ p1Þ

þ Krþ1

ðsþ p2Þ
þ � � � þ Kn

ðsþ pnÞ ð2:27Þ

can be made if the order of N(s) is less than the order of D(s) and the repeated roots
are of multiplicity r at �p1. To find K1 through Kr for the roots of multiplicity greater
than unity, first multiply Eq. (2.27) by ðsþ p1Þr getting F1ðsÞ, which is

F1ðsÞ ¼ ðsþ p1ÞrFðsÞ

¼ ðsþ p1ÞrNðsÞ
ðsþ p1Þrðsþ p2Þ � � � ðsþ pnÞ

¼ K1 þ ðsþ p1ÞK2 þ ðsþ p1Þ2K3 þ � � � þ ðsþ p1Þr�1Kr

þKrþ1ðsþ p1Þr
ðsþ p2Þ

þ � � � þKnðsþ p1Þr
ðsþ pnÞ ð2:28Þ

Immediately, we can solve for K1 if we let s approach �p1. We can solve for K2 if we
differentiate Eq. (2.28) with respect to s and then let s approach �p1. Subsequent
differentiation will allow us to find K3 through Kr. The general expression for K1

through Kr for the multiple roots is

Ki ¼ 1

ði� 1Þ!
di�1F1ðsÞ
dsi�1

����
s!�p1

i ¼ 1; 2; . . . ; r; 0! ¼ 1 ð2:29Þ

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary An example
of F(s) with complex roots in the denominator is

FðsÞ ¼ 3

sðs2 þ 2sþ 5Þ ð2:30Þ

This function can be expanded in the following form:

3

sðs2 þ 2sþ 5Þ ¼
K1

s
þ K2sþK3

s2 þ 2sþ 5
ð2:31Þ

K1 is found in the usual way to be 3
5. K2 and K3 can be found by first multiplying

Eq. (2.31) by the lowest common denominator, sðs2 þ 2sþ 5Þ, and clearing the
fractions. After simplification with K1 ¼ 3

5, we obtain

3 ¼ K2 þ 3

5

	 

s2 þ K3 þ 6

5

	 

sþ 3 ð2:32Þ

TryIt 2.3

Use the following MATLAB
and Control System Toolbox
statement to form the LTI
transfer function of Eq. (2.30).

F=tf([3],[1 2 5 0])
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Balancing coefficients, K2 þ 3
5

� � ¼ 0 and K3 þ 6
5

� � ¼ 0. Hence K2 ¼ � 3
5 and K3 ¼

� 6
5. Thus,

FðsÞ ¼ 3

sðs2 þ 2sþ 5Þ ¼
3=5

s
� 3

5

sþ 2

s2 þ 2sþ 5
ð2:33Þ

The last term can be shown to be the sum of the Laplace transforms of an
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in
Table 2.2, we get

L½Ae�atcos vt� ¼ Aðsþ aÞ
ðsþ aÞ2 þ v2

ð2:34Þ

Similarly,

L½Be�atsinvt� ¼ Bv

ðsþ aÞ2 þ v2
ð2:35Þ

Adding Eqs. (2.34) and (2.35), we get

L½Ae�atcos vt þ Be�atsinvt� ¼ Aðsþ aÞ þ Bv

ðsþ aÞ2 þ v2
ð2:36Þ

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36)
by completing the squares in the denominator and adjusting terms in the numerator
without changing its value. Hence,

FðsÞ ¼ 3=5

s
� 3

5

ðsþ 1Þ þ ð1=2Þð2Þ
ðsþ 1Þ2 þ 22

ð2:37Þ

Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find

f ðtÞ ¼ 3

5
� 3

5
e�t cos 2t þ 1

2
sin 2t

	 

ð2:38Þ

In order to visualize the solution, an alternate form of f(t), obtained by
trigonometric identities, is preferable. Using the amplitudes of the cos and sin

terms, we factor out
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
from the term in parentheses and obtain

f ðtÞ ¼ 3

5
� 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
e�t 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 þ ð1=2Þ2
q cos 2t þ 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 þ ð1=2Þ2
q sin 2t

0
B@

1
CA ð2:39Þ

Letting 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
¼ cos f and ð1=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
¼ sinf,

f ðtÞ ¼ 3

5
� 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
e�tðcos f cos 2t þ sin f sin 2tÞ ð2:40Þ

or

f ðtÞ ¼ 0:6 � 0:671e�tcosð2t � fÞ ð2:41Þ

TryIt 2.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to get Eq. (2.38)
from Eq. (2.30).

syms s
f=ilaplace...
(3/(s*(s^2+2 *s+5)));

pretty(f)
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where f ¼ arctan 0:5 ¼ 26:57�. Thus, f(t) is a constant plus an exponentially damped
sinusoid.

In general, then, given an F(s) whose denominator has complex or purely
imaginary roots, a partial-fraction expansion,

FðsÞ ¼ NðsÞ
DðsÞ ¼

NðsÞ
ðsþ p1Þðs2 þ asþ bÞ � � �

¼ K1

ðsþ p1Þ
þ ðK2sþK3Þ
ðs2 þ asþ bÞ þ � � � ð2:42Þ

can be made if the order of N(s) is less than the order of D(s) p1 is real, and ðs2 þ
asþ bÞ has complex or purely imaginary roots. The complex or imaginary roots are
expanded with ðK2sþK3Þ terms in the numerator rather than just simply Ki, as in
the case of real roots. The Ki’s in Eq. (2.42) are found through balancing the
coefficients of the equation after clearing fractions. After completing the squares on
ðs2 þ asþ bÞ and adjusting the numerator, ðK2sþK3Þ=ðs2 þ asþ bÞ can be put into
the form shown on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if a ¼ 0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction
expansion of F(s) with real roots in the denominator can be used for complex
and imaginary roots. However, the residues of the complex and imaginary roots are
themselves complex conjugates. Then, after taking the inverse Laplace transform,
the resulting terms can be identified as

eju þ e�ju

2
¼ cos u ð2:43Þ

and
eju � e�ju

2j
¼ sin u ð2:44Þ

For example, the previous F(s) can also be expanded in partial fractions as

FðsÞ ¼ 3

sðs2 þ 2sþ 5Þ ¼
3

sðsþ 1 þ j2Þðsþ 1 � j2Þ

¼ K1

s
þ K2

sþ 1 þ j2
þ K3

sþ 1 � j2
ð2:45Þ

Finding K2,

K2 ¼ 3

sðsþ 1 � j2Þ
����
s!�1�j2

¼ � 3

20
ð2 þ j1Þ ð2:46Þ

Similarly, K3 is found to be the complex conjugate of K2, and K1 is found as
previously described. Hence,

FðsÞ ¼ 3=5

s
� 3

20

2 þ j1

sþ 1 þ j2
þ 2 � j1

sþ 1 � j2

	 

ð2:47Þ

from which

f ðtÞ ¼ 3

5
� 3

20
ð2 þ j1Þe�ð1þj2Þt þ ð2 � j1Þe�ð1�j2Þt
h i

¼ 3

5
� 3

20
e�t 4

ej2t þ e�j2t

2

	 

þ 2

ej2t þ e�j2t

2j

	 
� �
ð2:48Þ

TryIt 2.5

Use the following MATLAB
statements to help you get
Eq. (2.47).

numf=3
denf= [1 2 5 0]
[k,p,k]=residue...
(numf,denf)
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Using Eqs. (2.43) and (2.44), we get

f ðtÞ ¼ 3

5
� 3

5
e�t cos 2t þ 1

2
sin 2t

	 

¼ 0:6 � 0:671e�tcosð2t � fÞ ð2:49Þ

where f ¼ arctan 0:5 ¼ 26:57�.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch2sp1 and ch2sp2 in Appendix F at www.wiley.com/
college/nise. You will learn how to construct symbolic objects and
then find the inverse Laplace and Laplace transforms of frequency
and time functions, respectively. The examples in Case 2 and Case 3
in this section will be solved using the Symbolic Math Toolbox.

Skill-Assessment Exercise 2.1

PROBLEM: Find the Laplace transform of f ðtÞ ¼ te�5t.

ANSWER: FðsÞ ¼ 1=ðsþ 5Þ2

The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.2

PROBLEM: Find the inverse Laplace transform of FðsÞ ¼ 10=½sðsþ 2Þðsþ 3Þ2�.

ANSWER: f ðtÞ ¼ 5

9
� 5e�2t þ 10

3
te�3t þ 40

9
e�3t

The complete solution is at www.wiley.com/college/nise.

2.3 The Transfer Function

In the previous section we defined the Laplace transform and its inverse. We presented
the idea of the partial-fraction expansion and applied the concepts to the solution of
differential equations. We are now ready to formulate the system representation
shown in Figure 2.1 by establishing a viable definition for a function that algebraically
relates a system’s output to its input. This function will allow separation of the input,
system, and output into three separate and distinct parts, unlike the differential
equation. The function will also allow us to algebraically combine mathematical
representations of subsystems to yield a total system representation.

Let us begin by writing a general nth-order, linear, time-invariant differential
equation,

an
dncðtÞ
dtn

þ an�1
dn�1cðtÞ
dtn�1

þ � � � þ a0cðtÞ ¼ bm
dmrðtÞ
dtm

þ bm�1
dm�1rðtÞ
dtm�1

þ � � � þ b0rðtÞ
ð2:50Þ
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where c(t) is the output, r(t) is the input, and the ai’s, bi’s, and the form of the
differential equation represent the system. Taking the Laplace transform of both sides,

ansnCðsÞ þ an�1sn�1CðsÞ þ � � � þ a0CðsÞ þ initial condition
terms involving cðtÞ

¼ bmsmRðsÞ þ bm�1sm�1RðsÞ þ � � � þ b0RðsÞ þ initial condition
terms involving rðtÞ ð2:51Þ

Equation (2.51) is a purely algebraic expression. If we assume that all initial
conditions are zero, Eq. (2.51) reduces to

ðansn þ an�1s
n�1 þ � � � þ a0ÞCðsÞ ¼ ðbmsm þ bm�1s

m�1 þ � � � þ b0ÞRðsÞ ð2:52Þ
Now form the ratio of the output transform,C(s), divided by the input transform,R(s):

CðsÞ
RðsÞ ¼ GðsÞ ¼ ðbmsm þ bm�1sm�1 þ � � � þ b0Þ

ðansn þ an�1sn�1 þ � � � þ a0Þ
ð2:53Þ

Notice that Eq. (2.53) separates the output, C(s), the input, R(s), and the system, the
ratio of polynomials in s on the right. We call this ratio,G(s), the transfer function and
evaluate it with zero initial conditions.

The transfer function can be represented as a block diagram, as
shown in Figure 2.2, with the input on the left, the output on the right, and
the system transfer function inside the block. Notice that the denomina-
tor of the transfer function is identical to the characteristic polynomial of
the differential equation. Also, we can find the output, C(s) by using

CðsÞ ¼ RðsÞGðsÞ ð2:54Þ

Let us apply the concept of a transfer function to an example and then use the result to
find the response of the system.

Example 2.4

Transfer Function for a Differential Equation

PROBLEM: Find the transfer function represented by

dcðtÞ
dt

þ 2cðtÞ ¼ rðtÞ ð2:55Þ

SOLUTION: Taking the Laplace transform of both sides, assuming zero initial
conditions, we have

sCðsÞ þ 2CðsÞ ¼ RðsÞ ð2:56Þ
The transfer function, G(s), is

GðsÞ ¼ CðsÞ
RðsÞ ¼

1

sþ 2
ð2:57Þ

C(s)R(s) (bmsm + bm–1sm–1 + . . . + b0)

(ansn + an–1sn–1 + . . . + a0)

FIGURE 2.2 Block diagram of a transfer
function
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Students who are using MATLAB should now run ch2p9 through ch2p12
in Appendix B. You will learn how to use MATLAB to create transfer
functions with numerators and denominators in polynomial or fac-
tored form. You will also learn how to convert between polynomial
and factored forms. Finally, you will learn how to use MATLAB to
plot time functions.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch2sp3 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
simplify the input of complicated transfer functions as well as
improve readability. You will learn how to enter a symbolic trans-
fer function and convert it to a linear,time-invariant(LTI)
object as presented in Appendix B, ch2p9.

Example 2.5

System Response from the Transfer Function

PROBLEM: Use the result of Example 2.4 to find the response, c(t) to an input,
rðtÞ ¼ uðtÞ, a unit step, assuming zero initial conditions.

SOLUTION: To solve the problem, we use Eq. (2.54), where GðsÞ ¼ 1=ðsþ 2Þ as
found in Example 2.4. Since rðtÞ ¼ uðtÞ; RðsÞ ¼ 1=s, from Table 2.1. Since the initial
conditions are zero,

CðsÞ ¼ RðsÞGðsÞ ¼ 1

sðsþ 2Þ ð2:58Þ

Expanding by partial fractions, we get

CðsÞ ¼ 1=2

s
� 1=2

sþ 2
ð2:59Þ

Finally, taking the inverse Laplace transform of each term yields

cðtÞ ¼ 1

2
� 1

2
e�2t ð2:60Þ

Skill-Assessment Exercise 2.3

PROBLEM: Find the transfer function, GðsÞ ¼ CðsÞ=RðsÞ, corresponding to the

differential equation
d3c

dt3
þ 3

d2c

dt2
þ 7

dc

dt
þ 5c ¼ d2r

dt2
þ 4

dr

dt
þ 3r.

ANSWER: GðsÞ ¼ CðsÞ
RðsÞ ¼

s2 þ 4sþ 3

s3 þ 3s2 þ 7sþ 5

The complete solution is at www.wiley.com/college/nise.

TryIt 2.6

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.60).

syms s
C=1/(s*(s+2))
C=ilaplace(C)

TryIt 2.7

Use the following MATLAB
statements to plot Eq. (2.60)
for t from 0 to 1 sat intervals of
0.01 s.

t = 0:0.01:1;
plot...
(t,(1/2-1/2*exp(-2*t)))
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Skill-Assessment Exercise 2.4

PROBLEM: Find the differential equation corresponding to the transfer function,

GðsÞ ¼ 2sþ 1

s2 þ 6sþ 2

ANSWER:
d2c

dt2
þ 6

dc

dt
þ 2c ¼ 2

dr

dt
þ r

The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.5

PROBLEM: Find the ramp response for a system whose transfer function is

GðsÞ ¼ s

ðsþ 4Þðsþ 8Þ

ANSWER: cðtÞ ¼ 1

32
� 1

16
e�4t þ 1

32
e�8t

The complete solution is at www.wiley.com/college/nise.

In general, a physical system that can be represented by a linear, time-invariant
differential equation can be modeled as a transfer function. The rest of this chapter will
bedevotedtothetaskofmodelingindividualsubsystems.Wewill learnhowtorepresent
electrical networks, translational mechanical systems, rotational mechanical systems,
and electromechanical systems as transfer functions. As the need arises, the reader can
consult the Bibliography at the end of the chapter for discussions of other types of
systems, such as pneumatic, hydraulic, and heat-transfer systems (Cannon, 1967).

2.4 Electrical Network Transfer Functions

In this section, we formally apply the transfer function to the mathematical modeling
of electric circuits including passive networks and operational amplifier circuits.
Subsequent sections cover mechanical and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist of
three passive linear components: resistors, capacitors, and inductors.2 Table 2.3
summarizes the components and the relationships between voltage and current and
between voltage and charge under zero initial conditions.

We now combine electrical components into circuits, decide on the input and
output, and find the transfer function. Our guiding principles are Kirchhoff’s laws.
We sum voltages around loops or sum currents at nodes, depending on which
technique involves the least effort in algebraic manipulation, and then equate the
result to zero. From these relationships we can write the differential equations for
the circuit. Then we can take the Laplace transforms of the differential equations
and finally solve for the transfer function.

2Passive means that there is no internal source of energy.
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Simple Circuits via Mesh Analysis
Transfer functions can be obtained using Kirchhoff’s voltage law and summing
voltages around loops or meshes.3 We call this method loop or mesh analysis and
demonstrate it in the following example.

Example 2.6

Transfer Function—Single Loop via the Differential Equation

PROBLEM: Find the transfer function relating the capacitor voltage, VCðsÞ, to
the input voltage, V(s) in Figure 2.3.

SOLUTION: In any problem, the designer must first decide what the input and
output should be. In this network, several variables could have been chosen to be
the output—for example, the inductor voltage, the capacitor voltage, the resistor
voltage, or the current. The problem statement, however, is clear in this case: We
are to treat the capacitor voltage as the output and the applied voltage as the input.

Summing the voltages around the loop, assuming zero initial conditions,
yields the integro-differential equation for this network as

L
diðtÞ
dt

þ RiðtÞ þ 1

C

Z t

0
iðtÞdt ¼ vðtÞ ð2:61Þ

Changing variables from current to charge using iðtÞ ¼ dqðtÞ=dt yields

L
d2qðtÞ
dt2

þ R
dqðtÞ
dt

þ 1

C
qðtÞ ¼ vðtÞ ð2:62Þ

From the voltage-charge relationship for a capacitor in Table 2.3,

qðtÞ ¼ CvCðtÞ ð2:63Þ
Substituting Eq. (2.63) into Eq. (2.62) yields

LC
d2vCðtÞ
dt2

þ RC
dvCðtÞ
dt

þ vCðtÞ ¼ vðtÞ ð2:64Þ

3 A particular loop that resembles the spaces in a screen or fence is called a mesh.

RL

–
v(t)

i(t)

vC (t)C
+

+
–

FIGURE 2.3 RLC network

TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Component Voltage-current Current-voltage Voltage-charge
Impedance

Z(s) ¼ V(s)=I(s)
Admittance

Y(s) ¼ I(s)=V(s)

Capacitor
vðtÞ ¼ 1

C

Z 1

0
iðtÞdt iðtÞ ¼ C

dvðtÞ
dt

vðtÞ ¼ 1

C
qðtÞ 1

Cs
Cs

Resistor

vðtÞ ¼ RiðtÞ iðtÞ ¼ 1

R
vðtÞ vðtÞ ¼ R

dqðtÞ
dt

R
1

R
¼ G

Inductor
vðtÞ ¼ L

diðtÞ
dt

iðtÞ ¼ 1

L

Z 1

0
vðtÞdt vðtÞ ¼ L

d2qðtÞ
dt2

Ls 1

Ls

Note: The following set of symbols and units is used throughout this book: v(t) � V (volts), i(t) � A (amps), q(t) � Q (coulombs), C� F (farads),
R�V (ohms), G�V (mhos), L � H (henries).
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Taking the Laplace transform assuming zero initial conditions, rearranging terms,
and simplifying yields

ðLCs2 þ RCsþ 1ÞVCðsÞ ¼ VðsÞ ð2:65Þ
Solving for the transfer function, VCðsÞ=VðsÞ, we obtain

VCðsÞ
VðsÞ ¼ 1=LC

s2 þ R

L
sþ 1

LC

ð2:66Þ

as shown in Figure 2.4.

Let us now develop a technique for simplifying the solution for future
problems. First, take the Laplace transform of the equations in the voltage-current
column of Table 2.3 assuming zero initial conditions.

For the capacitor,

VðsÞ ¼ 1

Cs
IðsÞ ð2:67Þ

For the resistor,

VðsÞ ¼ RIðsÞ ð2:68Þ

For the inductor,

VðsÞ ¼ LsIðsÞ ð2:69Þ

Now define the following transfer function:

VðsÞ
IðsÞ ¼ ZðsÞ ð2:70Þ

Notice that this function is similar to the definition of resistance, that is, the ratio of
voltage to current. But, unlike resistance, this function is applicable to capacitors and
inductors and carries information on the dynamic behavior of the component, since it
represents an equivalent differential equation. We call this particular transfer function
impedance. The impedance for each of the electrical elements is shown in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution
for the transfer function. The Laplace transform of Eq. (2.61), assuming zero initial
conditions, is

Lsþ Rþ 1

Cs

	 

IðsÞ ¼ VðsÞ ð2:71Þ

Notice that Eq. (2.71), which is in the form

½Sum of impedances�IðsÞ ¼ ½Sum of applied voltages� ð2:72Þ
suggests the series circuit shown in Figure 2.5. Also notice that the circuit of
Figure 2.5 could have been obtained immediately from the circuit of Figure 2.3
simply by replacing each element with its impedance. We call this altered circuit
the transformed circuit. Finally, notice that the transformed circuit leads imme-
diately to Eq. (2.71) if we add impedances in series as we add resistors in series.
Thus, rather than writing the differential equation first and then taking the

1
LCV(s) VC (s)

s2 + R
L

s + 1
LC

FIGURE 2.4 Block diagram of
series RLC electrical network

RLs

I(s)

1
CsV(s) +

– –
VC (s)

+

FIGURE 2.5 Laplace-transformed
network
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Laplace transform, we can draw the transformed circuit and obtain the Laplace
transform of the differential equation simply by applying Kirchhoff’s voltage law to
the transformed circuit. We summarize the steps as follows:

1. Redraw the original network showing all time variables, such as v(t), i(t), and
vCðtÞ, as Laplace transforms V(s), I(s), and VCðsÞ, respectively.

2. Replace the component values with their impedance values. This replacement is
similar to the case of dc circuits, where we represent resistors with their resistance
values.

We now redo Example 2.6 using the transform methods just described and bypass
the writing of the differential equation.

Example 2.7

Transfer Function—Single Loop via Transform Methods

PROBLEM: Repeat Example 2.6 using mesh analysis and transform methods
without writing a differential equation.

SOLUTION: Using Figure 2.5 and writing a mesh equation using the impedances as
we would use resistor values in a purely resistive circuit, we obtain

Lsþ Rþ 1

Cs

	 

IðsÞ ¼ VðsÞ ð2:73Þ

Solving for I(s)/V(s),
IðsÞ
VðsÞ ¼

1

Lsþ Rþ 1

Cs

ð2:74Þ

But the voltage across the capacitor, VC ðsÞ, is the product of the current and the
impedance of the capacitor. Thus,

VCðsÞ ¼ IðsÞ 1

Cs
ð2:75Þ

Solving Eq. (2.75) for I(s), substituting I(s) into Eq. (2.74), and simplifying yields
the same result as Eq. (2.66).

Simple Circuits via Nodal Analysis
Transfer functions also can be obtained using Kirchhoff’s current law and summing
currents flowing from nodes. We call this method nodal analysis. We now demon-
strate this principle by redoing Example 2.6 using Kirchhoff’s current law and the
transform methods just described to bypass writing the differential equation.

Example 2.8

Transfer Function—Single Node via Transform Methods

PROBLEM: Repeat Example 2.6 using nodal analysis and without writing a
differential equation.
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SOLUTION: The transfer function can be obtained by summing currents flowing out
of the node whose voltage isVCðsÞ in Figure 2.5. We assume that currents leaving the
node are positive and currents entering the node are negative. The currents consist of
the current through the capacitor and the current flowing through the series resistor
and inductor. From Eq. (2.70), each IðsÞ ¼ VðsÞ=ZðsÞ. Hence,

VCðsÞ
I=Cs

þ VCðsÞ � VðsÞ
Rþ Ls

¼ 0 ð2:76Þ

where VCðsÞ=ð1=CsÞ is the current flowing out of the node through the capacitor,
and ½VCðsÞ � VðsÞ�=ðRþ LsÞ is the current flowing out of the node through the
series resistor and inductor. Solving Eq. (2.76) for the transfer function,VCðsÞ=VðsÞ,
we arrive at the same result as Eq. (2.66).

Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed
network. We now demonstrate this technique.

Example 2.9

Transfer Function—Single Loop via Voltage Division

PROBLEM: Repeat Example 2.6 using voltage division and the transformed
circuit.

SOLUTION: The voltage across the capacitor is some proportion of the input
voltage, namely the impedance of the capacitor divided by the sum of the
impedances. Thus,

VC ðsÞ ¼ 1=Cs

Lsþ Rþ 1

Cs

	 
VðsÞ ð2:77Þ

Solving for the transfer function, VC ðsÞ=VðsÞ, yields the same result as Eq. (2.66).
Review Examples 2.6 through 2.9. Which method do you think is easiest for

this circuit?

The previous example involves a simple, single-loop electrical network. Many
electrical networks consist of multiple loops and nodes, and for these circuits we
must write and solve simultaneous differential equations in order to find the transfer
function, or solve for the output.

Complex Circuits via Mesh Analysis
To solve complex electrical networks—those with multiple loops and nodes—using
mesh analysis, we can perform the following steps:

1. Replace passive element values with their impedances.

2. Replace all sources and time variables with their Laplace transform.

3. Assume a transform current and a current direction in each mesh.
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4. Write Kirchhoff’s voltage law around each mesh.

5. Solve the simultaneous equations for the output.

6. Form the transfer function.

Let us look at an example.

Example 2.10

Transfer Function—Multiple Loops

PROBLEM: Given the network of Figure 2.6(a), find the transfer function,
I2ðsÞ=VðsÞ.
SOLUTION: The first step in the solution is to convert the network into Laplace
transforms for impedances and circuit variables, assuming zero initial conditions.
The result is shown in Figure 2.6(b). The circuit with which we are dealing requires
two simultaneous equations to solve for the transfer function. These equations can
be found by summing voltages around each mesh through which the assumed
currents, I1ðsÞ and I2ðsÞ, flow. Around Mesh 1, where I1ðsÞ flows,

R1I1ðsÞ þ LsI1ðsÞ � LsI2ðsÞ ¼ VðsÞ ð2:78Þ

Around Mesh 2, where I2ðsÞ flows,

LsI2ðsÞ þ R2I2ðsÞ þ 1

Cs
I2ðsÞ � LsI1ðsÞ ¼ 0 ð2:79Þ

FIGURE 2.6 a. Two-loop
electrical network;
b. transformed two-loop
electrical network;
c. block diagram
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Combining terms, Eqs. (2.78) and (2.79) become simultaneous equations in I1ðsÞ
and I2ðsÞ:

ðR1 þ LsÞI1ðsÞ � LsI2ðsÞ ¼ VðsÞ ð2:80aÞ
� LsI1ðsÞ þ Lsþ R2 þ 1

Cs

	 

I2ðsÞ ¼ 0 ð2:80bÞ

We can use Cramer’s rule (or any other method for solving simultaneous
equations) to solve Eq. (2.80) for I2ðsÞ.4 Hence,

I2ðsÞ ¼

�����
ðR1 þ LsÞ VðsÞ

�Ls 0

�����
D

¼ LsVðsÞ
D

ð2:81Þ
where

D ¼
ðR1 þ LsÞ �Ls

�Ls Lsþ R2 þ 1

Cs

	 

�������

�������
Forming the transfer function, G(s), yields

GðsÞ ¼ I2ðsÞ
VðsÞ ¼

Ls

D
¼ LCs2

ðR1 þ R2ÞLCs2 þ ðR1R2C þ LÞsþ R1
ð2:82Þ

as shown in Figure 2.6(c).
We have succeeded in modeling a physical network as a transfer function: The

network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c).
Before leaving the example, we notice a pattern first illustrated by Eq. (2.72). The
form that Eq. (2.80) take is

Sum of

impedances

around Mesh 1

2
4

3
5I1ðsÞ �

Sum of

impedances

common to the

two meshes

2
6664

3
7775I2ðsÞ ¼

Sum of applied

voltages around

Mesh 1

2
4

3
5 ð2:83aÞ

�
Sum of

impedances

common to the

two meshes

2
6664

3
7775I1ðsÞ þ

Sum of

impedances

around Mesh 2

2
4

3
5I2ðsÞ ¼

Sum of applied

voltages around

Mesh 2

2
4

3
5 ð2:83bÞ

Recognizing theform will help us write such equations rapidly; forexample, mechani-
cal equations of motion (covered in Sections 2.5 and 2.6) have the same form.

StudentswhoareperformingtheMATLABexercisesandwanttoexplore
the added capability of MATLAB’s Symbolic Math Toolbox should now
run ch2sp4 in Appendix F at www.wiley.com/college/nise, where
Example 2.10 is solved. You will learn how to use the Symbolic
Math Toolbox to solve simultaneous equations using Cramer’s
rule. Specifically, the Symbolic Math Toolbox will be used to solve
for the transfer function in Eq. (2.82) using Eq. (2.80).

4 See Appendix G (Section G.4) at www.wiley.com/college/nise for Cramer’s rule.
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Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer function is to use nodal analysis rather than
mesh analysis. The number of simultaneous differential equations that must be
written is equal to the number of nodes whose voltage is unknown. In the previous
example we wrote simultaneous mesh equations using Kirchhoff’s voltage law. For
multiple nodes we use Kirchhoff’s current law and sum currents flowing from each
node. Again, as a convention, currents flowing from the node are assumed to be
positive, and currents flowing into the node are assumed to be negative.

Before progressing to an example, let us first define admittance, Y(s), as the
reciprocal of impedance, or

YðsÞ ¼ 1

ZðsÞ ¼
IðsÞ
VðsÞ ð2:84Þ

When writing nodal equations, it can be more convenient to represent circuit
elements by their admittance. Admittances for the basic electrical components
are shown in Table 2.3. Let us look at an example.

Example 2.11

Transfer Function—Multiple Nodes

PROBLEM: Find the transfer function, VCðsÞ=VðsÞ, for the circuit in Figure 2.6(b).
Use nodal analysis.

SOLUTION: For this problem, we sum currents at the nodes rather than sum
voltages around the meshes. From Figure 2.6(b) the sum of currents flowing from
the nodes marked VLðsÞ and VCðsÞ are, respectively,

VLðsÞ � VðsÞ
R1

þ VLðsÞ
Ls

þ VLðsÞ � VCðsÞ
R2

¼ 0 ð2:85aÞ

CsVCðsÞ þ VCðsÞ � VLðsÞ
R2

¼ 0 ð2:85bÞ

Rearranging and expressing the resistances as conductances,5 G1 ¼ 1=R1 and
G2 ¼ 1=R2, we obtain,

G1 þG2 þ 1

Ls

	 

VLðsÞ �G2VCðsÞ ¼ VðsÞG1 ð2:86aÞ

�G2VLðsÞ þ ðG2 þ CsÞVCðsÞ ¼ 0 ð2:86bÞ
Solving for the transfer function, VCðsÞ=VðsÞ, yields

VCðsÞ
VðsÞ ¼

G1G2

C
s

ðG1 þG2Þs2 þG1G2Lþ C

LC
sþ G2

LC

ð2:87Þ

as shown in Figure 2.7.

5 In general, admittance is complex. The real part is called conductance and the imaginary part is called
susceptance. But when we take the reciprocal of resistance to obtain the admittance, a purely real quantity
results. The reciprocal of resistance is called conductance.

G1G2

CV(s) VC(s)

(G1 + G2)s2 + 
G1G2L + C s + 

LC
 G2

LC

s

FIGURE 2.7 Block diagram of the network of
Figure 2.6
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Another way to write node equations is to replace voltage sources by
current sources. A voltage source presents a constant voltage to any load;
conversely, a current source delivers a constant current to any load. Practically,
a current source can be constructed from a voltage source by placing a large
resistance in series with the voltage source. Thus, variations in the load do not
appreciably change the current, because the current is determined approxi-
mately by the large series resistor and the voltage source. Theoretically, we rely
on Norton’s theorem, which states that a voltage source, V(s), in series with an
impedance, ZsðsÞ, can be replaced by a current source, IðsÞ ¼ VðsÞ=ZsðsÞ, in
parallel with ZsðsÞ.

In order to handle multiple-node electrical networks, we can perform the
following steps:

1. Replace passive element values with their admittances.

2. Replace all sources and time variables with their Laplace transform.

3. Replace transformed voltage sources with transformed current sources.

4. Write Kirchhoff’s current law at each node.

5. Solve the simultaneous equations for the output.

6. Form the transfer function.

Let us look at an example.

Example 2.12

Transfer Function—Multiple Nodes with Current Sources

PROBLEM: For the network of Figure 2.6, find the transfer function,
VCðsÞ=VðsÞ, using nodal analysis and a transformed circuit with current
sources.

SOLUTION: Convert all impedances to admittances and all voltage
sources in series with an impedance to current sources in parallel with
an admittance using Norton’s theorem.

Redrawing Figure 2.6(b) to reflect the changes, we obtain Fig-
ure 2.8, where G1 ¼ 1=R1; G2 ¼ 1=R2, and the node voltages—the
voltages across the inductor and the capacitor—have been identified
as VLðsÞ and VCðsÞ, respectively. Using the general relationship,
IðsÞ ¼ YðsÞVðsÞ, and summing currents at the node VLðsÞ,

G1VLðsÞ þ 1

Ls
VLðsÞ þG2½VLðsÞ � VCðsÞ� ¼ VðsÞG1 ð2:88Þ

Summing the currents at the node VCðsÞ yields

CsVCðsÞ þG2½VCðsÞ � VLðsÞ� ¼ 0 ð2:89Þ
Combining terms, Eqs. (2.88) and (2.89) become simultaneous equations in VCðsÞ
andVLðsÞ, which are identical to Eq. (2.86)and lead to the same solutionas Eq. (2.87).

An advantage of drawing this circuit lies in the form of Eq. (2.86) and its
direct relationship to Figure 2.8, namely

1
Ls

V(s)G1 G1 Cs

VL(s)
G2 VC(s)

FIGURE 2.8 Transformed network
ready for nodal analysis
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Sum of admittances

connected to Node 1

� �
VLðsÞ �

Sum of admittances

common to the two

nodes

2
4

3
5VCðsÞ ¼ Sum of applied

currents at Node 1

� �

ð2:90aÞ

�
Sum of admittances

common to the two

nodes

2
4

3
5VLðsÞ þ Sum of admittances

connected to Node 2

� �
VCðsÞ ¼ Sum of applied

currents at Node 2

� �

ð2:90bÞ

A Problem-Solving Technique
In all of the previous examples, we have seen a repeating pattern in the equations
that we can use to our advantage. If we recognize this pattern, we need not write the
equations component by component; we can sum impedances around a mesh in the
case of mesh equations or sum admittances at a node in the case of node equations.
Let us now look at a three-loop electrical network and write the mesh equations by
inspection to demonstrate the process.

Example 2.13

Mesh Equations via Inspection

PROBLEM: Write, but do not solve, the mesh equations for the network shown in
Figure 2.9.

SOLUTION: Each of the previous problems has illustrated that the mesh
equations and nodal equations have a predictable form. We use that knowledge
to solve this three-loop problem. The equation for Mesh 1 will have the following
form:

FIGURE 2.9 Three-loop
electrical network

V(s)

1 4s

1
s

2s

1

I1(s) I2(s)

I3(s)

3s+
–
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Sum of

impedances

around Mesh 1

2
64

3
75I1ðsÞ �

Sum of

impedances

common to

Mesh 1 and

Mesh 2

2
66666664

3
77777775
I2ðsÞ

�

Sum of

impedances

common to

Mesh 1 and

Mesh 3

2
66666664

3
77777775
I3ðsÞ ¼

Sum of applied

voltages around

Mesh 1

2
64

3
75

ð2:91Þ

Similarly, Meshes 2 and 3, respectively, are

�

Sum of

impedances

common to

Mesh 1 and

Mesh 2

2
6666664

3
7777775
I1ðsÞ þ

Sum of

impedances

around Mesh 2

2
64

3
75I2ðsÞ �

Sum of

impedances

common to

Mesh 2 and

Mesh 3

2
6666664

3
7777775
I3ðsÞ ¼

Sum of appied

voltages around

Mesh 2

2
64

3
75

ð2:92Þ

and

�

Sum of

impedances

common to

Mesh 1 and

Mesh 3

2
666666664

3
777777775
I1ðsÞ �

Sum of

impedances

common to

Mesh 2 and

Mesh 3

2
666666664

3
777777775
I2ðsÞ

þ
Sum of

impedances

around Mesh 3

2
664

3
775I3ðsÞ ¼

Sum of applied

voltages around

Mesh 3

2
664

3
775

ð2:93Þ

Substituting the values from Figure 2.9 into Eqs. (2.91) through (2.93) yields

þð2sþ 2ÞI1ðsÞ � ð2sþ 1ÞI2ðsÞ � I3ðsÞ ¼ VðsÞ ð2:94aÞ

� ð2sþ 1ÞI1ðsÞ þ ð9sþ 1ÞI2ðsÞ � 4sI3ðsÞ ¼ 0 ð2:94bÞ
� I1ðsÞ � 4sI2ðsÞ þ 4sþ 1 þ 1

s

� �
I3ðsÞ ¼ 0 ð2:94cÞ

which can be solved simultaneously for any desired transfer function, for
example, I3ðsÞ=VðsÞ.

TryIt 2.8

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you solve for
the electrical currents in Eq.
(2.94).

syms s I1 I2 I3 V
A=[(2*s + 2) -(2*s + 1)...
�1
�(2*s + 1) (9*s + 1)...
�4*s
�1 �4*s...
(4*s+1+1/s)];
B=[I1;I2;I3];
C=[V;0;0];
B=inv(A)*C;
pretty(B)
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Passive electrical circuits were the topic of discussion up to this point. We now
discuss a class of active circuits that can be used to implement transfer functions.
These are circuits built around an operational amplifier.

Operational Amplifiers
An operational amplifier, pictured in Figure 2.10(a), is an electronic amplifier used as
a basic building block to implement transfer functions. It has the following
characteristics:

1. Differential input, V2ðtÞ � v1ðtÞ
2. High input impedance, Zi ¼ 1 (ideal)

3. Low output impedance, Zo ¼ 0 (ideal)

4. High constant gain amplification, A ¼ 1 (ideal)

The output, voðtÞ, is given by

voðtÞ ¼ Aðv2ðtÞ � v1ðtÞÞ ð2:95Þ

Inverting Operational Amplifier
If v2ðtÞ is grounded, the amplifier is called an inverting operational amplifier, as
shown in Figure 2.10(b). For the inverting operational amplifier, we have

voðtÞ ¼ �Av1ðtÞ ð2:96Þ
If two impedances are connected to the inverting operational amplifier as

shown in Figure 2.10(c), we can derive an interesting result if the amplifier has the
characteristics mentioned in the beginning of this subsection. If the input impedance
to the amplifier is high, then by Kirchhoff’s current law, IaðsÞ ¼ 0 and I1ðsÞ ¼ �I2ðsÞ.

A

(a)

(c)

+v1(t)

+v2(t)
vo(t)

Vi(s) I2(s)

Vo(s)

I1(s) Ia(s)

Z1(s)

A

(b)

vo(t)
v1(t)

V1(s)

Z2(s)

+V

–V

+

–

+

–

+

–

FIGURE 2.10 a. Operational amplifier; b. schematic for an inverting operational amplifier;
c. inverting operational amplifier configured for transfer function realization. Typically, the
amplifier gain, A, is omitted.

58 Chapter 2 Modeling in the Frequency Domain



Apago PDF Enhancer

E1C02 11/03/2010 11:29:29 Page 59

Also, since the gain A is large, v1ðtÞ � 0. Thus, I1ðsÞ ¼ ViðsÞ=Z1ðsÞ, and �I2ðsÞ ¼
�VoðsÞ=Z2ðsÞ. Equating the two currents, VoðsÞ=Z2ðsÞ ¼ �ViðsÞ=Z1ðsÞ, or the transfer
function of the inverting operational amplifier configured as shown in Figure 2.10(c) is

VoðsÞ
ViðsÞ ¼ �Z2ðsÞ

Z1ðsÞ ð2:97Þ

Example 2.14

Transfer Function—Inverting Operational Amplifier Circuit

PROBLEM: Find the transfer function, VoðsÞ=ViðsÞ, for the circuit given in
Figure 2.11.

SOLUTION: The transfer function of the operational amplifier circuit is given by
Eq. (2.97). Since the admittances of parallel components add, Z1ðsÞ is the recipro-
cal of the sum of the admittances, or

Z1ðsÞ ¼ 1

C1sþ 1

R1

¼ 1

5:6 � 10�6sþ 1

360 � 103

¼ 360 � 103

2:016sþ 1
ð2:98Þ

For Z2ðsÞ the impedances add, or

Z2ðsÞ ¼ R2 þ 1

C2s
¼ 220 � 103 þ 107

s
ð2:99Þ

Substituting Eqs. (2.98) and (2.99) into Eq. (2.97) and simplifying, we get

VoðsÞ
ViðsÞ ¼ �1:232

s2 þ 45:95sþ 22:55

s
ð2:100Þ

The resulting circuit is called a PID controller and can be used to improve the
performance of a control system. We explore this possibility further in Chapter 9.

Noninverting Operational Amplifier
Another circuit that can be analyzed for its transfer function is the noninverting
operational amplifier circuit shown in Figure 2.12. We now derive the transfer

R2 =
220 kΩ

vo(t)

C2 =
0.1 μFC1 =

5.6 μF

R1 =
360 kΩ

vi(t) v1(t)

μ

μ

+

–

FIGURE 2.11 Inverting operational
amplifier circuit for Example 2.14
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function. We see that

VoðsÞ ¼ AðViðsÞ � V1ðsÞÞ ð2:101Þ
But, using voltage division,

V1ðsÞ ¼ Z1ðsÞ
Z1ðsÞ þ Z2ðsÞVoðsÞ ð2:102Þ

Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain

VoðsÞ
ViðsÞ ¼ A

1 þAZ1ðsÞ=ðZ1ðsÞ þ Z2ðsÞÞ ð2:103Þ

For large A, we disregard unity in the denominator and Eq. (2.103) becomes

VoðsÞ
ViðsÞ ¼ Z1ðsÞ þ Z2ðsÞ

Z1ðsÞ ð2:104Þ

Let us now look at an example.

Example 2.15

Transfer Function—Noninverting Operational Amplifier Circuit

PROBLEM: Find the transfer function, VoðsÞ=ViðsÞ, for the circuit given in
Figure 2.13.

SOLUTION: We find each of the impedance functions, Z1ðsÞ and Z2ðsÞ, and then
substitute them into Eq. (2.104). Thus,

Z1ðsÞ ¼ R1 þ 1

C1s
ð2:105Þ

and

Z2ðsÞ ¼ R2ð1=C2sÞ
R2 þ ð1=C2sÞ ð2:106Þ

Substituting Eqs. (2.105) and (2.106) into Eq. (2.104) yields

VoðsÞ
ViðsÞ ¼ C2C1R2R1s2 þ ðC2R2 þ C1R2 þ C1R1Þsþ 1

C2C1R2R1s2 þ ðC2R2 þ C1R1Þsþ 1
ð2:107Þ

Skill-Assessment Exercise 2.6

PROBLEM: Find the transfer function, GðsÞ ¼ VLðsÞ=VðsÞ, for the circuit given in
Figure 2.14. Solve the problem two ways—mesh analysis and nodal analysis. Show
that the two methods yield the same result.

–

+

Z2(s)

Z1(s)

V1(s)

Vi(s)
Vo(s)

FIGURE 2.12 General
noninverting operational
amplifier circuit

R2

R1

v1(t)

vi(t)
vo(t)

C2

C1

–

+

FIGURE 2.13 Noninverting
operational amplifier circuit for
Example 2.15
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ANSWER: VLðsÞ=VðsÞ ¼ ðs2 þ 2sþ 1Þ=ðs2 þ 5sþ 2Þ 
The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.7

PROBLEM: If Z1ðsÞ is the impedance of a 10 mF capacitor and Z2ðsÞ is the
impedance of a 100 kV resistor, find the transfer function, GðsÞ ¼ VoðsÞ=ViðsÞ,
if these components are used with (a) an inverting operational amplifier and (b) a
noninverting amplifier as shown in Figures 2.10(c) and 2.12, respectively.

ANSWER: GðsÞ ¼ �s for an inverting operational amplifier; GðsÞ ¼ sþ 1 for a
noninverting operational amplifier.

The complete solution is at www.wiley.com/college/nise.

In this section, we found transfer functions for multiple-loop and multiple-node
electrical networks, as well as operational amplifier circuits. We developed mesh and
nodal equations, noted their form, and wrote them by inspection. In the next section
we begin our work with mechanical systems. We will see that many of the concepts
applied to electrical networks can also be applied to mechanical systems via analo-
gies—from basic concepts to writing the describing equations by inspection. This
revelation will give you the confidence to move beyond this textbook and study
systems not covered here, such as hydraulic or pneumatic systems.

2.5 Translational Mechanical System
Transfer Functions

We have shown that electrical networks can be modeled by a transfer function, G(s),
that algebraically relates the Laplace transform of the output to the Laplace transform
of the input. Now we will do the same for mechanical systems. In this section we
concentrate on translational mechanical systems. In the next section we extend the
concepts to rotational mechanical systems. Notice that the end product, shown in
Figure 2.2, will be mathematically indistinguishable from an electrical network.
Hence, an electrical network can be interfaced to a mechanical system by cascading
their transfer functions, provided that one system is not loaded by the other.6

6 The concept of loading is explained further in Chapter 5.

+

–

v(t) vL(t)

1Ω1Ω
1H

1 H 1 H+
–

FIGURE 2.14 Electric circuit for Skill-
Assessment Exercise 2.6

2.5 Translational Mechanical System Transfer Functions 61

www.wiley.com/college/nise
www.wiley.com/college/nise


Apago PDF Enhancer

E1C02 11/03/2010 11:29:33 Page 62

Mechanical systems parallel electrical networks to such an extent that there are
analogies between electrical and mechanical components and variables. Mechanical
systems, like electrical networks, have three passive, linear components. Two of
them, the spring and the mass, are energy-storage elements; one of them, the viscous
damper, dissipates energy. The two energy-storage elements are analogous to the
two electrical energy-storage elements, the inductor and capacitor. The energy
dissipator is analogous to electrical resistance. Let us take a look at these mechanical
elements, which are shown in Table 2.4. In the table, K, f v, and M are called spring
constant, coefficient of viscous friction, and mass, respectively.

We now create analogies between electrical and mechanical systems by
comparing Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4
to the voltage-current column of Table 2.3, we see that mechanical force is analogous
to electrical voltage and mechanical velocity is analogous to electrical current.
Comparing the force-displacement column of Table 2.4 with the voltage-charge
column of Table 2.3 leads to the analogy between the mechanical displacement and
electrical charge. We also see that the spring is analogous to the capacitor, the
viscous damper is analogous to the resistor, and the mass is analogous to the
inductor. Thus, summing forces written in terms of velocity is analogous to summing
voltages written in terms of current, and the resulting mechanical differential
equations are analogous to mesh equations. If the forces are written in terms of
displacement, the resulting mechanical equations resemble, but are not analogous
to, the mesh equations. We, however, will use this model for mechanical systems so
that we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of
Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the
analogy is between force and current and between velocity and voltage. Also, the

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Component Force-velocity Force-displacement
Impedence

ZMðsÞ ¼ FðsÞ=XðsÞ

K

Spring
x(t)

f (t)
f ðtÞ ¼ K

R t
0 vðtÞdt f ðtÞ ¼ KxðtÞ K

fv

Viscous damper
x(t)

f (t)
f ðtÞ ¼ f vvðtÞ f ðtÞ ¼ f v

dxðtÞ
dt

f vs

Mass
x(t)

f (t)M

f ðtÞ ¼ M
dvðtÞ
dt

f ðtÞ ¼ M
d2xðtÞ
dt2

Ms2

Note: The following set of symbols and units is used throughout this book: f ðtÞ ¼ N ðnewtonsÞ,
xðtÞ ¼ m ðmetersÞ, vðtÞ ¼ m/s ðmeters/secondÞ, K ¼ N/m ðnewtons/meterÞ, f v ¼ N-s/mðnewton-seconds/
meterÞ, M ¼ kg ðkilograms ¼ newton-seconds2/meterÞ.

62 Chapter 2 Modeling in the Frequency Domain



Apago PDF Enhancer

E1C02 11/03/2010 11:29:35 Page 63

spring is analogous to the inductor, the viscous damper is analogous to the resistor,
and the mass is analogous to the capacitor. Thus, summing forces written in terms of
velocity is analogous to summing currents written in terms of voltage and the
resulting mechanical differential equations are analogous to nodal equations. We
will discuss these analogies in more detail in Section 2.9.

We are now ready to find transfer functions for translational mechanical
systems. Our first example, shown in Figure 2.15(a), is similar to the simple RLC
network of Example 2.6 (see Figure 2.3). The mechanical system requires just one
differential equation, called the equation of motion, to describe it. We will begin by
assuming a positive direction of motion, for example, to the right. This assumed
positive direction of motion is similar to assuming a current direction in an electrical
loop. Using our assumed direction of positive motion, we first draw a free-body
diagram, placing on the body all forces that act on the body either in the direction of
motion or opposite to it. Next we use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero. Finally, assuming
zero initial conditions, we take the Laplace transform of the differential equation,
separate the variables, and arrive at the transfer function. An example follows.

Example 2.16

Transfer Function—One Equation of Motion

PROBLEM: Find the transfer function, XðsÞ=FðsÞ, for the system of Figure 2.15(a).

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure
2.16(a). Place on the mass all forces felt by the mass. We assume the mass is
traveling toward the right. Thus, only the applied force points to the right; all other
forces impede the motion and act to oppose it. Hence, the spring, viscous damper,
and the force due to acceleration point to the left.

We now write the differential equation of motion using Newton’s law to sum
to zero all of the forces shown on the mass in Figure 2.16(a):

M
d2xðtÞ
dt2

þ f v
dxðtÞ
dt

þKxðtÞ ¼ f ðtÞ ð2:108Þ

(a) (b)

X(s)F(s)

K

f(t)

x(t)

fv

M 1
Ms2 + fvs + K

FIGURE 2.15 a.Mass, spring,
and damper system; b. block
diagram

F(s)

(b)

fvsX(s)

Ms2X(s)

KX(s)

f(t)

(a)

fv

M

Kx(t)

dx
dt
d2x
dt2

M M

X(s)x(t)

FIGURE 2.16 a. Free-body
diagram of mass, spring, and
damper system; b. trans-
formed free-body diagram
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Taking the Laplace transform, assuming zero initial conditions,

Ms2XðsÞ þ f vsXðsÞ þKXðsÞ ¼ FðsÞ ð2:109Þ
or

ðMs2 þ f vsþKÞXðsÞ ¼ FðsÞ ð2:110Þ
Solving for the transfer function yields

GðsÞ ¼ XðsÞ
FðsÞ ¼

1

Ms2 þ f vsþK
ð2:111Þ

which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the
writing of differential equations and by defining impedances for mechanical
components? If so, we can apply to mechanical systems the problem-solving
techniques learned in the previous section. Taking the Laplace transform of the
force-displacement column in Table 2.4, we obtain for the spring,

FðsÞ ¼ KXðsÞ ð2:112Þ

for the viscous damper,

FðsÞ ¼ fvsXðsÞ ð2:113Þ

and for the mass,

FðsÞ ¼ Ms2XðsÞ ð2:114Þ

If we define impedance for mechanical components as

ZMðsÞ ¼ FðsÞ
XðsÞ ð2:115Þ

and apply the definition to Eqs. (2.112) through (2.114), we arrive at the impedances
of each component as summarized in Table 2.4 (Raven, 1995).7

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the
format

FðsÞ ¼ ZMðsÞXðsÞ ð2:116Þ

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immedi-
ately without writing the differential equation. From now on we use this approach.

7 Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of
Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by
defining mechanical impedance in terms of velocity as FðsÞ=VðsÞ. We chose Eq. (2.115) as a convenient
definition for writing the equations of motion in terms of displacement, rather than velocity. The
alternative, however, is available.
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Finally, notice that Eq. (2.110) is of the form

Sum of impedances½ �XðsÞ ¼ Sum of applied forces½ � ð2:117Þ
which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node
electrical networks, where more than one simultaneous differential equation is
required to describe the system. In mechanical systems, the number of equations of
motion required is equal to the number of linearly independent motions. Linear
independence implies that a point of motion in a system can still move if all other
points of motion are held still. Another name for the number of linearly independent
motions is the number of degrees of freedom. This discussion is not meant to imply
that these motions are not coupled to one another; in general, they are. For example,
in a two-loop electrical network, each loop current depends on the other loop
current, but if we open-circuit just one of the loops, the other current can still exist if
there is a voltage source in that loop. Similarly, in a mechanical system with two
degrees of freedom, one point of motion can be held still while the other point of
motion moves under the influence of an applied force.

In order to work such a problem, we draw the free-body diagram for each point
of motion and then use superposition. For each free-body diagram we begin by holding
all other points of motion still and finding the forces acting on the body due only to its
own motion. Then we hold the body still and activate the other points of motion one at
a time, placing on the original body the forces created by the adjacent motion.

Using Newton’s law, we sum the forces on each body and set the sum to zero.
The result is a system of simultaneous equations of motion. As Laplace transforms,
these equations are then solved for the output variable of interest in terms of the
input variable from which the transfer function is evaluated. Example 2.17 demon-
strates this problem-solving technique.

Example 2.17

Transfer Function—Two Degrees of Freedom

PROBLEM: Find the transfer function, X2ðsÞ=FðsÞ, for the system of Figure 2.17(a).

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, fv1

and fv2 are not Coulomb friction, but arise because of a viscous interface.

K1 K3

f(t)
fv3

fv1
fv2

M1 M2K2

x1(t) x2(t)

(a)

(fv3
s+K2)

Δ

X2(s)F(s)

(b)

FIGURE 2.17 a. Two-
degrees-of-freedom
translational
mechanical system;8

b. block diagram

Virtual Experiment 2.1
Automobile Suspension

Put theory into practice
exploring the dynamics of
another two degree of free-
dom system—an automobile
suspension system driving
over a bumpy road demon-
strated with the Quanser
Active Suspension System
modeled in LabVIEW.

Virtual experiments are found
on WileyPLUS.
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SOLUTION: The system has two degrees of freedom, since each mass can be moved
in the horizontal direction while the other is held still. Thus, two simultaneous
equations of motion will be required to describe the system. The two equations
come from free-body diagrams of each mass. Superposition is used to draw the free-
body diagrams. For example, the forces on M1 are due to (1) its own motion and
(2) the motion of M2 transmitted to M1 through the system. We will consider these
two sources separately.

If we hold M2 still and move M1 to the right, we see the forces shown in
Figure 2.18(a). If we hold M1 still and move M2 to the right, we see the forces shown
in Figure 2.18(b). The total force on M1 is the superposition, or sum, of the forces
just discussed. This result is shown in Figure 2.18(c). For M2, we proceed in a similar
fashion: First we move M2 to the right while holding M1 still; then we move M1 to
the right and hold M2 still. For each case we evaluate the forces on M2. The results
appear in Figure 2.19.

The Laplace transform of the equations of motion can now be written from
Figures 2.18(c) and 2.19(c) as

M1s
2ðfv1

 þ  fv3Þsþ ðK1 þK2Þ
� �

X1ðsÞ � ðfv3
sþK2ÞX2ðsÞ ¼ FðsÞ ð2:118aÞ

�ðfv3sþK2ÞX1ðsÞ þ M2s
2 þ ðfv2 þ fv3Þsþ ðK2 þ  K3Þ

� �
X2ðsÞ ¼ 0 ð2:118bÞ

FIGURE 2.18 a. Forces on
M1 due only to motion of M1;
b. forces on M1 due only to
motion of M2; c. all forces
on M1

K1X1(s)

fv1
sX1(s)

F(s)

M1s2X1(s)

a

fv3
sX1(s)

K2X1(s)

(b)

fv3
sX2(s)

K2X2(s)

(K1 + K2)X1(s)

F(s)

M1s2X1(s)

(fv1 
+ fv3

)sX1(s)

fv3
sX2(s)

K2X2(s)

(c)

(  )

M1 M1

M1

FIGURE 2.19 a. Forces on
M2 due only to motion of M2;
b. forces on M2 due only to
motion of M1; c. all forces
on M2

K2X2(s)

fv2
sX2(s)

M2s2X2(s)

fv3
sX2(s)

(a)

K3X2(s)

(b)

fv3
sX1(s)

(K2 + K3)X2(s)

M2s2X2(s)

(fv2
 + fv3

)sX2(s)
fv3

sX1(s)

K2X1(s)

(c)

K2X1(s)

M2 M2

M2
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From this, the transfer function, X2ðsÞ=FðsÞ, is

X2ðsÞ
FðsÞ ¼ GðsÞ ¼ ðfv3

sþK2Þ
D

ð2:119Þ

as shown in Figure 2.17(b) where

D ¼
M1s2 þ ðfv1

þ fv3
Þsþ ðK1 þK2Þ

� � �ðfv3
sþK2Þ

�ðfv3
sþK2Þ M2s2 þ ðfv2

þ fv3
Þsþ ðK2 þK3Þ

� �
�����

�����

Notice again, in Eq. (2.118), that the form of the equations is similar to
electrical mesh equations:

Sum of

impedances

connected

to the motion

at x1

2
666664

3
777775
X1ðsÞ �

Sum of

impedances

between

x1 and x2

2
6664

3
7775 X2ðsÞ ¼

Sum of

applied forces

at x1

2
4

3
5 ð2:120aÞ

�
Sum of

impedances

between

x1 and x2

2
6664

3
7775 X1ðsÞ þ

Sum of

impedances

connected

to the motion

at x2

2
666664

3
777775
X2ðsÞ ¼

Sum of

applied forces

at x2

2
4

3
5 ð2:120bÞ

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept
to write the equations of motion of a three-degrees-of-freedom mechanical network
by inspection, without drawing the free-body diagram.

Example 2.18

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical
network of Figure 2.20.

x2(t)

x3(t)

f(t)

x1(t)

fv1
fv2

K1 K2

fv3

M2M1

fv4
M3

FIGURE 2.20 Three-
degrees-of-freedom
translational mechanical
system
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SOLUTION: The system has three degrees of freedom, since each of the three
masses can be moved independently while the others are held still. The form of the
equations will be similar to electrical mesh equations. For M1,

Sum of

impedances

connected

to the motion

at x1

2
666664

3
777775
X1ðsÞ �

Sum of

impedances

between

x1 and x2

2
6664

3
7775 X2ðsÞ

�
Sum of

impedances

between

x1 and x3

2
6664

3
7775 X3ðsÞ ¼

Sum of

applied forces

at x1

2
4

3
5

ð2:121Þ

Similarly, for M2 and M3, respectively,

�
Sum of

impedances

between

x1 and x2

2
6664

3
7775 X1ðsÞ þ

Sum of

impedances

connected

to the motion

at x2

2
666664

3
777775
X2ðsÞ

�
Sum of

impedances

between

x2 and x3

2
6664

3
7775 X3ðsÞ ¼

Sum of

applied forces

at x2

2
4

3
5

ð2:122Þ

�
Sum of

impedances

between

x1 and x3

2
6664

3
7775 X1ðsÞ �

Sum of

impedances

between

x2 and x3

2
6664

3
7775 X2ðsÞ

þ

Sum of

impedances

connected

to the motion

at x3

2
666664

3
777775
X3ðsÞ ¼

Sum of

applied forces

at x3

2
4

3
5

ð2:123Þ

M1 has two springs, two viscous dampers, and mass associated with its motion.
There is one spring between M1 and M2 and one viscous damper between M1 and
M3. Thus, using Eq. (2.121),

M1s
2 þ ðfv1

þ fv3
Þsþ ðK1 þK2Þ

� �
X1ðsÞ �K2X2ðsÞ � fv3

sX3ðsÞ ¼ 0 ð2:124Þ

Similarly, using Eq. (2.122) for M2,

�K2X1ðsÞ þ M2s
2 þ ðfv2

þ fv4
ÞsþK2

� �
X2ðsÞ � fv4

sX3ðsÞ ¼ FðsÞ ð2:125Þ
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and using Eq. (2.123) for M3,

� fv3
sX1ðsÞ � fv4

sX2ðsÞ þ M3s
2 þ ðfv3

þ fv4
Þs� �

X3ðsÞ ¼ 0 ð2:126Þ

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X1ðsÞ; X2ðsÞ;  or X3ðsÞ, or transfer function.

Skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, GðsÞ ¼ X2ðsÞ=FðsÞ, for the translational
mechanical system shown in Figure 2.21.

ANSWER: GðsÞ ¼ 3sþ 1

sðs3 þ 7s2 þ 5sþ 1Þ
The complete solution is at www.wiley.com/college/nise.

2.6 Rotational Mechanical System
Transfer Functions

Having covered electrical and translational mechanical systems, we now move on
to consider rotational mechanical systems. Rotational mechanical systems are
handled the same way as translational mechanical systems, except that torque
replaces force and angular displacement replaces translational displacement. The
mechanical components for rotational systems are the same as those for transla-
tional systems, except that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the

fv1
= 1 N-s/m

fv2
= 1 N-s/m fv4

= 1 N-s/m
fv3

= 1 N-s/m

K= 1 N/m

M1 = 1 kg M2 = 1 kg

x1(t)

f (t)

x2(t)

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8
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components look the same as translational symbols, but they are undergoing
rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia. The
values of K, D, and J are called spring constant, coefficient of viscous friction, and
moment of inertia, respectively. The impedances of the mechanical components are
also summarized in the last column of Table 2.5. The values can be found by taking
the Laplace transform, assuming zero initial conditions, of the torque-angular
displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except
that we test a point of motion by rotating it while holding still all other points of
motion. The number of points of motion that can be rotated while all others are
held still equals the number of equations of motion required to describe the
system.

Writing the equations of motion for rotational systems is similar to writing
them for translational systems; the only difference is that the free-body diagram
consists of torques rather than forces. We obtain these torques using superposition.
First, we rotate a body while holding all other points still and place on its free-body
diagram all torques due to the body’s own motion. Then, holding the body still, we
rotate adjacent points of motion one at a time and add the torques due to the
adjacent motion to the free-body diagram. The process is repeated for each point of
motion. For each free-body diagram, these torques are summed and set equal to zero
to form the equations of motion.

Two examples will demonstrate the solution of rotational systems. The first one
uses free-body diagrams; the second uses the concept of impedances to write the
equations of motion by inspection.

TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Component
Torque-angular

velocity
Torque-angular
displacement

Impedence
ZM(s) ¼ T(s)=u(s)

K

Spring
T(t)    (t)θ

TðtÞ ¼ K
R t

0 vðtÞdt TðtÞ ¼ KuðtÞ K

D

Viscous
damper

T(t)    (t)θ

TðtÞ ¼ DvðtÞ TðtÞ ¼ D
duðtÞ
dt

Ds

J

Inertia
T(t)    (t)θ

TðtÞ ¼ J
dvðtÞ
dt

TðtÞ ¼ J
d2uðtÞ
dt2

Js2

Note: The following set of symbols and units is used throughout this book: TðtÞ � N-m ðnewton-metersÞ,
uðtÞ � rad ðradiansÞ, vðtÞ � rad/sðradians/secondÞ, K � N-m/radðnewton- meters/radianÞ, D� N-m-s/rad
ðnewton- meters-seconds/radianÞ. J � kg-m2ðkilograms-meters2 � newton-meters-seconds2/radianÞ.
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Example 2.19

Transfer Function—Two Equations of Motion

PROBLEM: Find the transfer function, u2ðsÞ=TðsÞ, for the rotational system shown
in Figure 2.22(a). The rod is supported by bearings at either end and is undergoing
torsion. A torque is applied at the left, and the displacement is measured at the
right.

SOLUTION: First, obtain the schematic from the physical system. Even though
torsion occurs throughout the rod in Figure 2.22(a),9 we approximate the system
by assuming that the torsion acts like a spring concentrated at one particular point
in the rod, with an inertia J1 to the left and an inertia J2 to the right.10 We also
assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can
be rotated while the other is held still. Hence, it will take two simultaneous
equations to solve the system.

Next, draw a free-body diagram of J1, using superposition. Figure 2.23(a)
shows the torques on J1 if J2 is held still and J1 rotated. Figure 2.23(b) shows the
torques on J1 if J1 is held still and J2 rotated. Finally, the sum of Figures 2.23(a) and
2.23(b) is shown in Figure 2.23(c), the final free-body diagram for J1. The same
process is repeated in Figure 2.24 for J2.

θ 1(t) θ 2(t)

D1 K D2

T(t)

(b)

θ 1(t)T(t)       θ 2(t)

Bearing
D1

Bearing
D2Torsion

(a)

J2
J1 J2 J1

K
Δ

(c)

T(s) 2(s)θ
FIGURE 2.22 a. Physical
system; b. schematic;
c. block diagram

9 In this case the parameter is referred to as a distributed parameter.
10 The parameter is now referred to as a lumped parameter.

(a)

J1

K

T(s)

(b) (c)

D1sθ 1(s)
θ 1(s)

Kθ 2(s)

Kθ 1(s)
D1sθ1(s)

J1s2θ 1(s)T(s)

Directionθ1(s)

J1 J1

J1s2θ 1(s)

Kθ 2(s)

Directionθ 1(s)Directionθ 1(s)

FIGURE 2.23 a. Torques on
J1 due only to the motion of J1;
b. torques on J1 due only to the
motion of J2; c. final free-body
diagram for J1
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Summing torques respectively from Figures 2.23(c) and 2.24(c) we obtain the
equations of motion,

ðJ1s
2 þD1sþKÞu1ðsÞ �Ku2ðsÞ ¼ TðsÞ ð2:127aÞ

�Ku1ðsÞ þ ðJ2s
2 þD2sþKÞu2ðsÞ ¼ 0 ð2:127bÞ

from which the required transfer function is found to be

u2ðsÞ
TðsÞ ¼

K

D
ð2:128Þ

as shown in Figure 2.22(c), where

D ¼
�����
ðJ1s2 þD1sþKÞ �K

�K ðJ2s2 þD2sþKÞ

�����
Notice that Eq. (2.127) have that now well-known form

Sum of
impedances
connected

to the motion
at u1

2
66664

3
77775u1ðsÞ �

Sum of
impedances

between
u1 and u2

2
664

3
775u2ðsÞ ¼

Sum of
applied torques

at u1

2
4

3
5 ð2:129aÞ

�
Sum of

impedances
between
u1 and u2

2
664

3
775u1ðsÞ þ

Sum of
impedances
connected

to the motion
at u2

2
66664

3
77775u2ðsÞ ¼

Sum of
applied torques

at u2

2
4

3
5 ð2:129bÞ

Example 2.20

Equations of Motion By Inspection

PROBLEM: Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in Figure 2.25.

FIGURE 2.24 a.Torques on
J2 due only to the motion of
J2; b. torques on J2 due only
to the motion of J1; c. final
free-body diagram for J2

θ2(s)

D2s

Kθ

J 2

θ 2(s)

J2s2

(a) (b) (c)

θ2(s) θ 2(s)

θ2(s)

2(s)

Kθ 1(s)

J2

Kθ 1(s)

θ2(s)

D2s

J2s2

θ 2(s)

Kθ 2(s)

DirectionDirectionDirection

J2

FIGURE 2.25 Three-degrees-
of-freedom rotational
system

θ1(t) T(t) θ 2(t) θ 3(t)

D1
K D2 D3

J2J1 J3

TryIt 2.9

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.128).

syms s J1 D1 K T J2 D2...
theta1 theta2

A=[(J1*s^2+D1*s+K) �K
�K (J2*s^2+D2*s+K)];

B=[theta1
theta2];

C=[T
0];

B=inv(A)*C;
theta2=B(2);
’theta2’
pretty(theta2)
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SOLUTION: The equations will take on the following form, similar to electrical
mesh equations:

Sum of

impedances

connected

to the motion

at u1

2
666664

3
777775
u1ðsÞ �

Sum of

impedances

between

u1 and u2

2
6664

3
7775u2ðsÞ

�
Sum of

impedances

between

u1 and u3

2
6664

3
7775u3ðsÞ ¼

Sum of

applied torques

at u1

2
4

3
5

ð2:130aÞ

�
Sum of

impedances

between

u1 and u2

2
6664

3
7775u1ðsÞ þ

Sum of

impedances

connected

to the motion

at u2

2
666664

3
777775
u2ðsÞ

�
Sum of

impedances

between

u2 and u3

2
6664

3
7775u3ðsÞ ¼

Sum of

applied torques

at u2

2
4

3
5

ð2:130bÞ

�
Sum of

impedances

between

u1 and u3

2
6664

3
7775u1ðsÞ �

Sum of

impedances

between

u2 and u3

2
6664

3
7775u2ðsÞ

þ

Sum of

impedances

connected

to the motion

at u3

2
666664

3
777775
u3ðsÞ ¼

Sum of

applied torques

at u3

2
4

3
5

ð2:130cÞ

Hence,

ðJ1s2 þD1sþKÞu1ðsÞ �Ku2ðsÞ �0u3ðsÞ ¼ TðsÞ
�Ku1ðsÞ þðJ2s2 þD2sþKÞu2ðsÞ �D2su3ðsÞ ¼ 0

�0u1ðsÞ �D2su2ðsÞ þðJ3s2 þD3sþD2sÞu3ðsÞ ¼ 0

ð2:131a; b; cÞ
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Skill-Assessment Exercise 2.9

PROBLEM: Find the transfer function, GðsÞ ¼ u2ðsÞ=TðsÞ, for the rotational
mechanical system shown in Figure 2.26.

ANSWER: GðsÞ ¼ 1

2s2 þ sþ 1

The complete solution is at www.wiley.com/college/nise.

2.7 Transfer Functions for Systems with Gears

Now that we are able to find the transfer function for rotational systems, we
realize that these systems, especially those driven by motors, are rarely seen
without associated gear trains driving the load. This section covers this
important topic.

Gears provide mechanical advantage to rotational systems. Anyone who has
ridden a 10-speed bicycle knows the effect of gearing. Going uphill, you shift to
provide more torque and less speed. On the straightaway, you shift to obtain more
speed and less torque. Thus, gears allow you to match the drive system and the
load—a trade-off between speed and torque.

For many applications, gears exhibit backlash, which occurs because of the
loose fit between two meshed gears. The drive gear rotates through a small angle
before making contact with the meshed gear. The result is that the angular rotation
of the output gear does not occur until a small angular rotation of the input gear has
occurred. In this section, we idealize the behavior of gears and assume that there is
no backlash.

The linearized interaction between two gears is depicted in Figure 2.27. An
input gear with radius r1 and N1 teeth is rotated through angle u1ðtÞ due to a
torque, T1ðtÞ. An output gear with radius r2 and N2 teeth responds by rotating
through angle u2ðtÞ and delivering a torque, T2ðtÞ. Let us now find the relation-
ship between the rotation of Gear 1, u1ðtÞ, and Gear 2, u2ðtÞ.

From Figure 2.27, as the gears turn, the distance traveled along each gear’s
circumference is the same. Thus,

r1u1 ¼ r2u2 ð2:132Þ

FIGURE 2.26 Rotational
mechanical system for Skill-
Assessment Exercise 2.9

1 N-m/rad
1 N-m/rad

1 N-m-s/rad

1 N-m-s/rad

θ2(t)T(t)

1 kg-m2

r2

θ

Input
drive gear,

Gear 1 Output
driven gear,

Gear 2

r1

N1

N2
T1(t) 1(t) θ T2(t)2(t)

FIGURE 2.27 A gear system
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or

u2

u1
¼ r1

r2
¼ N1

N2
ð2:133Þ

since the ratio of the number of teeth along the circumference is in the same
proportion as the ratio of the radii. We conclude that the ratio of the angular
displacement of the gears is inversely proportional to the ratio of the number of
teeth.

What is the relationship between the input torque, T1, and the delivered
torque, T2? If we assume the gears are lossless, that is they do not absorb or store
energy, the energy into Gear 1 equals the energy out of Gear 2.11 Since the
translational energy of force times displacement becomes the rotational energy
of torque times angular displacement,

T1u1 ¼ T2u2 ð2:134Þ

Solving Eq. (2.134) for the ratio of the torques and using Eq. (2.133), we get

T2

T1
¼ u1

u2
¼ N2

N1
ð2:135Þ

Thus, the torques are directly proportional to the ratio of the number
of teeth. All results are summarized in Figure 2.28.

Let us see what happens to mechanical impedances that are
driven by gears. Figure 2.29(a) shows gears driving a rotational inertia,
spring, and viscous damper. For clarity, the gears are shown by an end-
on view. We want to represent Figure 2.29(a) as an equivalent system at
u1 without the gears. In other words, can the mechanical impedances be
reflected from the output to the input, thereby eliminating the gears?

θ1 θ2N1
N2

(a)

T1 T2N2
N1

(b)

FIGURE 2.28 Transfer functions for a. angular
displacement in lossless gears and b. torque in
lossless gears

11 This is equivalent to saying that the gears have negligible inertia and damping.

θ

J

D

θ1(t)T1(t)

N1

N2

(a)

θ 2(t) DT1(t) 
N2

N1

K

(b)

θ 1(t)T1(t)

J
2N1

N2

2N1

N2
K

(c)

2N1

N2
D

J

2(t)

K

FIGURE 2.29 a. Rotational
system driven by gears;
b. equivalent system at the
output after reflection of input
torque; c. equivalent system at
the input after reflection of
impedances
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From Figure 2.28(b),T1 can be reflected to the output by multiplying by N2=N1.
The result is shown in Figure 2.29(b), from which we write the equation of motion as

ðJs2 þDsþKÞu2ðsÞ ¼ T1ðsÞN2

N1
ð2:136Þ

Now convert u2ðsÞ into an equivalent u1ðsÞ, so that Eq. (2.136) will look as if it were
written at the input. Using Figure 2.28(a) to obtain u2ðsÞ in terms of u1ðsÞ, we get

ðJs2 þDsþKÞN1

N2
u1ðsÞ ¼ T1ðsÞN2

N1
ð2:137Þ

After simplification,

J
N1

N2

	 
2

s2 þD
N1

N2

	 
2

sþK
N1

N2

	 
2
" #

u1ðsÞ ¼ T1ðsÞ ð2:138Þ

which suggests the equivalent system at the input and without gears shown in
Figure 2.29(c). Thus, the load can be thought of as having been reflected from the
output to the input.

Generalizing the results, we can make the following statement: Rotational
mechanical impedances can be reflected through gear trains by multiplying the
mechanical impedance by the ratio

Number of teeth of
gear on destination shaft

Number of teeth of
gear on source shaft

0
B@

1
CA

2

where the impedance to be reflected is attached to the source shaft and is being
reflected to the destination shaft. The next example demonstrates the application of
the concept of reflected impedances as we find the transfer function of a rotational
mechanical system with gears.

Example 2.21

Transfer Function—System with Lossless Gears

PROBLEM: Find the transfer function, u2ðsÞ=T1ðsÞ, for the system of Figure 2.30(a).

θ 2(t)

J2

θ 1(t)T1(t)

N1

N2

K2

D2
θ 2(t)

Je

T1(t)

Ke = K2

(b)

N2

N1

De = D1

2

+ D2

2

+ J2

D1

(a)

Je = J1

J1

Jes
2 + Des + Ke

(c)

T1(s) θ2(s)θ

N2

N1

N2

N1

N2/N1

FIGURE 2.30 a. Rotational mechanical system with gears; b. system after reflection of torques and impedances to the output
shaft; c. block diagram

76 Chapter 2 Modeling in the Frequency Domain



Apago PDF Enhancer

E1C02 11/03/2010 11:29:43 Page 77

SOLUTION: It may be tempting at this point to search for two simultaneous
equations corresponding to each inertia. The inertias, however, do not undergo
linearly independent motion, since they are tied together by the gears. Thus, there
is only one degree of freedom and hence one equation of motion.

Let us first reflect the impedances (J1 and D1) and torque (T1) on the input
shaft to the output as shown in Figure 2.30(b), where the impedances are reflected
by ðN2=N1Þ2 and the torque is reflected by (N2=N1). The equation of motion can
now be written as

ðJes2 þDesþKeÞu2ðsÞ ¼ T1ðsÞN2

N1
ð2:139Þ

where

Je ¼ J1
N2

N1

	 
2

þ J2; De ¼ D1
N2

N1

	 
2

þD2; Ke ¼ K2

Solving for u2ðsÞ=T1ðsÞ, the transfer function is found to be

GðsÞ ¼ u2ðsÞ
T1ðsÞ ¼

N2=N1

Jes2 þDesþKe
ð2:140Þ

as shown in Figure 2.30(c).

In order to eliminate gears with large radii, a gear train is used
to implement large gear ratios by cascading smaller gear ratios. A
schematic diagram of a gear train is shown in Figure 2.31. Next to
each rotation, the angular displacement relative to u1 has been
calculated. From Figure 2.31,

u4 ¼ N1N3N5

N2N4N6
u1 ð2:141Þ

For gear trains, we conclude that the equivalent gear ratio is the
product of the individual gear ratios. We now apply this result to solve
for the transfer function of a system that does not have lossless gears.

Example 2.22

Transfer Function—Gears with Loss

PROBLEM: Find the transfer function, u1ðsÞ=T1ðsÞ, for the system of Figure 2.32(a).

θ

N1

N3

N5

N2

N4

N6

θ2

θ3

θ4 =
N5

N6
θ3 =

N1 N3 N5

N2 N4 N6
θ1

=
N3

N4
θ2 =

N1 N3

N2 N4
θ1

=
N1

N2
θ1

1

FIGURE 2.31 Gear train

θ1(t)T1(t)
N1

J1,  D1

N2 N3

D2,  J2 J3

J5
N4

J4

Je

De

Je = J1 + (J2 + J3)
N1

N2

2

+ (J4 + J5)
N1N3

N2N4

2

N1

N2

2

(a) (b)

θ 1(t)T1(t)

De = D1 + D2
1

Jes
2 + Des

T1(s) 1(s)θ

(c)

FIGURE 2.32
a. System using a gear
train; b. equivalent
system at the input;
c. block diagram
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SOLUTION: This system, which uses a gear train, does not have lossless gears. All of
the gears have inertia, and for some shafts there is viscous friction. To solve the
problem, we want to reflect all of the impedances to the input shaft, u1. The
gear ratio is not the same for all impedances. For example, D2 is reflected
only through one gear ratio as D2ðN1=N2Þ2, whereas J4 plus J5 is reflected through
two gear ratios as ðJ4 þ J5Þ ðN3=N4ÞðN1=N2Þ½ �2. The result of reflecting all imped-
ances to u1 is shown in Figure 2.32(b), from which the equation of motion is

ðJes2 þDesÞu1ðsÞ ¼ T1ðsÞ ð2:142Þ

where

Je ¼ J1 þ ðJ2 þ J3Þ N1

N2

	 
2

þ ðJ4 þ J5Þ N1N3

N2N4

	 
2

and

De ¼ D1 þD2
N1

N2

	 
2

From Eq. (2.142), the transfer function is

GðsÞ ¼ u1ðsÞ
T1ðsÞ ¼

1

Jes2 þDes
ð2:143Þ

as shown in Figure 2.32(c).

Skill-Assessment Exercise 2.10

PROBLEM: Find the transfer function, GðsÞ ¼ u2ðsÞ=TðsÞ, for the rotational
mechanical system with gears shown in Figure 2.33.

ANSWER: GðsÞ ¼ 1=2

s2 þ sþ 1

The complete solution is at www.wiley.com/college/nise.

1 N-m-s/rad

4 N-m/rad

θ2(t)

T(t)

1 kg-m2

N2 = 50

N1 = 25

FIGURE 2.33 Rotational mechanical system with gears for Skill-Assessment
Exercise 2.10
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2.8 Electromechanical System
Transfer Functions

In the last section we talked about rotational systems with gears, which completed
our discussion of purely mechanical systems. Now, we move to systems that are
hybrids of electrical and mechanical variables, the electromechanical systems. We
have seen one application of an electromechanical system in Chapter 1, the antenna
azimuth position control system. Other applications for systems with electrome-
chanical components are robot controls, sun and star trackers, and computer tape
and disk-drive position controls. An example of a control system that uses electro-
mechanical components is shown in Figure 2.34.

A motor is an electromechanical component that yields a displacement output
for a voltage input, that is, a mechanical output generated by an electrical input.
We will derive the transfer function for one particular kind of electromechanical
system, the armature-controlled dc servomotor (Mablekos, 1980). The motor’s
schematic is shown in Figure 2.35(a), and the transfer function we will derive
appears in Figure 2.35(b).

FIGURE 2.34 NASA flight
simulator robot arm with
electromechanical control
system components.

Armature
circuit

vb(t)

Ra La

Rotor

Tm(t)

m(t)

Fixed
field

G(s)
m(s)Ea(s)

θ

θ

(a) (b)

ia(t)

ea(t)

+ +

– –

FIGURE 2.35 DC motor: a. schematic;12 b. block diagram

12 See Appendix I at www.wiley.com/college/nise for a derivation of this schematic and its parameters.
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In Figure 2.35(a) a magnetic field is developed by stationary permanent
magnets or a stationary electromagnet called the fixed field. A rotating circuit
called the armature, through which current iaðtÞ flows, passes through this magnetic
field at right angles and feels a force, F ¼ BliaðtÞ, where B is the magnetic field
strength and l is the length of the conductor. The resulting torque turns the rotor, the
rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at
right angles to a magnetic field generates a voltage at the terminals of the conductor
equal to e ¼ Blv, where e is the voltage and v is the velocity of the conductor normal
to the magnetic field. Since the current-carrying armature is rotating in a magnetic
field, its voltage is proportional to speed. Thus,

vbðtÞ ¼ Kb
dumðtÞ
dt

ð2:144Þ

We call vbðtÞ the back electromotive force (back emf); Kb is a constant of
proportionality called the back emf constant; and dumðtÞ=dt ¼ vmðtÞ is the angular
velocity of the motor. Taking the Laplace transform, we get

VbðsÞ ¼ KbsumðsÞ ð2:145Þ

The relationship between the armature current, iaðtÞ, the applied armature
voltage, eaðtÞ, and the back emf, vbðtÞ, is found by writing a loop equation around the
Laplace transformed armature circuit (see Figure 3.5(a)):

RaIaðsÞ þ LasIaðsÞ þ VbðsÞ ¼ EaðsÞ ð2:146Þ

The torque developed by the motor is proportional to the armature current; thus,

TmðsÞ ¼ KtIaðsÞ ð2:147Þ

where Tm is the torque developed by the motor, and Kt is a constant of proportion-
ality, called the motor torque constant, which depends on the motor and magnetic
field characteristics. In a consistent set of units, the value of Kt is equal to the value of
Kb. Rearranging Eq. (2.147) yields

IaðsÞ ¼ 1

Kt
TmðsÞ ð2:148Þ

To find the transfer function of the motor, we first substitute Eqs. (2.145) and
(2.148) into (2.146), yielding

ðRa þ LasÞTmðsÞ
Kt

þKbsumðsÞ ¼ EaðsÞ ð2:149Þ

Now we must find TmðsÞ in terms of umðsÞ if we are to separate the input and
output variables and obtain the transfer function, umðsÞ=EaðsÞ.

Figure 2.36 shows a typical equivalent mechanical loading on a motor.
Jm is the equivalent inertia at the armature and includes both the armature
inertia and, as we will see later, the load inertia reflected to the armature.

Tm(t)

Jm

Dm

θm(t)

FIGURE 2.36 Typical equivalent
mechanical loading on a motor
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Dm is the equivalent viscous damping at the armature and includes both the
armature viscous damping and, as we will see later, the load viscous damping
reflected to the armature. From Figure 2.36,

TmðsÞ ¼ ðJms2 þDmsÞumðsÞ ð2:150Þ
Substituting Eq. (2.150) into Eq. (2.149) yields

ðRa þ LasÞðJms2 þDmsÞumðsÞ
Kt

þKbsumðsÞ ¼ EaðsÞ ð2:151Þ

If we assume that the armature inductance, La, is small compared to the armature
resistance, Ra, which is usual for a dc motor, Eq. (2.151) becomes

Ra

Kt
ðJmsþDmÞ þKb

� �
sumðsÞ ¼ EaðsÞ ð2:152Þ

After simplification, the desired transfer function, umðsÞ=EaðsÞ, is found to be

umðsÞ
EaðsÞ ¼

Kt=ðRaJmÞ
s sþ 1

Jm
ðDm þKtKb

Ra
Þ

� � ð2:153Þ13

Even though the form of Eq. (2.153) is relatively simple, namely

umðsÞ
EaðsÞ ¼

K

sðsþ aÞ ð2:154Þ

the reader may be concerned about how to evaluate the constants.
Let us first discuss the mechanical constants, Jm and Dm. Consider

Figure 2.37, which shows a motor with inertia Ja and damping Da at the
armature driving a load consisting of inertia JL and damping DL.
Assuming that all inertia and damping values shown are known, JL
and DL can be reflected back to the armature as some equivalent inertia
and damping to be added to Ja and Da, respectively. Thus, the equiv-
alent inertia, Jm, and equivalent damping, Dm, at the armature are

Jm ¼ Ja þ JL
N1

N2

	 
2

; Dm ¼ Da þDL
N1

N2

	 
2

ð2:155Þ14

Now that we have evaluated the mechanical constants, Jm and Dm, what about
the electrical constants in the transfer function of Eq. (2.153)? We will show that
these constants can be obtained through a dynamometer test of the motor, where a
dynamometer measures the torque and speed of a motor under the condition of a

JL

DL

N2

N1Motor

Ja, Da

FIGURE 2.37 DC motor driving a rotational
mechanical load

13 The units for the electrical constants are Kt ¼ N-m-A (newton-meters/ampere), and Kb ¼ V-s/rad
(volt-seconds/radian).
14 If the values of the mechanical constants are not known, motor constants can be determined through
laboratory testing using transient response or frequency response data. The concept of transient response
is covered in Chapter 4; frequency response is covered in Chapter 10.
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constant applied voltage. Let us first develop the relationships that dictate the use of
a dynamometer.

Substituting Eqs. (2.145) and (2.148) into Eq. (2.146), with La ¼ 0, yields

Ra

Kt
TmðsÞ þKbsumðsÞ ¼ EaðsÞ ð2:156Þ

Taking the inverse Laplace transform, we get

Ra

Kt
TmðtÞ þKbvmðtÞ ¼ eaðtÞ ð2:157Þ

where the inverse Laplace transform of sumðsÞ is dumðtÞ=dt or, alternately, vmðtÞ.
If a dc voltage, ea, is applied, the motor will turn at a constant angular velocity,

vm, with a constant torque, Tm. Hence, dropping the functional relationship based
on time from Eq. (2.157), the following relationship exists when the motor is
operating at steady state with a dc voltage input:

Ra

Kt
Tm þKbvm ¼ ea ð2:158Þ

Solving for Tm yields

Tm ¼ �KbKt

Ra
vm þ Kt

Ra
ea ð2:159Þ

Equation (2.159) is a straight line, Tm vs. vm, and is shown in
Figure 2.38. This plot is called the torque-speed curve. The torque axis
intercept occurs when the angular velocity reaches zero. That value of
torque is called the stall torque, Tstall. Thus,

Tstall ¼ Kt

Ra
ea ð2:160Þ

The angular velocity occurring when the torque is zero is called the no-
load speed, vno-load. Thus,

vno-load ¼ ea
Kb

ð2:161Þ

The electrical constants of the motor’s transfer function can now be found
from Eqs. (2.160) and (2.161) as

Kt

Ra
¼ Tstall

ea
ð2:162Þ

and

Kb ¼ ea
vno-load

ð2:163Þ

The electrical constants, Kt=Ra and Kb, can be found from a dynamometer test of the
motor, which would yield Tstall and vno-load for a given ea.

Tm

ea1

ea2

Tstall

T
or

qu
e

ω
Speed

no-load

ωm

FIGURE 2.38 Torque-speed curves with
an armature voltage, ea, as a parameter
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Example 2.23

Transfer Function—DC Motor and Load

PROBLEM: Given the system and torque-speed curve of Figure 2.39(a) and (b),
find the transfer function, uLðsÞ=EaðsÞ.
SOLUTION: Begin by finding the mechanical constants, Jm and Dm, in Eq. (2.153).
From Eq. (2.155), the total inertia at the armature of the motor is

Jm ¼ Ja þ JL
N1

N2

	 
2

¼ 5 þ 700
1

10

	 
2

¼ 12 ð2:164Þ

and the total damping at the armature of the motor is

Dm ¼ Da þDL
N1

N2

	 
2

¼ 2 þ 800
1

10

	 
2

¼ 10 ð2:165Þ

Now we will find the electrical constants, Kt=Ra and Kb. From the torque-
speed curve of Figure 2.39(b),

Tstall ¼ 500 ð2:166Þ
vno-load ¼ 50 ð2:167Þ

ea ¼ 100 ð2:168Þ

Hence the electrical constants are

Kt

Ra
¼ Tstall

ea
¼ 500

100
¼ 5 ð2:169Þ

Virtual Experiment 2.2
Open-Loop
Servo Motor

Put theory into practice explor-
ing the dynamics of the Quanser
Rotary Servo System modeled
in LabVIEW. It is particularly
important to know how a servo
motor behaveswhenusingthem
in high-precision applications
such as hard disk drives.

Virtual experiments are found
on WileyPLUS.

Tm

ea = 100 V

500

T
or

qu
e

(N
-m

)

50
Speed (rad/s)

ω
ia(t)

ea(t)

Ra

m(t)θ

Fixed
field

(a)

L(t)θ

N1 = 100

N2 = 1000

Da = 2 N-m s/rad

Ja = 5 kg-m2 JL = 700 kg-m2

DL = 800 N-m s/rad
(b)

m

+

–

0.0417
s(s + 1.667)

(c)

Ea (s) θL (s)θ

FIGURE 2.39 a. DC motor and load; b. torque-speed curve; c. block diagram
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and

Kb ¼ ea
vno-load

¼ 100

50
¼ 2 ð2:170Þ

Substituting Eqs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yield

umðsÞ
EaðsÞ ¼

5=12

s sþ 1

12
10 þ ð5Þð2Þ½ �

� � ¼ 0:417

sðsþ 1:667Þ ð2:171Þ

In order to find uLðsÞ=EaðsÞ, we use the gear ratio, N1=N2 ¼ 1=10, and find

uLðsÞ
EaðsÞ ¼

0:0417

sðsþ 1:667Þ ð2:172Þ

as shown in Figure 2.39(c).

Skill-Assessment Exercise 2.11

PROBLEM: Find the transfer function, GðsÞ ¼ uLðsÞ=EaðsÞ, for the motor and load
shown in Figure 2.40. The torque-speed curve is given by Tm ¼ �8vm þ 200 when
the input voltage is 100 volts.

ANSWER: GðsÞ ¼ 1=20

s sþ ð15=2Þ½ �
The complete solution is at www.wiley.com/college/nise.

2.9 Electric Circuit Analogs

In this section, we show the commonality of systems from the various disciplines
by demonstrating that the mechanical systems with which we worked can be
represented by equivalent electric circuits. We have pointed out the similarity
between the equations resulting from Kirchhoff’s laws for electrical systems and
the equations of motion of mechanical systems. We now show this commonality
even more convincingly by producing electric circuit equivalents for mechanical
systems. The variables of the electric circuits behave exactly as the analogous

FIGURE 2.40 Electro-
mechanical system for
Skill-Assessment Exercise
2.11

+

–
ea(t)

Ja = 1 kg-m2

Da = 5 N-m-s/rad DL = 800 N-m-s/rad

JL = 400 kg-m2

N2 = 100

N1 = 20

N4 = 100

N3 = 25

θL(t)

Motor
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variables of the mechanical systems. In fact, converting mechanical systems to
electrical networks before writing the describing equations is a problem-solving
approach that you may want to pursue.

An electric circuit that is analogous to a system from another discipline is
called an electric circuit analog. Analogs can be obtained by comparing the
describing equations, such as the equations of motion of a mechanical system,
with either electrical mesh or nodal equations. When compared with mesh
equations, the resulting electrical circuit is called a series analog. When com-
pared with nodal equations, the resulting electrical circuit is called a parallel
analog.

Series Analog
Consider the translational mechanical system shown in Figure 2.41(a), whose
equation of motion is

ðMs2 þ fvsþKÞXðsÞ ¼ FðsÞ ð2:173Þ
Kirchhoff’s mesh equation for the simple series RLC network shown in
Figure 2.41(b) is

Lsþ Rþ 1

Cs

	 

IðsÞ ¼ EðsÞ ð2:174Þ

As we previously pointed out, Eq. (2.173) is not directly analogous to
Eq. (2.174) because displacement and current are not analogous. We can create
a direct analogy by operating on Eq. (2.173) to convert displacement to velocity by
dividing and multiplying the left-hand side by s, yielding

Ms2 þ fvsþK

s
sXðsÞ ¼ Msþ fv þK

s

	 

VðsÞ ¼ FðsÞ ð2:175Þ

Comparing Eqs. 2.174 and 2.175, we recognize the sum of impedances and
draw the circuit shown in Figure 2.41(c). The conversions are summarized in
Figure 2.41(d).

When we have more than one degree of freedom, the impedances
associated with a motion appear as series electrical elements in a mesh, but

+

fvM

–
f(t)

v(t)

1
K

+

RL

e(t)

i(t)

C

(c)

(b)

f(t)

K

fv
(a)

x(t)

(d)

mass = M

viscous damper = fv

spring = K

applied force =  f(t)

velocity = v(t)

inductor            =   M henries

resistor             =  fv  ohms

capacitor          =    1

voltage source  =   f(t)

mesh current    =   v(t)

K

M +
–

+
–

–

farads

FIGURE 2.41 Development
of series analog: a. mechanical
system; b. desired
electrical representation;
c. series analog; d. parameters
for series analog
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the impedances between adjacent motions are drawn as series electrical
impedances between the two corresponding meshes. We demonstrate with
an example.

Example 2.24

Converting a Mechanical System to a Series Analog

PROBLEM: Draw a series analog for the mechanical system of Figure 2.17(a).

SOLUTION: Equations (2.118) are analogous to electrical mesh equations after
conversion to velocity. Thus,

M1sþ ðfv1
þ fv3

Þ þ ðK1 þK2Þ
s

� �
V1ðsÞ � fv3

þK2

s

	 

V2ðsÞ ¼ FðsÞ ð2:176aÞ

� fv3
þK2

s

	 

V1ðsÞ þ M2sþ ðfv2

þ fv3
Þ þ ðK2 þK3Þ

s

� �
V2ðsÞ ¼ 0 ð2:176bÞ

Coefficients represent sums of electrical impedance. Mechanical impedances
associated with M1 form the first mesh, where impedances between the two masses
are common to the two loops. Impedances associated with M2 form the second
mesh. The result is shown in Figure 2.42, where v1ðtÞ and v2ðtÞ are the velocities of
M1 and M2, respectively.

Parallel Analog
A system can also be converted to an equivalent parallel analog. Consider the
translational mechanical system shown in Figure 2.43(a), whose equation of motion
is given by Eq. (2.175). Kirchhoff’s nodal equation for the simple parallel RLC
network shown in Figure 2.43(b) is

Csþ 1

R
þ 1

Ls

	 

EðsÞ ¼ IðsÞ ð2:177Þ

Comparing Eqs. (2.175) and (2.177), we identify the sum of admittances and draw the
circuit shown in Figure 2.43(c). The conversions are summarized in Figure 2.43(d).

FIGURE 2.42 Series analog of
mechanical system of
Figure 2.17(a)

v2(t)

fv3

1
K2

M1

1
K1 M2fv1

1
K3

fv2

v1(t)

f(t) +
–
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When we have more than one degree of freedom, the components associated
with a motion appear as parallel electrical elements connected to a node, but the
components of adjacent motions are drawn as parallel electrical elements between
two corresponding nodes. We demonstrate with an example.

Example 2.25

Converting a Mechanical System to a Parallel Analog

PROBLEM: Draw a parallel analog for the mechanical system of Figure 2.17(a).

SOLUTION: Equation (2.176) is also analogous to electrical node equations. Coeffi-
cients represent sums of electrical admittances. Admittances associated with M1 form
the elements connected to the first node, where mechanical admittances between the
two masses are common to the two nodes. Mechanical admittances associated with M2

form the elements connected to the second node. The result is shown in Figure 2.44,
where v1ðtÞ and v2ðtÞ are the velocities of M1 and M2, respectively.

Skill-Assessment Exercise 2.12

PROBLEM: Draw a series and parallel analog for the rotational mechanical system
of Figure 2.22.

ANSWER: The complete solution is at www.wiley.com/college/nise.

i(t)

(c)

(b)

(d )

mass = M

viscous damper = fv

spring = K

applied force =  f(t)

velocity = v(t)

capacitor          =  M farads

resistor             =  
fv  

ohms

inductor            =  1  henries

current source  = f(t)

node voltage     = v(t)

1

C R L

e(t)

f(t) M

v(t)

1
fv

1
K

K

f(t)

K

fv
(a)

x(t)

M

FIGURE 2.43 Development of
parallel analog: a. mechanical
system; b. desired electrical
representation; c. parallel
analog; d. parameters for
parallel analog

f(t) M1

v1(t)

1
fv1

1
K1

M2

1
fv3

1
K2

1
fv2

1
K3

v2(t)

FIGURE 2.44 Parallel
analog of mechanical system
of Figure 2.17(a)
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2.10 Nonlinearities

The models thus far are developed from systems that can be described approxi-
mately by linear, time-invariant differential equations. An assumption of linearity
was implicit in the development of these models. In this section, we formally define
the terms linear and nonlinear and show how to distinguish between the two. In
Section 2.11, we show how to approximate a nonlinear system as a linear system so
that we can use the modeling techniques previously covered in this chapter (Hsu,
1968).

A linear system possesses two properties: superposition and homogeneity. The
property of superposition means that the output response of a system to the sum of
inputs is the sum of the responses to the individual inputs. Thus, if an input of r1ðtÞ
yields an output of c1ðtÞ and an input of r2(t) yields an output of c2ðtÞ, then an input of
r1ðtÞ þ r2ðtÞ yields an output of c1ðtÞ þ c2ðtÞ. The property of homogeneity describes
the response of the system to a multiplication of the input by a scalar. Specifically, in
a linear system, the property of homogeneity is demonstrated if for an input of r1ðtÞ
that yields an output of c1ðtÞ, an input of Ar1ðtÞ yields an output of Ac1ðtÞ; that is,
multiplication of an input by a scalar yields a response that is multiplied by the same
scalar.

We can visualize linearity as shown in Figure 2.45. Figure
2.45(a) is a linear system where the output is always 1

2 the
input, or f ðxÞ ¼ 0:5x, regardless of the value of x. Thus each of
the two properties of linear systems applies. For example, an
input of 1 yields an output of 1

2 and an input of 2 yields an
output of 1. Using superposition, an input that is the sum of the
original inputs, or 3, should yield an output that is the sum of
the individual outputs, or 1.5. From Figure 2.45(a), an input of
3 does indeed yield an output of 1.5.

To test the property of homogeneity, assume an input
of 2, which yields an output of 1. Multiplying this input by
2 should yield an output of twice as much, or 2. From

Figure 2.45(a), an input of 4 does indeed yield an output of 2. The reader can
verify that the properties of linearity certainly do not apply to the relationship
shown in Figure 2.45(b).

Figure 2.46 shows some examples of physical nonlinearities. An electronic
amplifier is linear over a specific range but exhibits the nonlinearity called saturation
at high input voltages. A motor that does not respond at very low input voltages due
to frictional forces exhibits a nonlinearity called dead zone. Gears that do not fit
tightly exhibit a nonlinearity called backlash: The input moves over a small range
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x
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FIGURE 2.45 a. Linear system; b. nonlinear system

FIGURE 2.46 Some physical
nonlinearities
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without the output responding. The reader should verify that the curves shown in
Figure 2.46 do not fit the definitions of linearity over their entire range. Another
example of a nonlinear subsystem is a phase detector, used in a phase-locked loop in
an FM radio receiver, whose output response is the sine of the input.

A designer can often make a linear approximation to a nonlinear system.
Linear approximations simplify the analysis and design of a system and are used as
long as the results yield a good approximation to reality. For example, a linear
relationship can be established at a point on the nonlinear curve if the range of input
values about that point is small and the origin is translated to that point. Electronic
amplifiers are an example of physical devices that perform linear amplification with
small excursions about a point.

2.11 Linearization

The electrical and mechanical systems covered thus far were assumed to be
linear. However, if any nonlinear components are present, we must linearize
the system before we can find the transfer function. In the last section, we
defined and discussed nonlinearities; in this section, we show how to obtain
linear approximations to nonlinear systems in order to obtain transfer
functions.

The first step is to recognize the nonlinear component and write the
nonlinear differential equation. When we linearize a nonlinear differential
equation, we linearize it for small-signal inputs about the steady-state solution
when the small-signal input is equal to zero. This steady-state solution is called
equilibrium and is selected as the second step in the linearization process. For
example, when a pendulum is at rest, it is at equilibrium. The angular
displacement is described by a nonlinear differential equation, but it can be
expressed with a linear differential equation for small excursions about this
equilibrium point.

Next we linearize the nonlinear differential equation, and then we take the
Laplace transform of the linearized differential equation, assuming zero initial
conditions. Finally, we separate input and output variables and form the transfer
function. Let us first see how to linearize a function; later, we will apply the method
to the linearization of a differential equation.

If we assume a nonlinear system operating at point A, x0; f ðx0Þ½ � in
Figure 2.47, small changes in the input can be related to changes in the
output about the point by way of the slope of the curve at the point A.
Thus, if the slope of the curve at point A is ma, then small excursions of
the input about point A, dx, yield small changes in the output, df ðxÞ,
related by the slope at point A. Thus,

f ðxÞ � f ðx0Þ½ � � maðx� x0Þ ð2:178Þ
from which

df ðxÞ � madx ð2:179Þ
and

f ðxÞ � f ðx0Þ þmaðx� x0Þ � f ðx0Þ þmadx ð2:180Þ
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FIGURE 2.47 Linearization about
point A
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This relationship is shown graphically in Figure 2.47, where a new set of axes, dx
and df ðxÞ, is created at the point A, and f(x) is approximately equal to f ðx0Þ, the
ordinate of the new origin, plus small excursions, madx, away from point A. Let us
look at an example.

Example 2.26

Linearizing a Function

PROBLEM: Linearize f ðxÞ ¼ 5 cos x about x ¼ p=2.

SOLUTION: We first find that the derivative of f(x) is df=dx ¼ ð�5 sin xÞ. At
x ¼ p=2, the derivative is �5. Also f ðx0Þ ¼ f ðp=2Þ ¼ 5 cosðp=2Þ ¼ 0. Thus, from
Eq. (2.180), the system can be represented as f ðxÞ ¼ �5 dx for small excursions of x
about p=2. The process is shown graphically in Figure 2.48, where the cosine curve
does indeed look like a straight line of slope �5 near p=2.

The previous discussion can be formalized using the Taylor series expansion,
which expresses the value of a function in terms of the value of that function at a
particular point, the excursion away from that point, and derivatives evaluated at
that point. The Taylor series is shown in Eq. (2.181).

f ðxÞ ¼ f ðx0Þ þ df

dx

����
x¼x0

ðx� x0Þ
1!

þ d2f

dx2

����
x¼x0

ðx� x0Þ2

2!
þ � � � ð2:181Þ

For small excursions of x from x0, we can neglect higher-order terms. The resulting
approximation yields a straight-line relationship between the change in f(x) and the
excursions away from x0. Neglecting the higher-order terms in Eq. (2.181), we get

f ðxÞ � f ðx0Þ � df

dx

����
x¼x0

ðx� x0Þ ð2:182Þ

FIGURE 2.48 Linearization
of 5 cos x about x ¼ p=2
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or
df ðxÞ � mjx¼x0

dx ð2:183Þ

which is a linear relationship between df ðxÞ and dx for small excursions away from x0.
It is interesting to note that Eqs. (2.182) and (2.183) are identical to Eqs. (2.178) and
(2.179), which we derived intuitively. The following examples illustrate linearization.
The first example demonstrates linearization of a differential equation, and the
second example applies linearization to finding a transfer function.

Example 2.27

Linearizing a Differential Equation

PROBLEM: Linearize Eq. (2.184) for small excursions about x ¼ p=4.

d2x

dt2
þ 2

dx

dt
þ cos x ¼ 0 ð2:184Þ

SOLUTION: The presence of the term cos x makes this equation nonlinear. Since
we want to linearize the equation about x ¼ p=4, we let x ¼ dxþ p=4, where dx is
the small excursion about p=4, and substitute x into Eq. (2.184):

d2 dxþ p

4

� �

dt2
þ 2

d dxþ p

4

� �

dt
þ cos dxþ p

4

� �
¼ 0 ð2:185Þ

But
d2 dxþ p

4

� �

dt2
¼ d2dx

dt2
ð2:186Þ

and
d dxþ p

4

� �

dt
¼ ddx

dt
ð2:187Þ

Finally, the term cos ðdxþ ðp=4ÞÞ can be linearized with the truncated Taylor series.
Substituting f ðxÞ ¼ cosðdxþ ðp=4ÞÞ; f ðx0Þ ¼ f ðp=4Þ ¼ cosðp=4Þ; and ðx� x0Þ ¼ dx
into Eq. (2.182) yields

cos dxþ p

4

� �
� cos

p

4

� �
¼ d cos x

dx

����
x¼p

4

dx ¼ �sin
p

4

� �
dx ð2:188Þ

Solving Eq. (2.188) for cos ðdxþ ðp=4ÞÞ, we get

cos dxþ p

4

� �
¼ cos

p

4

� �
� sin

p

4

� �
dx ¼

ffiffiffi
2

p

2
�

ffiffiffi
2

p

2
dx ð2:189Þ

Substituting Eqs. (2.186), (2.187), and (2.189) into Eq. (2.185) yields the following
linearized differential equation:

d2dx

dt2
þ 2

ddx

dt
�

ffiffiffi
2

p

2
dx ¼ �

ffiffiffi
2

p

2
ð2:190Þ

This equation can now be solved for dx, from which we can obtain x ¼ dxþ ðp=4Þ.
Even though the nonlinear Eq. (2.184) is homogeneous, the linearized Eq. (2.190)

is not homogeneous. Eq. (2.190) has a forcing function on its right-hand side. This
additional term can be thought of as an input to a system represented by Eq. (2.184).
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Another observation about Eq. (2.190) is the negative sign on the left-hand
side. The study of differential equations tells us that since the roots of the
characteristic equation are positive, the homogeneous solution grows without
bound instead of diminishing to zero. Thus, this system linearized around x ¼
p=4 is not stable.

Example 2.28

Transfer Function—Nonlinear Electrical Network

PROBLEM: Find the transfer function, VLðsÞ=VðsÞ, for the electrical network
shown in Figure 2.49, which contains a nonlinear resistor whose voltage-
current relationship is defined by ir ¼ 2e0:1vr, where ir and vr are the resistor
current and voltage, respectively. Also, v(t) in Figure 2.49 is a small-signal
source.

SOLUTION: We will use Kirchhoff’s voltage law to sum the voltages in the
loop to obtain the nonlinear differential equation, but first we must solve for
the voltage across the nonlinear resistor. Taking the natural log of the
resistor’s current-voltage relationship, we get vr ¼ 10 ln 1

2 ir. Applying Kirchh-
off’s voltage law around the loop, where ir ¼ i, yields

L
di

dt
þ 10 ln

1

2
i� 20 ¼ vðtÞ ð2:191Þ

Next, letus evaluate the equilibrium solution. First, set the small-signal
source, v(t), equal to zero. Now evaluate the steady-state current. With vðtÞ ¼ 0,
the circuit consists of a 20 V battery in series with the inductor and nonlinear
resistor. In the steady state, the voltage across the inductor will be zero, since
vLðtÞ ¼ Ldi=dt and di=dt is zero in the steady state, given a constant battery
source. Hence, the resistor voltage, vr, is 20 V. Using the characteristics of the
resistor, ir ¼ 2e0:1vr , we find that ir ¼ i ¼ 14:78 amps. This current, i0, is the
equilibrium value of the network current. Hence i ¼ i0 þ di. Substituting this
current into Eq. (2.191) yields

L
dði0 þ diÞ

dt
þ 10 ln

1

2
ði0 þ diÞ � 20 ¼ vðtÞ ð2:192Þ

Using Eq. (2.182) to linearize ln 1
2 ði0 þ diÞ, we get

ln
1

2
ði0 þ diÞ � ln

1

2
i0 ¼ d ln 1

2 i
� �
di

����
i¼i0

di ¼ 1

i

����
i¼i0

di ¼ 1

i0
di ð2:193Þ

or

ln
1

2
ði0 þ diÞ ¼ ln

i0
2
þ 1

i0
di ð2:194Þ

Substituting into Eq. (2.192), the linearized equation becomes

L
ddi

dt
þ 10 ln

i0
2
þ 1

i0
di

	 

� 20 ¼ vðtÞ ð2:195Þ

vL(t)1 H

Nonlinear
resistor

20 V

v(t)

i(t)

+

+
–

–

r

FIGURE 2.49 Nonlinear
electrical network
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Letting L ¼ 1 and i0 ¼ 14:78, the final linearized differential equation is

ddi

dt
þ 0:677di ¼ vðtÞ ð2:196Þ

Taking the Laplace transform with zero initial conditions and solving for diðsÞ, we
get

diðsÞ ¼ VðsÞ
sþ 0:677

ð2:197Þ

But the voltage across the inductor about the equilibrium point is

vLðtÞ ¼ L
d

dt
ði0 þ diÞ ¼ L

ddi

dt
ð2:198Þ

Taking the Laplace transform,

VLðsÞ ¼ LsdiðsÞ ¼ sdiðsÞ ð2:199Þ
Substituting Eq. (2.197) into Eq. (2.199) yields

VLðsÞ ¼ s
VðsÞ

sþ 0:677
ð2:200Þ

from which the final transfer function is

VLðsÞ
VðsÞ ¼ s

sþ 0:677
ð2:201Þ

for small excursions about i ¼ 14:78 or, equivalently, about vðtÞ ¼ 0.

Skill-Assessment Exercise 2.13

PROBLEM: Find the linearized transfer function, GðsÞ ¼ VðsÞ=IðsÞ, for the elec-
trical network shown in Figure 2.50. The network contains a nonlinear resistor
whose voltage-current relationship is defined by ir ¼ evr. The current source, i(t), is
a small-signal generator.

ANSWER: GðsÞ ¼ 1

sþ 2

The complete solution is at www.wiley.com/college/nise.

2 A i(t)

v (t)

Nonlinear
resistor

r 1 F

FIGURE 2.50 Nonlinear
electric circuit for Skill-
Assessment Exercise 2.13
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Case Studies

Antenna Control: Transfer Functions

This chapter showed that physical systems can be modeled mathematically with
transfer functions. Typically, systems are composed of subsystems of different
types, such as electrical, mechanical, and electromechanical.

The first case study uses our ongoing example of the antenna azimuth position
control system to show how to represent each subsystem as a transfer function.

PROBLEM: Find the transfer function for each subsystem of the antenna
azimuth position control system schematic shown on the front endpapers. Use
Configuration 1.

SOLUTION: First, we identify the individual subsystems for which we must find
transfer functions; they are summarized in Table 2.6. We proceed to find the
transfer function for each subsystem.

Input Potentiometer; Output Potentiometer
Since the input and output potentiometers are configured in the same way, their
transfer functions will be the same. We neglect the dynamics for the potentiometers
and simply find the relationship between the output voltage and the input angular
displacement. In the center position the output voltage is zero. Five turns toward
either the positive 10 volts or the negative 10 volts yields a voltage change of 10
volts. Thus, the transfer function, ViðsÞ=uiðsÞ, for the potentiometers is found by
dividing the voltage change by the angular displacement:

ViðsÞ
uiðsÞ ¼ 10

10p
¼ 1

p
ð2:202Þ

Preamplifier; Power Amplifier
The transfer functions of the amplifiers are given in the problem statement. Two
phenomena are neglected. First, we assume that saturation is never reached.
Second, the dynamics of the preamplifier are neglected, since its speed of response
is typically much greater than that of the power amplifier. The transfer functions of
both amplifiers are given in the problem statement and are the ratio of the Laplace
transforms of the output voltage divided by the input voltage. Hence, for the

TABLE 2.6 Subsystems of the antenna azimuth position control system

Subsystem Input Output

Input potentiometer Angular rotation from user, uiðtÞ Voltage to preamp, viðtÞ
Preamp Voltage from potentiometers,

veðtÞ ¼ viðtÞ � v0ðtÞ
Voltage to power amp, vpðtÞ

Power amp Voltage from preamp, vpðtÞ Voltage to motor, eaðtÞ
Motor Voltage from power amp, eaðtÞ Angular rotation to load,

u0ðtÞ
Output potentiometer Angular rotation from load, u0ðtÞ Voltage to preamp, v0(t)
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preamplifier,

VpðsÞ
VeðsÞ ¼ K ð2:203Þ

and for the power amplifier,

EaðsÞ
VpðsÞ ¼

100

sþ 100
ð2:204Þ

Motor and Load
The motor and its load are next. The transfer function relating the armature displace-
ment to the armature voltage is given in Eq. (2.153). The equivalent inertia, Jm, is

Jm ¼ Ja þ JL
25

250

	 
2

¼ 0:02 þ 1
1

100
¼ 0:03 ð2:205Þ

where JL ¼ 1 is the load inertia at u0. The equivalent viscous damping, Dm, at the
armature is

Dm ¼ Da þDL
25

250

	 
2

¼ 0:01 þ 1
1

100
¼ 0:02 ð2:206Þ

where DL is the load viscous damping at u0. From the problem statement, Kt ¼ 0:5
N-m/A, Kb ¼ 0:5 V-s/rad, and the armature resistance Ra ¼ 8 ohms. These quantit-
ies along with Jm and Dm are substituted into Eq. (2.153), yielding the transfer
function of the motor from the armature voltage to the armature displacement, or

umðsÞ
EaðsÞ ¼

Kt=ðRaJmÞ
s sþ 1

Jm
Dm þKtKb

Ra

	 
� � ¼ 2:083

sðsþ 1:71Þ ð2:207Þ

To complete the transfer function of the motor, we multiply by the gear ratio to
arrive at the transfer function relating load displacement to armature voltage:

u0ðsÞ
EaðsÞ ¼ 0:1

umðsÞ
EaðsÞ ¼

0:2083

sðsþ 1:71Þ ð2:208Þ

The results are summarized in the block diagram and table of block diagram
parameters (Configuration 1) shown on the front endpapers.

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system schematic
shown on the front endpapers, evaluate the transfer function of each subsystem.
Use Configuration 2. Record your results in the table of block diagram parameters
shown on the front endpapers for use in subsequent chapters’ case study challenges.

Transfer Function of a Human Leg

In this case study we find the transfer function of a biological system. The system is
a human leg, which pivots from the hip joint. In this problem, the component of
weight is nonlinear, so the system requires linearization before the evaluation of
the transfer function.

Case Studies 95
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PROBLEM: The transfer function of a human leg relates the output angular
rotation about the hip joint to the input torque supplied by the leg muscle. A
simplified model for the leg is shown in Figure 2.51. The model assumes an
applied muscular torque, Tm(t), viscous damping, D, at the hip joint, and
inertia, J, around the hip joint.15 Also, a component of the weight of the leg,
Mg, where M is the mass of the leg and g is the acceleration due to gravity,
creates a nonlinear torque. If we assume that the leg is of uniform density,
the weight can be applied at L/2, where L is the length of the leg (Milsum,
1966). Do the following:

a. Evaluate the nonlinear torque.

b. Find the transfer function, uðsÞ=TmðsÞ, for small angles of rotation,
where uðsÞ is the angular rotation of the leg about the hip joint.

SOLUTION: First, calculate the torque due to the weight. The total weight of
the leg is Mg acting vertically. The component of the weight in the direction
of rotation is Mg sin u. This force is applied at a distance L=2 from the hip
joint. Hence the torque in the direction of rotation, TW(t), is MgðL=2Þ sin u.
Next, draw a free-body diagram of the leg, showing the applied torque,
Tm(t), the torque due to the weight, TW(t), and the opposing torques due to
inertia and viscous damping (see Figure 2.52).

Summing torques, we get

J
d2u

dt2
þD

du

dt
þMg

L

2
sin u ¼ TmðtÞ ð2:209Þ

We linearize the system about the equilibrium point, u ¼ 0, the vertical
position of the leg. Using Eq. (2.182), we get

sinu � sin0 ¼ ðcos0Þd u ð2:210Þ
from which, sin u ¼ du. Also, J d2u=dt2 ¼ J d2du=dt2 and Ddu=dt ¼ Dddu=dt.
Hence Eq. (2.209) becomes

J
d2du

dt2
þD

ddu

dt
þMg

L

2
du ¼ TmðtÞ ð2:211Þ

Notice that the torque due to the weight approximates a spring torque on the leg.
Taking the Laplace transform with zero initial conditions yields

Js2 þDsþMg
L

2

	 

duðsÞ ¼ TmðsÞ ð2:212Þ

from which the transfer function is

duðsÞ
TmðsÞ ¼

1=J

s2 þ D
J sþ MgL

2J

ð2:213Þ

LegTm(t)

θd2
J

D

dt2θ

TW(t)

dt
θd

FIGURE 2.52 Free-body diagram of
leg model

Tm

θ
Mg sin θ

Mg

Leg

Hip joint

L/2

L/2

FIGURE 2.51 Cylinder model of a
human leg.

15 For emphasis, J is not around the center of mass, as we previously assumed for inertia in mechanical
rotation.
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for small excursions about the equilibrium point, u ¼ 0.

CHALLENGE: We now introduce a case study challenge to test your
knowledge of this chapter’s objectives. Although the physical
system is different from a human leg, the problem demonstrates
the same principles: linearization followed by transfer function
evaluation.

Given the nonlinear electrical network shown in Figure 2.53, find
the transfer function relating the output nonlinear resistor voltage,
Vr(s), to the input source voltage, V(s).

Summary

In this chapter, we discussed how to find a mathematical model, called a transfer
function, for linear, time-invariant electrical, mechanical, and electromechanical
systems. The transfer function is defined as GðsÞ ¼ CðsÞ=RðsÞ, or the ratio of the
Laplace transform of the output to the Laplace transform of the input. This relation-
ship is algebraic and also adapts itself to modeling interconnected subsystems.

We realize that the physical world consists of more systems than we illustrated
in this chapter. For example, we could apply transfer function modeling to hydraulic,
pneumatic, heat, and even economic systems. Of course, we must assume these
systems to be linear, or make linear approximations, in order to use this modeling
technique.

Now that we have our transfer function, we can evaluate its response to a
specified input. System response will be covered in Chapter 4. For those pursuing the
state-space approach, we continue our discussion of modeling in Chapter 3, where
we use the time domain rather than the frequency domain.

Review Questions

1. What mathematical model permits easy interconnection of physical systems?

2. To what classification of systems can the transfer function be best applied?

3. What transformation turns the solution of differential equations into algebraic
manipulations?

4. Define the transfer function.

5. What assumption is made concerning initial conditions when dealing with
transfer functions?

6. What do we call the mechanical equations written in order to evaluate the
transfer function?

7. If we understand the form the mechanical equations take, what step do we avoid
in evaluating the transfer function?

8. Why do transfer functions for mechanical networks look identical to transfer
functions for electrical networks?

1 H

5 V

Nonlinear
resistorv(t)

i(t)

vr(t) = 2ir
2(t)

+
+
–

–

r

FIGURE 2.53 Nonlinear electric circuit
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9. What function do gears perform?

10. What are the component parts of the mechanical constants of a motor’s
transfer function?

11. The motor’s transfer function relates armature displacement to armature
voltage. How can the transfer function that relates load displacement and
armature voltage be determined?

12. Summarize the steps taken to linearize a nonlinear system.

Problems

1. Derive the Laplace transform for the following time
functions: [Section: 2.2]

a. u(t)

b. tu(t)

c. sin vt uðtÞ
d. cos vt uðtÞ

2. Using the Laplace transform pairs
of Table 2.1 and the Laplace trans-
form theorems of Table 2.2, derive
the Laplace transforms for the fol-
lowing time functions: [Section: 2.2]

a. e�atsin vt uðtÞ
b. e�atcos vt uðtÞ
c. t3uðtÞ

3. Repeat Problem 18 in Chapter 1, using Laplace
transforms. Assume that the forcing functions are
zero prior to t ¼ 0�. [Section: 2.2]

4. Repeat Problem 19 in Chapter 1, using Laplace
transforms. Use the following initial conditions
for each part as follows: (a) xð0Þ ¼ 4; x0ð0Þ ¼ �4;
(b)xð0Þ ¼ 4; x0ð0Þ ¼ 1; (c)xð0Þ ¼ 2; x0ð0Þ ¼ 3, where

x0ð0Þ ¼ dx

dt
ð0Þ. Assume that the forcing functions are

zero prior to t ¼ 0�. [Section: 2.2]

5. Use MATLAB and the Symbolic Math
ToolboxtofindtheLaplace
transformofthefollowing
timefunctions:[Section:2.2]

a. fðtÞ ¼ 8t2cosð3tþ 45�Þ
b. fðtÞ ¼ 3te�2tsinð4tþ 60�Þ

6. Use MATLAB and the Symbolic Math
Toolbox to find the inverse

Laplace transform of the following
frequency functions: [Section: 2.2]

a. GðsÞ ¼ ðs2 þ 3sþ 10Þðsþ 5Þ
ðsþ 3Þðsþ 4Þðs2 þ 2sþ 100Þ

b. GðsÞ ¼ s3 þ 4s2 þ 2sþ 6
ðsþ 8Þðs2 þ 8sþ 3Þðs2 þ 5sþ 7Þ

7. A system is described by the following differential
equation:

d3y

dt3
þ 3

d2y

dt2
þ 5

dy

dt
þ y ¼ d3x

dt3
þ 4

d2x

dt2
þ 6

dx

dt
þ 8x

Find the expression for the transfer function of the
system, YðsÞ=XðsÞ. [Section: 2.3]

8. For each of the following transfer functions, write
the corresponding differential equation. [Section:
2.3]

a.
XðsÞ
FðsÞ ¼

7

s2 þ 5sþ 10

b.
XðsÞ
FðsÞ ¼

15

ðsþ 10Þðsþ 11Þ

c.
XðsÞ
FðsÞ ¼

sþ 3

s3 þ 11s2 þ 12sþ 18

9. Write the differential equation for the system shown
in Figure P2.1. [Section: 2.3]

s5 + 2s4 + 4s3 + s2 + 4
s6 + 7s5 + 3s4 + 2s3 + s2 + 5

C(s)R(s)

FIGURE P2.1

10. Write the differential equation that
is mathematically equivalent to the
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block diagram shown in Figure P2.2. Assume that
rðtÞ ¼ 3t3. [Section: 2.3]

s4 + 3s3 + 2s2 + s + 1
s5 + 4s4 + 3s3 + 2s2 + 3s + 2

C(s)R(s)

FIGURE P2.2

11. A system is described by the following differential
equation: [Section 2.3]

d2x

dt2
þ 2

dx

dt
þ 3x ¼ 1

with the initial conditions xð0Þ ¼ 1; _xð0Þ ¼ �1.
Show a block diagram of the system, giving its
transfer function and all pertinent inputs and out-
puts. (Hint: the initial conditions will show up as
added inputs to an effective system with zero initial
conditions.)

12. Use MATLABtogeneratethetransfer
function: [Section:2.3]

GðsÞ ¼ 5ðsþ 15Þðsþ 26Þðsþ 72Þ
sðsþ 55Þðs2 þ 5sþ 30Þðsþ 56Þðs2 þ 27sþ 52Þ

in the following ways:

a. the ratio of factors;

b. the ratio of polynomials.

13. Repeat Problem 12forthefollowing
transfer function: [Section:2.3]

GðsÞ ¼ s4 þ 25s3 þ 20s2 þ 15sþ 42

s5 þ 13s4 þ 9s3 þ 37s2 þ 35sþ 50

14. Use MATLAB to generate the partial-
fraction expansion of the following
function: [Section:2.3]

FðsÞ ¼ 104ðsþ 5Þðsþ 70Þ
sðsþ 45Þðsþ 55Þðs2 þ 7sþ 110Þðs2 þ 6sþ 95Þ

15. Use MATLABand the Symbolic Math
Toolboxto inputand form LTI ob-
jects in polynomial and factored form
for the following frequency functions:
[Section: 2.3]

a. GðsÞ ¼ 45ðs2 þ37sþ74Þðs3 þ28s2 þ32sþ16Þ
ðsþ39Þðsþ47Þðs2 þ2sþ100Þðs3 þ27s2 þ18sþ15Þ

b. GðsÞ ¼ 56ðsþ14Þðs3 þ49s2 þ62sþ53Þ
ðs3 þ81s2 þ76sþ65Þðs2 þ88sþ33Þðs2 þ56sþ77Þ

16. Find the transfer function, GðsÞ ¼ VoðsÞ=ViðsÞ, for
each network shown in Figure P2.3. [Section: 2.4]

1 Ω 1 Ω

+

1H

1 Ω

vo(t)vi(t) +–

–
(a)

+
1 H

1 F vo(t)

1 Ω

vi(t) +–

–
(b)

FIGURE P2.3

17. Find the transfer function, GðsÞ ¼ VLðsÞ=VðsÞ,
for each network shown in Figure P2.4. [Section: 2.4]

1 F2 Ω

1 F vL(t)

+v(t)
2 Ω 2 Ω

2 H

+–

–

vL(t)

+

–

(b)

v(t) 2

2 H

2 H

Ω

2Ω

(a)

+–

FIGURE P2.4

18. Find the transfer function, GðsÞ ¼ VoðsÞ=
ViðsÞ, for each network shown in
Figure P2.5. Solve the problem using
mesh analysis. [Section: 2.4]

+ –

vi(t)

vo(t)

1 1

2 H 3 H

2 FΩ

(a)

+–
1 F 1 Fvi(t) vo(t)

+

1 Ω

+–
–

(b)

1 H

1 H

1 H

FIGURE P2.5

19. Repeat Problem 18 using nodal equations. [Section:
2.4]

20. a. Write, but do not solve, the mesh and nodal
equations for the network of Figure P2.6. [Sec-
tion: 2.4]

b. Use MATLAB, the Symbolic Math
Toolbox,andtheequationsfound
inpartatosolveforthetransfer
function, GðsÞ ¼ VoðsÞ=V ðsÞ. Use both the
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mesh and nodal equations and show
that eithersetyieldsthe sametransfer
function.[Section:2.4]

2 Ω 4 Ω

8 Ω

2 Ω

4 H

6 H

1
9 F

v(t) vo(t)

+

–

+
–

FIGURE P2.6

21. Find the transfer function, GðsÞ ¼ VoðsÞ=ViðsÞ, for
each operational amplifier circuit shown in Figure
P2.7. [Section: 2.4]

100 kΩ

100 kΩ

100 kΩ 2 μFμ

2 μFμ
vi(t)

vo(t)
v1(t)

(b)

+

–

100 kΩ

500 kΩ 2 μFμ

2 μFμ
vi(t)

vo(t)
v1(t)

(a)

+

–

FIGURE P2.7

22. Find the transfer function, GðsÞ ¼ VoðsÞ=ViðsÞ, for
each operational amplifier circuit shown in Figure
P2.8. [Section: 2.4]

v1(t)

vi(t)
vo(t)

vi(t)

110 kΩ

400 kΩ

4  Fμ

4  Fμ

4 μFμ

(a)

(b)

+

–

110 kΩ

600 kΩ

600 kΩ

400 kΩ

4 μFμ

vo(t)
v1(t)

+

–

FIGURE P2.8

23. Find the transfer function, GðsÞ ¼ X1ðsÞ=FðsÞ, for
the translational mechanical system shown in Figure
P2.9. [Section: 2.5]

4 N-s/m 5 N/m

f(t)5 kg

x1(t)

FIGURE P2.9

24. Find the transfer function, GðsÞ ¼ X2ðsÞ=FðsÞ, for
the translational mechanical network shown in
Figure P2.10. [Section: 2.5]

f(t)

x2(t)x1(t)

Frictionless

1 N/m

1 kg 1 kg1 N-s/m

FIGURE P2.10
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25. Find the transfer function, GðsÞ ¼
X2ðsÞ=FðsÞ, for the translational
mechanical system shown in Figure
P2.11. (Hint: place a zero mass at
x2(t).) [Section: 2.5]

2 N-s/m2 N/m

f(t) 10 kg

x2(t)

5 N-s/m

FIGURE P2.11

26. For the system of Figure P2.12 find the transfer
function, GðsÞ ¼ X1ðsÞ=FðsÞ. [Section: 2.5]

4 N/m

3 N-s/m3 N-s/m

f(t)

2 N-s/m

5 N/m
x1(t) x2(t)

1 kg 2 kg fv3 =fv1 = fv2 =M1 = M2 =

K1 = K2 =

FIGURE P2.12

27. Find the transfer function, GðsÞ ¼ X3ðsÞ=FðsÞ, for
the translational mechanical system shown in Figure
P2.13. [Section: 2.5]

2 N-s/m

2 N-s/m

6 N/m
6 N/m

Frictionless

f(t)

2 N-s/m

4 kg

4 kg 4 kg

x2(t) x3(t)

x1(t)

FIGURE P2.13

28. Find the transfer function, X3ðsÞ=FðsÞ, for each
system shown in Figure P2.14. [Section: 2.5]

fv1 = 4 N-s/m

fv2 = 4 N-s/m
fv4 = 4 N-s/m

fv3 = 4 N-s/mK= 5 N/m
M1 = 4 kg M2 = 4 kg

x1(t)

f (t)

x2(t)

x3(t)

(a)

4 N-s/m

1 N/m

f(t)

16 N-s/m 15 N/m
M1 = 8 kg

x1(t) x2(t)

x3(t)

M2=3 kg

Frictionless Frictionless

Frictionless

(b)

FIGURE P2.14

29. Write, but do not solve, the equations of motion for
the translational mechanical system shown in Figure
P2.15. [Section: 2.5]

f(t)

x1(t) x2(t)

x3(t)

K1 = 5 N/m

K2 = 4 N/m

fv2 = 2 N-s/m

fv1 = 2 N-s/m

M1 = 4 kg

fv3 = 3 N-s/m

K3 = 4 N/m

M3 = 5 kg

M2 = 5 kg

Frictionless

FIGURE P2.15

30. For each of the rotational mechanical systems
shown in Figure P2.16, write, but do not solve, the
equations of motion. [Section: 2.6]

θ 1(t) θ2(t)T(t)

5 kg-m2 3 kg-m2

9 N-m/rad

8 N-m-s/rad

3 N-m/rad

1 N-m-s/rad

(a)

J1 J2 J3

D1

K1 K3
K2

D2T(t)

(b)

FIGURE P2.16

31. For the rotational mechanical system
shown in Figure P2.17, find the transfer
function GðsÞ ¼ u2ðsÞ=TðsÞ [Section:
2.6]
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1 N-m-s/rad
1 N-m-s/rad

1 N-m/rad

1 N-m-s/rad

θ2(t)T(t)

1 kg-m2

FIGURE P2.17

32. For the rotational mechanical system with gears
shown in Figure P2.18, find the transfer function,
GðsÞ ¼ u3ðsÞ=TðsÞ. The gears have inertia and bear-
ing friction as shown. [Section: 2.7]

N2

N4

θ 3(t)

N3

N1

T(t)

J2, D2

J4, D4

J1, D1

J3, D3

J5, D5

FIGURE P2.18

33. For the rotational system shown in Figure P2.19, find
the transfer function, GðsÞ ¼ u2ðsÞ=TðsÞ. [Section: 2.7]

J1 = 2 kg-m2

J2 = 1 kg-m2

J3 = 16 kg-m2

K = 64 N-m/rad

N1 = 4
T(t)

D1 = 1 N-m-s/rad

N2 = 12

D2 = 2 N-m-s/rad

N3 = 4

N4 = 16

θ 2(t)

D3 = 32 N-m-s/rad

FIGURE P2.19

34. Find the transfer function, GðsÞ ¼ u2ðsÞ=TðsÞ, for
the rotational mechanical system shown in Figure
P2.20. [Section: 2.7]

N1 = 5

N3 = 25

N2 = 50

θ

1000 N-m-s/rad

250 N-m/rad

200 kg-m2

3 kg-m2

2(t)

T(t)
200 kg-m2

3 N-m/rad

FIGURE P2.20

35. Find the transfer function, GðsÞ ¼ u4ðsÞ=TðsÞ, for
the rotational system shown in Figure P2.21.
[Section: 2.7]

θ3(t)θ 2(t)

N3 = 23N2 = 110

2 N-m/rad

N1 = 26 N4 = 120

26 N-m-s/radT(t) θ1(t) θ4(t)

FIGURE P2.21

36. For the rotational system shown in Figure P2.22,
find the transfer function, GðsÞ ¼ uLðsÞ=TðsÞ. [Sec-
tion: 2.7]

3 N-m/rad

0.04 N-m-s/rad

2 N-m-s/rad

θL(t)T(t)
1 kg-m2N2 = 33

N1 = 11 N4 = 10

N3 = 50

FIGURE P2.22

37. For the rotational system shown in
Figure P2.23, write the equations of
motion from which the transfer func-
tion, GðsÞ ¼ u1ðsÞ=TðsÞ, can be found.
[Section: 2.7]

K

N1

N4

DL
J4

J1 D
N3

J3

N2

J2

Ja

θT(t) 1(t)

JL

FIGURE P2.23

38. Given the rotational system shown in Figure P2.24,
find the transfer function, GðsÞ ¼ u6ðsÞ=u1ðsÞ.
[Section: 2.7]
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θ1(t)
N1

J1, D
N2

N3

J3

K1

N4

K2

D T(t) θ6(t)

D

J2, D

J4, D
J5 J6

FIGURE P2.24

39. In the system shown in Figure P2.25, the inertia, J, of
radius, r, is constrained to move only about the station-
ary axis A. A viscous damping force of translational
value f v exists between the bodies J and M. If an
external force, f(t), is applied to the mass, find the
transfer function, GðsÞ ¼ uðsÞ=FðsÞ. [Sections: 2.5; 2.6]

K
fv

f(t)M
fv

θ
r

J
A

M

(t)

FIGURE P2.25

40. For the combined translational and rotational sys-
tem shown in Figure P2.26, find the transfer func-
tion, GðsÞ ¼ XðsÞ=TðsÞ. [Sections: 2.5; 2.6; 2.7]

D2 = 1 N-m-s/rad

3 kg-m2
N1 = 10

N4 = 60
N2 = 20

Radius = 2 m
1 N-m-s/rad J = 3 kg-m2

Ideal
gear 1:1

3 N/m2 N-s/m

T(t)

x(t)

N3 = 30

2 kg

FIGURE P2.26

41. Given the combined translational and
rotational system shown in Figure
P2.27, find the transfer function,
GðsÞ ¼ XðsÞ=TðsÞ. [Sections: 2.5; 2.6]

D3

J2Radius = r

K1 Ideal
gear 1:1

K2

M

fv

J1 J3

T(t)

x(t)

FIGURE P2.27

42. For the motor, load, and torque-speed curve shown
in Figure P2.28, find the transfer function,
GðsÞ ¼ uLðsÞ=EaðsÞ. [Section: 2.8]

  J2  = 18 kg-m2

N1 = 50

N2 = 150

Ra

ea(t)
θL(t)

+

D1 =  8 N-m-s/rad

D2 = 36 N-m-s/rad

T (N-m)

100

 50 V

150
    (rad/s)ω

θ
J1 = 5 kg-m2

–

FIGURE P2.28

43. The motor whose torque-speed characteristics are
shown in Figure P2.29 drives the load shown in the
diagram. Some of the gears have inertia. Find the
transfer function, GðsÞ ¼ u2ðsÞ=EaðsÞ. [Section: 2.8]

J = 2 kg-m2 2

N1 = 10

N2 = 20 N3 = 10

θ2

J    16 kg-m4
2

D = 32 N-m-s/rad

T(N-m)

5

RPM

5 V

600
π

J    1 kg-m1     = 2

J    2 kg-m3
2=

=

(t)
N4 = 20

ea(t) Motor
+

–

FIGURE P2.29
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44. A dc motor develops 55 N-m of torque at a speed
of 600 rad/s when 12 volts are applied. It stalls out
at this voltage with 100 N-m of torque. If the
inertia and damping of the armature are 7 kg-m2

and 3 N-m-s/rad, respectively, find the transfer
function, GðsÞ ¼ uLðsÞ=EaðsÞ, of this motor if it
drives an inertia load of 105 kg-m2 through a gear
train, as shown in Figure P2.30. [Section: 2.8]

N1 = 12

N2 = 25 N3 = 25

θL

θm

Load

(t)

(t)

N4 = 72

ea(t) Motor
+

–

FIGURE P2.30

45. In this chapter, we derived the
transfer function of a dc motor
relating the angular displace-
ment output to the armature
voltage input. Often we want to control the out-
put torque rather than the displacement. Derive
the transfer function of the motor that relates
output torque to input armature voltage.
[Section: 2.8]

46. Find the transfer function, GðsÞ ¼ XðsÞ=EaðsÞ, for
the system shown in Figure P2.31. [Sections: 2.5–2.8]

N2 = 20

Radius = 2 m

 D = 1 N-m-s/rad
N1 = 10ea(t)
J = 1 kg-m2

Ideal
gear 1:1

 fv = 1 N-s/m

x(t)Ja   = 1 kg-m2

Da  = 1 N-m-s/rad

Ra  = 1

Kb  = 1 V-s/rad

Kt  = 1 N-m/A

Ω

   M = 1 kg

Motor
+

For the motor:

–

FIGURE P2.31

47. Find the series and parallel analogs for the transla-
tional mechanical system shown in Figure 2.20 in the
text. [Section: 2.9]

48. Find the series and parallel analogs for the rota-
tional mechanical systems shown in Figure P2.16(b)
in the problems. [Section: 2.9]

49. A system’s output, c, is related to the system’s input,
r, by the straight-line relationship, c ¼ 5r þ 7. Is the
system linear? [Section: 2.10]

50. Consider the differential equation

d2x

dt2
þ 3

dx

dt
þ 2x ¼ f ðxÞ

where f(x) is the input and is a function of the
output, x. If f ðxÞ ¼ sinx, linearize the differential
equation for small excursions. [Section: 2.10]

a. x ¼ 0

b. x ¼ p

51. Consider the differential equation

d3x

dt3
þ 10

d2x

dt2
þ 31

dx

dt
þ 30x ¼ f ðxÞ

where f(x) is the input and is a function of the
output, x. If f ðxÞ ¼ e�x, linearize the differential
equation for x near 0. [Section: 2.10]

52. Many systems are piecewise linear. That is, over a
large range of variable values, the system can be
described linearly. A system with amplifier satura-
tion is one such example. Given the differential
equation

d2x

dt2
þ 17

dx

dt
þ 50x ¼ f ðxÞ

assume that f(x) is as shown in Figure P2.32. Write
the differential equation for each of the following
ranges of x: [Section: 2.10]

a. �1 < x < �3

b. �3 < x < 3

c. 3 < x < 1

–3 3

–6

6

x

f(x)

FIGURE P2.32
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53. For the translational mechanical system
with a nonlinear spring shown in Figure
P2.33, find the transfer function,
GðsÞ ¼ XðsÞ=FðsÞ, for small excursions
around f ðtÞ ¼ 1. The spring is defined by xsðtÞ ¼
1 � e�f sðtÞ, where xsðtÞ is the spring displacement
and f sðtÞ is the spring force. [Section: 2.10]

x(t)

f (t)

1 N-s/m

Nonlinear
spring

1 kg

FIGURE P2.33

54. Consider the restaurant plate dispenser shown in
Figure P2.34, which consists of a vertical stack of
dishes supported by a compressed spring. As each
plate is removed, the reduced weight on the
dispenser causes the remaining plates to rise.
Assume that the mass of the system minus the
top plate is M, the viscous friction between
the piston and the sides of the cylinder is f v,
the spring constant is K, and the weight of a
single plate is WD. Find the transfer function,
YðsÞ=FðsÞ, where F(s) is the step reduction in
force felt when the top plate is removed, and
Y(s) is the vertical displacement of the dispenser
in an upward direction.

Piston

y(t)

Plates

FIGURE P2.34 Plate dispenser

55. Each inner ear in a human has a set of three nearly
perpendicular semicircular canals of about 0.28 mm
in diameter filled with fluid. Hair-cell transducers

that deflect with skull movements and whose main
purpose is to work as attitude sensors as well as help
us maintain our sense of direction and equilibrium
are attached to the canals. As the hair cells move,
they deflect a waterproof flap called the cupula. It
has been shown that the skull and cupula move-
ments are related by the following equation (Mil-
sum, 1966):

J €fþ b _fþ kf ¼ ðaJÞ €c

where

J ¼ moment of inertia of the fluid in the
thin tube ðconstantÞ

b ¼ torque per unit relative angular velocity
ðconstantÞ

k ¼ torque per unit relative angular
displacement ðconstantÞ

a ¼ constant

fðtÞ ¼ angular deflection of the cupula ðoutputÞ
€cðtÞ ¼ skull’s angular acceleration ðinputÞ

Find the transfer function
FðsÞ
€CðsÞ.

56. Diabetes is an illness that has risen to epidemic propor-
tions, affecting about 3% of the total world population
in 2003. A differential equation model that describes
the total population size of diabetics is

dCðtÞ
dt

¼ �ðlþ mþ dþ g þ nÞCðtÞ þ lNðtÞ
dNðtÞ
dt

¼ �ðnþ dÞCðtÞ � mNðtÞ þ IðtÞ

with the initial conditions Cð0Þ ¼ C0 and Nð0Þ ¼ N0

and

IðtÞ ¼ the system input: the number of new
cases of diabetes

CðtÞ ¼ number of diabetics with complications
NðtÞ ¼ the system output: the total number of

diabetics with and without complications
m ¼ natural mortality rate ðconstantÞ
l ¼ probability of developing a complication

ðconstantÞ
d ¼ mortality rate due to complications

ðconstantÞ
n ¼ rate at which patients with complications

become severely disabled ðconstantÞ
g ¼ rate at which complications are cured

ðconstantÞ
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Assume the following values for parameters: n ¼ d ¼
0:05=yr; m ¼ 0:02=yr; g ¼ 0:08=yr; l ¼ 0:7, with ini-
tial conditions C0 ¼ 47,000,500 and N0 ¼, 61,100,500.
Assume also that diabetic incidence is constant IðtÞ ¼
I ¼ 6 � 106 (Boutayeb, 2004).

a. Draw a block diagram of the system showing the
output N(s), the input I(s), the transfer function,
and the initial conditions.

b. Use any method to find the analytic expression
for N(t) for t 	 0.

57. The circuit shown in Figure P2.35(a) is excited with
the pulse shown in Figure P2.35(b).

+
4 F

2 Ω

vo(t)

5 msec

Vin

3 V

t

vin(t)

(a) (b)

+

– –

FIGURE P2.35

The Laplace transform can be used to calculate voðtÞ
in two different ways: The ‘‘exact’’ method is per-
formed by writing viðtÞ ¼ 3½uðtÞ � uðt � 0:005Þ�,
from which we use the Laplace transform to obtain

VinðsÞ ¼ 3
1 � e�0:005s

s

(Hint: look at Item 5 in Table 2.2, the time shift
theorem.) In the second approach the pulse is approxi-
mated by an impulse input having the same area
(energy) as the original input. From Figure P2.35(b):
vinðtÞ � ð3 VÞð5 msecÞ dðtÞ ¼ 0:015dðtÞ. In this case,
VinðsÞ ¼ 0:015. This approximation can be used as
long as the width of the pulse of Figure P2.35(b) is
much smaller than the circuit’s smallest time constant.
(Here, t ¼ RC ¼ ð2VÞð4 FÞ ¼ 8 sec 
 5 msec.)

a. Assuming the capacitor is initially discharged,
obtain an analytic expression for voðtÞ using both
methods.

b. Plot the results of both methods using any means
available to you, and compare both outputs.
Discuss the differences.

58. In a magnetic levitation experiment a metallic ob-
ject is held up in the air suspended under an electro-
magnet. The vertical displacement of the object can

be described by the following nonlinear differential
equation (Galv~ao, 2003):

m
d2H

dt2
¼ mg� k

I2

H2

where

m¼ mass of the metallic object

g ¼ gravity acceleration constant

k ¼ a positive constant

H¼ distance between the electromagnet and
the metallic object ðoutput signalÞ

I ¼ electromagnet0s current ðinput signalÞ
a. Show that a system’s equilibrium will be achieved

when H0 ¼ I0

ffiffiffiffiffi
k
mg

q
.

b. Linearize the equation about the equilibrium
point found in Part a and show that the resulting
transfer function obtained from the linearized
differential equation can be expressed as

dHðsÞ
dIðsÞ ¼ � a

s2 � b2

with a > 0. Hint: to perform the linearization, define
dH ¼ HðtÞ �H0 and dI ¼ IðtÞ � I0; substitute into
the original equation. This will give

m
d2ðH0 þ dHÞ

dt2
¼ mg� k

ðI0 þ dIÞ2

ðH0 þ dHÞ2
¼ g

Now get a first-order Taylor’s series approximation on
the right-hand side of the equation. Namely, calculate

m
d2dH

dt2
¼ @g

@dH

����
dH¼0; dI¼0

dH þ @g

@dI

����
dH¼0; dI¼0

dI

59. Figure P2.36 shows a quarter-car model commonly
used for analyzing suspension systems. The car’s tire
is considered to act as a spring without damping, as
shown. The parameters of the model are (Lin, 1997)

Mb ¼ car’s body mass
Mus¼ wheel’s mass
Ka ¼ strut’s spring constant
Kt ¼ tire’s spring constant
f v ¼ strut’s damping constant
r ¼ road disturbance ðinputÞ
xs ¼ car’s vertical displacement
xw ¼ wheel’s vertical displacement
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Obtain the transfer function from the road distur-

bance to the car’s vertical displacement
XsðsÞ
RðsÞ .

Car Body

Mb fv Ka

Mus

xw

xs

kt
Wheel

r

O

FIGURE P2.36 Quarter-car model used for suspension design.
(# 1997 IEEE)

60. Enzymes are large proteins that biological systems
use to increase the rate at which reactions occur. For
example, food is usually composed of large mole-
cules that are hard to digest; enzymes break down
the large molecules into small nutrients as part of
the digestive process. One such enzyme is amylase,
contained in human saliva. It is commonly known
that if you place a piece of uncooked pasta in your
mouth its taste will change from paper-like to sweet
as amylase breaks down the carbohydrates into
sugars. Enzyme breakdown is often expressed by
the following relation:

Sþ E@
ks

k1

C!k1
P

In this expression a substrate (S) interacts with an
enzyme (E) to form a combined product (C) at a
rate k1. The intermediate compound is reversible
and gets disassociated at a rate k�1. Simultaneously
some of the compound is transformed into the final
product (P) at a rate k2. The kinetics describing this
reaction are known as the Michaelis-Menten equations
and consist of four nonlinear differential equations.
However, under some conditions these equations can
be simplified. Let E0 and S0 be the initial concentra-
tions of enzyme and substrate, respectively. It is gener-
ally accepted that under some energetic conditions or
when the enzyme concentration is very big ðE0 
 S0Þ,

the kinetics for this reaction are given by

dS

dt
¼ kcð eKsC � SÞ

dC

dt
¼ kcðS� eKM CÞ

dP

dt
¼ k2C

where the following constant terms are used
(Schnell, 2004) :

kc ¼ k1E0

eKs ¼ k� 1

kc
and eKM ¼ eKs þ k2

kc

a. Assuming the initial conditions for the reaction
are Sð0Þ ¼ S0; Eð0Þ ¼ E0; Cð0Þ ¼ Pð0Þ ¼ 0, find
the Laplace transform expressions for S, C, and
P: LfSg; LfCg, and LfPg, respectively.

b. Use the final theorem to find Sð1Þ; Cð1Þ, and
Pð1Þ.

61. Humans are able to stand on two legs through a
complex feedback system that includes several sensory
inputs—equilibrium and visual along with muscle ac-
tuation. In order to gain a better understanding of the
workings of the postural feedback mechanism, an
individual is asked to stand on a platform to which
sensors are attached at the base. Vibration actuators are
attached with straps to the individual’s calves. As the
vibration actuators are stimulated, the individual sways
and movements are recorded. It was hypothesized that
the human postural dynamics are analogous to those of
a cart with a balancing standing pole attached (inverted
pendulum). In that case, the dynamics can be described
by the following two equations:

J
d2u

dt2
¼ mgl sin uðtÞ þ Tbal þ TdðtÞ

TbalðtÞ ¼ �mgl sin uðtÞ þ kJuðtÞ � hJ _uðtÞ

�rJ

Z t

0

uðtÞdt

where m is the individual’s mass; l is the height of
the individual’s center of gravity; g is the gravita-
tional constant; J is the individual’s equivalent
moment of inertia; h; r, and k are constants given
by the body’s postural control system; uðtÞ is the
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individual’s angle with respect to a vertical line;
Tbal(t) is the torque generated by the body muscles
to maintain balance; and TdðtÞ is the external
torque input disturbance. Find the transfer func-

tion
QðsÞ
TdðsÞ (Johansson, 1988).

62. Figure P2.37 shows a crane hoisting a load. Al-
though the actual system’s model is highly non-
linear, if the rope is considered to be stiff with a
fixed length L, the system can be modeled using the
following equations:

mL€xLa¼ mLgf

mT€xT ¼ f T �mLgf

xLa ¼ xT � xL

xL ¼ Lf

where mL is the mass of the load, mT is the mass of the
cart, xT and xL are displacements as defined in the
figure, f is the rope angle with respect to the vertical,
and f T is the force applied to the cart (Marttinen, 1990).

a. Obtain the transfer function from cart velocity to

rope angle
FðsÞ
VTðsÞ.

b. Assume that the cart is driven at a constant
velocity V0 and obtain an expression for the
resulting fðtÞ. Show that under this condition,

the load will sway with a frequency v0 ¼
ffiffiffiffi
g

L

r
.

c. Find the transfer function from the applied force

to the cart’s position,
XTðsÞ
FTðsÞ .

d. Show that if a constant force is applied to the cart,
its velocity will increase without bound as t ! 1.

fT

L

mLxLa xL

f

x
mT

T

FIGURE P2.37 (# 1990 IEEE)

63. In 1978, Malthus developed a model for human
growth population that is also commonly used to
model bacterial growth as follows. Let N(t) be the
population density observed at time t. Let K be the

rate of reproduction per unit time. Neglecting pop-
ulation deaths, the population density at a time
t þ Dt (with small Dt) is given by

Nðt þ DtÞ � NðtÞ þKNðtÞDt
which also can be written as

Nðt þ DtÞ �NðtÞ
Dt

¼ KNðtÞ

Since N(t) can be considered to be a very large
number, letting Dt ! 0 gives the following differen-
tial equation (Edelstein-Keshet, 2005):

dNðtÞ
dt

¼ KNðtÞ

a. Assuming an initial population Nð0Þ ¼ N0, solve
the differential equation by finding N(t).

b. Find the time at which the population is double
the initial population.

64. Blood vessel blockages can in some instances be
diagnosed through noninvasive techniques such as
the use of sensitive microphones to detect flow
acoustic anomalies. In order to predict the sound
properties of the left coronary artery, a model has
been developed that partitions the artery into 14
segments, as shown in Figure P2.38(a).

(a)

1

2

3

4

5

6

78

9

10

11
12

13

14
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Pu P1

P6

P10

Q11

Q13Q14
P13 Z13

P14

P11
P12

P7

P8

Z7

Z9

P4

P4

P5

P2
P3

Q1

Q2

Q7

Q
4

Q
6

Q3

Q03
Z3

Z5

Z6

(c)

P1

Q1

R L

C

P2

(b)

Q2

FIGURE P2.38 (# 1990 IEEE)

Each segment is then modeled through the anal-
ogous electrical circuit of Figure P2.38(b), resulting
in the total model shown in Figure P2.38(c), where
eight terminal resistances (Z) have been added. In
the electrical model, pressure is analogous to volt-
age and blood flow is analogous to current. As an
example, for Segment 3 it was experimentally veri-
fied that R3 ¼ 4176V; C3 ¼ 0:98mF; L3 ¼ 140:6 H,
and Z3 ¼ 308; 163V (Wang, 1990).

a. For Segment 3, find the transfer function from

input pressure to blood flow through Z3;
Q03ðsÞ
P2ðsÞ .

b. It is well known in circuit analysis that if a
constant input is applied to a circuit such as
the one of Figure P2.38(b), the capacitor can be
substituted by an open circuit and the inductor
can be substituted by a short circuit as time
approaches infinity. Use this fact to calculate
the flow through Z3 after a constant unit pres-
sure pulse is applied and time approaches
infinity.

c. Verify the result obtained in Part b using the
transfer function obtained in Part a and applying
the final value theorem.

65. In order to design an underwater vehicle that has
the characteristics of both a long-range transit vehi-
cle (torpedo-like) and a highly maneuverable low-
speed vehicle (boxlike), researchers have developed
a thruster that mimics that of squid jet locomotion
(Krieg, 2008). It has been demonstrated there that
the average normalized thrust due to a command

step input, UðsÞ ¼ Tref^

s
, is given by:

TðtÞ ¼ Tref^ð1 � e�ltÞ þ a sinð2pf tÞ
where Tref^ is the reference or desired thrust, l is

the system’s damping constant, a is the amplitude of
the oscillation caused by the pumping action
of the actuator, f is the actuator frequency, and
T(t) is the average resulting normalized thrust. Find

the thruster’s transfer function
TðsÞ
UðsÞ. Show all steps.

66. The Gompertz growth model is commonly used to
model tumor cell growth. Let v(t) be the tumor’s
volume, then

dvðtÞ
dt

¼ le�atvðtÞ
where l and a are two appropriate constants
(Edelstein-Keshet, 2005).

a. Verify that the solution to this equation is given

by vðtÞ ¼ v0el=að1�e�atÞ, where v0 is the initial
tumor volume.

b. This model takes into account the fact that when
nutrients and oxygen are scarce at the tumor’s
core, its growth is impaired. Find the final pre-
dicted tumor volume (let t ! 1).

c. For a specific mouse tumor, it was experimen-
tally found that l ¼ 2:5 days; a ¼ 0:1 days with

v0 ¼ 50 � 10�3 mm3 (Chignola, 2005). Use any
method available to make a plot of v(t) vs. t.

d. Check the result obtained in Partbwith the results
from the graph from Part c.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
67. High-speed rail pantograph. Problem 21 in Chap-

ter 1 discusses active control of a pantograph
mechanism for high-speed rail systems. The dia-
gram for the pantograph and catenary coupling is
shown in Figure P2.39(a). Assume the simplified
model shown in Figure P2.39(b), where the catenary
is represented by the spring, Kave (O’Connor, 1997).
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a. Find the transfer function, G1ðsÞ ¼ YcatðsÞ=
FupðsÞ, where ycatðtÞ is the catenary displacement
and f upðtÞ is the upward force applied to the

pantograph under active control.

b. Find the transfer function G2ðsÞ ¼ YhðsÞ=FupðsÞ,
where yhðtÞ is the pantograph head displacement.

c. Find the transfer function, GðsÞ ¼ ðYhðsÞ�
YcatðsÞÞ=FupðsÞ.

68. Control of HIV/AIDS. HIV inflicts its damage by
infecting healthy CD4 þ T cells (a type of white
blood cell) that are necessary to fight infection. As
the virus embeds in a T cell and the immune system
produces more of these cells to fight the infection,
the virus propagates in an opportunistic fashion. As
we now develop a simple HIV model, refer to Figure
P2.40. Normally T cells are produced at a rate s and
die at a rate d. The HIV virus is present in the
bloodstream in the infected individual. These
viruses in the bloodstream, called free viruses, infect
healthy T cells at a rate b. Also, the viruses repro-
duce through the T cell multiplication process or
otherwise at a rate k. Free viruses die at a rate c.
Infected T cells die at a rate m.

s

Healthy cell Free virus Infected cell

d

k

β

c m

FIGURE P2.40 (# 2004 IEEE)

A simple mathematical model that illustrates
these interactions is given by the following equa-
tions (Craig, 2004):

dT

dt
¼ s� dT � bTv

dT�

dt
¼ bTv� mT�

dv

dt
¼ kT� � cv

Span
Messenger wire

Ks

Mh

Kh fvh

Mf

Contact wire
Pantograph shoe

Head mass

Head suspension

Frame mass

Frame

suspension

Direction
of travel

TowerTower

Mh = 9.1 kg

Mf = 17.2 kg

Kf fvf

fvf = 30 N-s/m

fvh = 130 N-s/m

Ks = 82.3 × 103 N/m

Kh = 7 × 103 N/m

Kave = 1.535 × 106 N/m

fup(t)

yf(t)

yh(t)

ycat(t)

Droppers

(b)(a)

FIGURE P2.39 a.Coupling of pantograph and catenary; b. simplified representation showing the active-control force (Reprinted
with permission of ASME.)
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where
T ¼ number of healthy T cells

T� ¼ number of infected T cells

v ¼ number of free viruses

a. The system is nonlinear; thus linearization is
necessary to find transfer functions as you will
do in subsequent chapters. The nonlinear nature
of this model can be seen from the above equa-
tions. Determine which of these equations are
linear, which are nonlinear, and explain why.

b. The system has two equilibrium points. Show
that these are given by

ðT0; T
�
0; v0Þ ¼ s

d
; 0; 0

� �

and

ðT0; T
�
0; v0Þ ¼ cm

bk
;
s

m
� cd

bk
;
sk

cm
� d

b

	 


69. Hybrid vehicle. Problem 23 in Chapter 1 discusses
the cruise control of serial, parallel, and split-
power hybrid electric vehicles (HEVs). The func-
tional block diagrams developed for these HEVs
indicated that the speed of a vehicle depends upon
the balance between the motive forces (developed
by the gasoline engine and/or the electric motor)
and running resistive forces. The resistive forces
include the aerodynamic drag, rolling resistance,
and climbing resistance. Figure P2.41 illustrates
the running resistances for a car moving uphill
(Bosch, 2007).

F
L

S

α

G

F
St

½ FRO

½ FRO

FIGURE P2.41 Running resistances

The total running resistance, Fw, is calculated as
Fw ¼ FRo þ FL þ FSt, where FRo is the rolling resist-
ance, FL is the aerodynamic drag, and FSt is the
climbing resistance. The aerodynamic drag is propor-
tional to the square of the sum of car velocity, v, and
the head-wind velocity, vhw, or vþ vhw. The other two
resistances are functions of car weight, G, and the
gradient of the road (given by the gradient angle, a),
as seen from the following equations:

FRo ¼ fG cos a ¼ fmg cos a

where

f ¼ coefficient of rolling resistance;

m ¼ car mass; in kg;

g ¼ gravitational acceleration; in m/s2:

FL ¼ 0:5rCwA vþ vhwð Þ2

where

r ¼ air density; in kg/m3;

Cw ¼ coefficient of aerodynamic drag;

A ¼ largest cross-section of the car; in kg/m2:

FSt ¼ G sina ¼ mg sin a

The motive force, F, available at the drive wheels
is:

F ¼ Titot
r

htot ¼
Phtot
v

where

T ¼ motive torque;

P ¼ motive power;

i tot ¼ total transmission ratio;

r ¼ tire radius;

htot ¼ total drive-train efficiency:

The surplus force, F � Fw, accelerates the vehicle (or

retards it whenFw > F). Lettinga ¼ F � Fw

km �m , wherea

is the acceleration and km is a coefficient that com-
pensates for the apparent increase in vehicle mass due
to rotating masses (wheels, flywheel, crankshaft, etc.):

a. Show that car acceleration,16 a, may be deter-
mined from the equation:

F ¼ fmg cosaþmg sinaþ 0:5rCwA vþ vhwð Þ2 þ km ma

16 Other quantities, such as top speed, climbing ability, etc., may also be
calculated by manipulation from that equation.

Problems 111



Apago PDF Enhancer

E1C02 11/03/2010 11:30:6 Page 112

b. Assuming constant acceleration and using the
average value for speed, find the average motive
force,Fav(inN),andpower,Pav(inkW)thecarneeds
to accelerate from 40 to 60 km/h in 4 seconds on a
level road, a ¼ 0�ð Þ, under windless conditions,
wherevhw ¼ 0. You are given the following parame-
ters: m ¼ 1590 kg, A ¼ 2 m2, f ¼ 0:011, r ¼
1:2 kg/m3,Cw ¼ 0:3,htot ¼ 0:9; km ¼ 1:2. Further-
more, calculate the additional power, Padd, the car
needs after reaching 60 km/h to maintain its speed
while climbing a hill with a gradient a ¼ 5�.

c. The equation derived in Part a describes the non-
linearcarmotiondynamicswhereF tð Þ is the input to
the system, and v tð Þ the resulting output. Given that
the aerodynamic drag is proportional to v2 under

windless conditions, linearize the resulting equation
of motion around an average speed, vo ¼ 50 km/h,
when the car travels on a level road,17 wherea ¼ 0�.
(Hint: Expand v2 � v2

0 in a truncated Taylor series).
Write thatequationofmotionandrepresent itwitha
block diagram in which the block Gv represents the
vehicle dynamics. The output of that block is the car
speed, v(t), and the input is the excess motive force,
Fe tð Þ, defined as: Fe ¼ F � FSt � FRo þ Fo, where
Fo the constant component of the linearized aerody-
namic drag.

d. Use the equation in Part c to find the vehicle
transfer function: Gv sð Þ ¼ V sð Þ=Fe sð Þ.

Cyber Exploration Laboratory

Experiment 2.1

Objectives To learn to use MATLAB to (1) generate polynomials, (2) manipu-
late polynomials, (3) generate transfer functions, (4) manipulate transfer functions,
and (5) perform partial-fraction expansions.

MinimumRequired Software Packages MATLAB and the Control System
Toolbox

Prelab

1. Calculate the following by hand or with a calculator:

a. The roots of P1 ¼ s6 þ 7s5 þ 2s4 þ 9s3 þ 10s2 þ 12sþ 15

b. The roots of P2 ¼ s6 þ 9s5 þ 8s4 þ 9s3 þ 12s2 þ 15sþ 20

c. P3 ¼ P1 þ P2; P4 ¼ P1 � P2; P5 ¼ P1P2

2. Calculate by hand or with a calculator the polynomial

P6 ¼ ðsþ 7Þðsþ 8Þðsþ 3Þðsþ 5Þðsþ 9Þðsþ 10Þ

3. Calculate by hand or with a calculator the following transfer functions:

a. G1ðsÞ ¼ 20ðsþ 2Þðsþ 3Þðsþ 6Þðsþ 8Þ
sðsþ 7Þðsþ 9Þðsþ 10Þðsþ 15Þ,

represented as a numerator polynomial divided by a denominator polynomial.

b. G2ðsÞ ¼ s4 þ 17s3 þ 99s2 þ 223sþ 140

s5 þ 32s4 þ 363s3 þ 2092s2 þ 5052sþ 4320
,

expressed as factors in the numerator divided by factors in the denominator,
similar to the form of G1ðsÞ in Prelab 3a.

c. G3ðsÞ ¼ G1ðsÞ þG2ðsÞ; G4ðsÞ ¼ G1ðsÞ �G2ðsÞ; G5ðsÞ ¼ G1ðsÞG2ðsÞ
expressed as factors divided by factors and expressed as polynomials divided
by polynomials.

17 Note that on a level road the climbing resistance is FSt ¼ 0,
since sina ¼ sin 0� ¼ 0.
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4. Calculate by hand or with a calculator the partial-fraction expansion of the
following transfer functions:

a. G6 ¼ 5ðsþ 2Þ
sðs2 þ 8sþ 15Þ

b. G7 ¼ 5ðsþ 2Þ
sðs2 þ 6sþ 9Þ

c. G8 ¼ 5ðsþ 2Þ
sðs2 þ 6sþ 34Þ

Lab

1. Use MATLAB to find P3, P4, and P5 in Prelab 1.

2. Use only one MATLAB command to find P6 in Prelab 2.

3. Use only two MATLAB commands to find G1ðsÞ in Prelab 3a represented as a
polynomial divided by a polynomial.

4. Use only two MATLAB commands to find G2(s) expressed as factors in the
numerator divided by factors in the denominator.

5. Using various combinations of G1ðsÞ and G2(s), find G3(s), G4ðsÞ, and G5ðsÞ.
Various combinations implies mixing and matching G1ðsÞ and G2(s) expressed as
factors and polynomials. For example, in finding G3(s), G1ðsÞ can be expressed in
factored form and G2(s) can be expressed in polynomial form. Another combi-
nation is G1ðsÞ and G2(s) both expressed as polynomials. Still another combina-
tion is G1ðsÞand G2(s) both expressed in factored form.

6. Use MATLAB to evaluate the partial fraction expansions shown in Prelab 4.

Postlab

1. Discuss your findings for Lab 5. What can you conclude?

2. Discuss the use of MATLAB to manipulate transfer functions and polynomials.
Discuss any shortcomings in using MATLAB to evaluate partial fraction expansions.

Experiment 2.2

Objectives To learn to use MATLAB and the Symbolic Math Toolbox to (1) find
Laplace transforms for time functions, (2) find time functions from Laplace trans-
forms, (3) create LTI transfer functions from symbolic transfer functions, and (4)
perform solutions of symbolic simultaneous equations.

Minimum Required Software Packages MATLAB, the Symbolic
Math Toolbox, and the Control System Toolbox

Prelab

1. Using a hand calculation, find the Laplace transform of:

f ðtÞ ¼ 0:0075 � 0:00034e�2:5t cosð22tÞ þ 0:087e�2:5t sinð22tÞ � 0:0072e�8t

2. Using a hand calculation, find the inverse Laplace transform of

FðsÞ ¼ 2ðsþ 3Þðsþ 5Þðsþ 7Þ
sðsþ 8Þðs2 þ 10sþ 100Þ

3. Use a hand calculation to solve the circuit for the loop currents shown in
Figure P2.42.

+
–V(t)

1
 F

5
1 H

1 H 2 Ω

2 Ω

5 Ω

1 F
3

1 Ω
1 F
4

3(t)i

1(t)i 2(t)i

FIGURE P2.42
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Lab

1. Use MATLAB and the Symbolic Math Toolbox to

a. Generate symbolically the time function f(t) shown in Prelab 1.

b. Generate symbolically F(s) shown in Prelab 2. Obtain your result symboli-
cally in both factored and polynomial forms.

c. Find the Laplace transform of f(t) shown in Prelab 1.

d. Find the inverse Laplace transform of F(s) shown in Prelab 2.

e. Generate an LTI transfer function for your symbolic representation of F(s) in
Prelab 2 in both polynomial form and factored form. Start with the F(s) you
generated symbolically.

f. Solve for the loop currents in Prelab 3.

Postlab

1. Discuss the advantages and disadvantages between the Symbolic Math Toolbox
and MATLAB alone to convert a transfer function from factored form to
polynomial form and vice versa.

2. Discuss the advantages and disadvantages of using the Symbolic Math Toolbox to
generate LTI transfer functions.

3. Discuss the advantages of using the Symbolic Math Toolbox to solve simulta-
neous equations of the type generated by the electrical network in Prelab 3. Is it
possible to solve the equations via MATLAB alone? Explain.

4. Discuss any other observations you had using the Symbolic Math Toolbox.

Experiment 2.3

Objective To learn to use LabVIEW to generate and manipulate polynomials
and transfer functions.

Minimum Required Software Packages LabVIEW and the LabVIEW
Control Design and Simulation Module.

Prelab

1. Study Appendix D, Sections D.1 through Section D.4, Example D.1.

2. Perform by hand the calculations stated in Prelab 1 of Experiment 2.1.

3. Find by a hand calculation the polynomial whose roots are: �7;�8;�3;�5;
�9; and �10.

4. Perform by hand a partial-fraction expansion of G sð Þ ¼ 5sþ 10

s3 þ 8s2 þ 15s
.

5. Find by a hand calculation G1 sð Þ þG2 sð Þ; G1 sð Þ �G2 sð Þ; and G1 sð ÞG2 sð Þ, where

G1 sð Þ ¼ 1

s2 þ sþ 2
and G2 sð Þ ¼ sþ 1

s2 þ 4sþ 3
.

Lab

1. Open the LabVIEW functions palette and select theMathematics/Polynomialpalette.

2. Generate the polynomials enumerated in Prelab 1a and lb of Experiment 2.1.

3. Generate the polynomial operations stated in Prelab 1c of Experiment 2.1.

4. Generate a polynomial whose roots are those stated in Prelab 3 of this experiment.
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5. Generate the partial fraction expansion of the transfer function given in Prelab 4
of this experiment.

6. Using the Control Design and Simulation/Control Design/Model Construction
palette, construct the two transfer functions enumerated in Prelab 5.

7. Using the Control Design and Simulation/Control Design/Model Inter-
connection palette, display the results of the mathematical operations enumer-
ated in Prelab 5 of this experiment.

Postlab
1. Compare the polynomial operations obtained in Lab 3 to those obtained in

Prelab 2.
2. Compare the polynomial displayed in Lab 4 with that calculated in Prelab 3.
3. Compare the partial-fraction expansion obtained in Lab 5 with that calculated in

Prelab 4.
4. Compare the results of the mathematical operations found in Lab 7 to those

calculated in Prelab 5.
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Modeling in the Time Domain

3

This chapter covers only state-space methods.

Chapter Learning Outcomes

After completing this chapter, the student will be able to:

� Find a mathematical model, called a state-space representation, for a linear, time-
invariant system (Sections 3.1–3.3)

� Model electrical and mechanical systems in state space (Section 3.4)

� Convert a transfer function to state space (Section 3.5)

� Convert a state-space representation to a transfer function (Section 3.6)

� Linearize a state-space representation (Section 3.7)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the state-space representation of each subsystem.

� Given adescriptionof thewaya pharmaceutical drug flows through ahumanbeing, you
will be able to find the state-space representation to determine drug concentrations in
specified compartmentalized blocks of the process and of the humanbody. Youwill also
be able to apply the same concepts to an aquifer to find water level.
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3.1 Introduction

Two approaches are available for the analysis and design of feedback control
systems. The first, which we began to study in Chapter 2, is known as the classical,
or frequency-domain, technique. This approach is based on converting a system’s
differential equation to a transfer function, thus generating a mathematical model of
the system that algebraically relates a representation of the output to a representa-
tion of the input. Replacing a differential equation with an algebraic equation not
only simplifies the representation of individual subsystems but also simplifies
modeling interconnected subsystems.

The primary disadvantage of the classical approach is its limited applicability:
It can be applied only to linear, time-invariant systems or systems that can be
approximated as such.

A major advantage of frequency-domain techniques is that they rapidly
provide stability and transient response information. Thus, we can immediately
see the effects of varying system parameters until an acceptable design is met.

With the arrival of space exploration, requirements for control systems
increased in scope. Modeling systems by using linear, time-invariant differential
equations and subsequent transfer functions became inadequate. The state-space
approach (also referred to as the modern, or time-domain, approach) is a unified
method for modeling, analyzing, and designing a wide range of systems. For example,
the state-space approach can be used to represent nonlinear systems that have
backlash, saturation, and dead zone. Also, it can handle, conveniently, systems with
nonzero initial conditions. Time-varying systems, (for example, missiles with varying
fuel levels or lift in an aircraft flying through a wide range of altitudes) can be
represented in state space. Many systems do not have just a single input and a single
output. Multiple-input, multiple-output systems (such as a vehicle with input
direction and input velocity yielding an output direction and an output velocity)
can be compactly represented in state space with a model similar in form and
complexity to that used for single-input, single-output systems. The time-domain
approach can be used to represent systems with a digital computer in the loop or to
model systems for digital simulation. With a simulated system, system response can
be obtained for changes in system parameters—an important design tool. The state-
space approach is also attractive because of the availability of numerous state-space
software packages for the personal computer.

The time-domain approach can also be used for the same class of systems
modeled by the classical approach. This alternate model gives the control systems
designer another perspective from which to create a design. While the state-space
approach can be applied to a wide range of systems, it is not as intuitive as the classical
approach. The designer has to engage in several calculations before the physical
interpretation of the model is apparent, whereas in classical control a few quick
calculations or a graphic presentation of data rapidly yields the physical interpretation.

In this book, the coverage of state-space techniques is to be regarded as an
introduction to the subject, a springboard to advanced studies, and an alternate
approach to frequency-domain techniques. We will limit the state-space approach to
linear, time-invariant systems or systems that can be linearized by the methods of
Chapter 2. The study of other classes of systems is beyond the scope of this book.
Since state-space analysis and design rely on matrices and matrix operations, you
may want to review this topic in Appendix G, located at www.wiley.com/college/nise,
before continuing.
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3.2 Some Observations

We proceed now to establish the state-space approach as an alternate method for
representing physical systems. This section sets the stage for the formal definition of
the state-space representation by making some observations about systems and their
variables. In the discussion that follows, some of the development has been placed in
footnotes to avoid clouding the main issues with an excess of equations and to ensure
that the concept is clear. Although we use two electrical networks to illustrate the
concepts, we could just as easily have used a mechanical or any other physical
system.

We now demonstrate that for a system with many variables, such as inductor
voltage, resistor voltage, and capacitor charge, we need to use differential equations
only to solve for a selected subset of system variables because all other remaining
system variables can be evaluated algebraically from the variables in the subset. Our
examples take the following approach:

1. We select a particular subset of all possible system variables and call the variables
in this subset state variables.

2. For an nth-order system, we write n simultaneous, first-order differential equations
in terms of the state variables. We call this system of simultaneous differential
equations state equations.

3. If we know the initial condition of all of the state variables at t0 as well as the
system input for t � t0, we can solve the simultaneous differential equations for
the state variables for t � t0.

4. We algebraically combine the state variables with the system’s input and find all of
the other system variables for t � t0. We call this algebraic equation the output
equation.

5. We consider the state equations and the output equations a viable representation of
the system. We call this representation of the system a state-space representation.

Let us now follow these steps through an example. Consider the RL network shown
in Figure 3.1 with an initial current of i(0).

1. We select the current, i(t), for which we will write and solve a differential equation
using Laplace transforms.

2. We write the loop equation,

L
di

dt
þ Ri ¼ vðtÞ ð3:1Þ

3. Taking the Laplace transform, using Table 2.2, Item 7, and including the initial
conditions, yields

L½sIðsÞ � ið0Þ� þ RIðsÞ ¼ VðsÞ ð3:2Þ
Assuming the input, v(t), to be a unit step, u(t), whose Laplace transform is
VðsÞ ¼ 1=s, we solve for I(s) and get

IðsÞ ¼ 1

R

1

s
� 1

sþ R

L

0
B@

1
CAþ ið0Þ

sþ R

L

ð3:3Þ

Lv(t)
i(t)

R

+
–

FIGURE 3.1 RL network
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from which

iðtÞ ¼ 1

R

�
1 � e�ðR=LÞt

�
þ ið0Þe�ðR=LÞt ð3:4Þ

The function i(t) is a subset of all possible network variables that we are able to
find from Eq. (3.4) if we know its initial condition, i(0), and the input, v(t). Thus,
i(t) is a state variable, and the differential equation (3.1) is a state equation.

4. We can now solve for all of the other network variables algebraically in terms of
i(t) and the applied voltage, v(t). For example, the voltage across the resistor is

vRðtÞ ¼ RiðtÞ ð3:5Þ
The voltage across the inductor is

vLðtÞ ¼ vðtÞ � RiðtÞ ð3:6Þ1

The derivative of the current is

di

dt
¼ 1

L
½vðtÞ � RiðtÞ� ð3:7Þ2

Thus, knowing the state variable, i(t), and the input, v(t), we can find the value, or
state, of any network variable at any time, t � t0. Hence, the algebraic equations,
Eqs. (3.5) through (3.7), are output equations.

5. Since the variables of interest are completely described by Eq. (3.1) and Eqs. (3.5)
through (3.7), we say that the combined state equation (3.1) and the output
equations (3.5 through 3.7) form a viable representation of the network, which we
call a state-space representation.

Equation (3.1), which describes the dynamics of the network, is not unique.
This equation could be written in terms of any other network variable. For example,
substituting i ¼ vR=R into Eq. (3.1) yields

L

R

dvR
dt

þ vR ¼ vðtÞ ð3:8Þ

which can be solved knowing that the initial condition vRð0Þ ¼ Rið0Þ and
knowing v(t). In this case, the state variable is vR(t). Similarly, all other
network variables can now be written in terms of the state variable, vR(t),
and the input, v(t). Let us now extend our observations to a second-order
system, such as that shown in Figure 3.2.

1. Since the network is of second order, two simultaneous, first-order differential
equations are needed to solve for two state variables. We select i(t) and q(t), the
charge on the capacitor, as the two state variables.

2. Writing the loop equation yields

L
di

dt
þ Riþ 1

C

Z
i dt ¼ vðtÞ ð3:9Þ

C

LR

v(t)
i(t)

+
–

FIGURE 3.2 RLC network

1 Since vLðtÞ ¼ vðtÞ � vRðtÞ ¼ vðtÞ � RiðtÞ.
2 Since

di

dt
¼ 1

L
vLðtÞ ¼ 1

L
½vðtÞ � RiðtÞ�.
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Converting to charge, using iðtÞ ¼ dq=dt, we get

L
d2q

dt2
þ R

dq

dt
þ 1

C
q ¼ vðtÞ ð3:10Þ

But an nth-order differential equation can be converted to n simultaneous
first-order differential equations, with each equation of the form

dxi
dt

¼ ai1x1 þ ai2x2 þ � � � þ ainxn þ bi f ðtÞ ð3:11Þ

where each xi is a state variable, and the aij’s and bi are constants for linear, time-
invariant systems. We say that the right-hand side of Eq. (3.11) is a linear
combination of the state variables and the input, f(t).

We can convert Eq. (3.10) into two simultaneous, first-order differential
equations in terms of i(t) and q(t). The first equation can be dq=dt ¼ i. The
second equation can be formed by substituting

R
i dt ¼ q into Eq. (3.9) and solving

for di/dt. Summarizing the two resulting equations, we get

dq

dt
¼ i ð3:12aÞ

di

dt
¼ � 1

LC
q� R

L
iþ 1

L
vðtÞ ð3:12bÞ

3. These equations are the state equations and can be solved simultaneously for the
state variables, q(t) and i(t), using the Laplace transform and the methods of
Chapter 2, if we know the initial conditions for q(t) and i(t) and if we know v(t),
the input.

4. From these two state variables, we can solve for all other network variables. For
example, the voltage across the inductor can be written in terms of the solved state
variables and the input as

vLðtÞ ¼ � 1

C
qðtÞ � RiðtÞ þ vðtÞ ð3:13Þ3

Equation (3.13) is an output equation; we say that vL(t) is a linear combination of
the state variables, q(t) and i(t), and the input, v(t).

5. The combined state equations (3.12) and the output equation (3.13) form a viable
representation of the network, which we call a state-space representation.

Another choice of two state variables can be made, for example, vR(t) and
vC(t), the resistor and capacitor voltage, respectively. The resulting set of simul-
taneous, first-order differential equations follows:

dvR
dt

¼ �R

L
vR � R

L
vC þ R

L
vðtÞ ð3:14aÞ4

dvC
dt

¼ 1

RC
vR ð3:14bÞ

3 Since vLðtÞ ¼ Lðdi=dtÞ ¼ �ð1=CÞq� Riþ vðtÞ, where di/dt can be found from Eq. (3.9), and
R
i dt ¼ q.

4 Since vRðtÞ ¼ iðtÞR, and vCðtÞ ¼ ð1=CÞ R i dt, differentiating vR(t) yields dvR=dt ¼ Rðdi=dtÞ ¼ ðR=LÞvL ¼
ðR=LÞ½vðtÞ � vR � vC�, and differentiating vC (t) yields dvC=dt ¼ ð1=CÞi ¼ ð1=RCÞvR.
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Again, these differential equations can be solved for the state variables if we know
the initial conditions along with v(t). Further, all other network variables can be
found as a linear combination of these state variables.

Is there a restriction on the choice of state variables? Yes! Typically, the
minimum number of state variables required to describe a system equals the
order of the differential equation. Thus, a second-order system requires a
minimum of two state variables to describe it. We can define more state variables
than the minimal set; however, within this minimal set the state variables must be
linearly independent. For example, if vR(t) is chosen as a state variable, then i(t)
cannot be chosen, because vR(t) can be written as a linear combination of i(t),
namely vRðtÞ ¼ RiðtÞ. Under these circumstances we say that the state variables
are linearly dependent. State variables must be linearly independent; that is, no
state variable can be written as a linear combination of the other state variables,
or else we would not have enough information to solve for all other system
variables, and we could even have trouble writing the simultaneous equations
themselves.

The state and output equations can be written in vector-matrix form if the
system is linear. Thus, Eq. (3.12), the state equations, can be written as

_x ¼ Axþ Bu ð3:15Þ

where

_x ¼ dq=dt

di=dt

� �
; A ¼ 0 1

�1=LC �R=L

� �

x ¼ q

i

� �
; B ¼ 0

1=L

� �
; u ¼ vðtÞ

Equation (3.13), the output equation, can be written as

y ¼ CxþDu ð3:16Þ

where

y ¼ vLðtÞ; C ¼ ½�1=C �R �; x ¼ q
i

� �
; D ¼ 1; u ¼ vðtÞ

We call the combination of Eqs. (3.15) and (3.16) a state-space representation of the
network of Figure 3.2. A state-space representation, therefore, consists of (1) the
simultaneous, first-order differential equations from which the state variables can be
solved and (2) the algebraic output equation from which all other system variables
can be found. A state-space representation is not unique, since a different choice of
state variables leads to a different representation of the same system.

In this section, we used two electrical networks to demonstrate some principles
that are the foundation of the state-space representation. The representations
developed in this section were for single-input, single-output systems, where y,D,
and u in Eqs. (3.15) and (3.16) are scalar quantities. In general, systems have multiple
inputs and multiple outputs. For these cases, y and u become vector quantities, and D
becomes a matrix. In Section 3.3 we will generalize the representation for multiple-
input, multiple-output systems and summarize the concept of the state-space
representation.
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3.3 The General State-Space
Representation

Now that we have represented a physical network in state space and have a good
idea of the terminology and the concept, let us summarize and generalize the
representation for linear differential equations. First, we formalize some of the
definitions that we came across in the last section.

Linear combination. A linear combination of n variables, xi, for i ¼ 1 to n, is
given by the following sum, S:

S ¼ Knxn þKn�1xn�1 þ � � � þK1x1 ð3:17Þ
where each Ki is a constant.

Linear independence. A set of variables is said to be linearly independent if
none of the variables can be written as a linear combination of the others. For
example, given x1, x2, and x3, if x2 ¼ 5x1 þ 6x3, then the variables are not linearly
independent, since one of them can be written as a linear combination of the other
two. Now, what must be true so that one variable cannot be written as a linear
combination of the other variables? Consider the example K2x2 ¼ K1x1 þK3x3. If
no xi ¼ 0, then any xi can be written as a linear combination of other variables, unless
all Ki ¼ 0. Formally, then, variables xi, for i ¼ 1 to n, are said to be linearly
independent if their linear combination, S, equals zero only if every Ki ¼ 0 and
no xi ¼ 0 for all t � 0.

System variable. Any variable that responds to an input or initial conditions in a
system.

State variables. The smallest set of linearly independent system variables such
that the values of the members of the set at time t0 along with known forcing
functions completely determine the value of all system variables for all t � t0.

State vector. A vector whose elements are the state variables.
State space. The n-dimensional space whose axes are the state

variables. This is a new term and is illustrated in Figure 3.3, where the
state variables are assumed to be a resistor voltage, vR, and a capacitor
voltage, vC. These variables form the axes of the state space. A
trajectory can be thought of as being mapped out by the state vector,
x(t), for a range of t. Also shown is the state vector at the particular
time t ¼ 4.

State equations. A set of n simultaneous, first-order differential
equations with n variables, where the n variables to be solved are the
state variables.

Output equation. The algebraic equation that expresses the out-
put variables of a system as linear combinations of the state variables
and the inputs.

Now that the definitions have been formally stated, we define the
state-space representation of a system. A system is represented in state
space by the following equations:

_x ¼ Axþ Bu ð3:18Þ

y ¼ CxþDu ð3:19Þ

vC

vR

State space

State vector, x(t)

State vector trajectory

State vector, x(4)

FIGURE 3.3 Graphic representation of state
space and a state vector
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for t � t0 and initial conditions, x(t0), where

x ¼ state vector

x_ ¼ derivative of the state vector with respect to time

y ¼ output vector

u ¼ input or control vector

A ¼ system matrix

B ¼ input matrix

C ¼ output matrix

D ¼ feedforward matrix

Equation (3.18) is called the state equation, and the vector x, the state vector, contains
the state variables. Equation (3.18) can be solved for the state variables, which we
demonstrate in Chapter 4. Equation (3.19) is called the output equation. This
equation is used to calculate any other system variables. This representation of a
system provides complete knowledge of all variables of the system at any t � t0.

As an example, for a linear, time-invariant, second-order system with a single
input v(t), the state equations could take on the following form:

dx1

dt
¼ a11x1 þ a12x2 þ b1vðtÞ ð3:20aÞ

dx2

dt
¼ a21x1 þ a22x2 þ b2vðtÞ ð3:20bÞ

where x1 and x2 are the state variables. If there is a single output, the output equation
could take on the following form:

y ¼ c1x1 þ c2x2 þ d1vðtÞ ð3:21Þ
The choice of state variables for a given system is not unique. The requirement in
choosing the state variables is that they be linearly independent and that a minimum
number of them be chosen.

3.4 Applying the State-Space Representation

In this section, we apply the state-space formulation to the representation of more
complicated physical systems. The first step in representing a system is to select the
state vector, which must be chosen according to the following considerations:

1. A minimum number of state variables must be selected as components of the state
vector. This minimum number of state variables is sufficient to describe com-
pletely the state of the system.

2. The components of the state vector (that is, this minimum number of state
variables) must be linearly independent.

Let us review and clarify these statements.

Linearly Independent State Variables
The components of the state vector must be linearly independent. For example,
following the definition of linear independence in Section 3.3, if x1, x2, and x3 are
chosen as state variables, but x3 ¼ 5x1 þ 4x2, then x3 is not linearly independent of x1
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and x2, since knowledge of the values of x1 and x2 will yield the value of x3. Variables
and their successive derivatives are linearly independent. For example, the voltage
across an inductor, vL, is linearly independent of the current through the inductor, iL,
since vL ¼ LdiL=dt. Thus, vL cannot be evaluated as a linear combination of the
current, iL.

Minimum Number of State Variables
How do we know the minimum number of state variables to select? Typically, the
minimum number required equals the order of the differential equation describing
the system. For example, if a third-order differential equation describes the system,
then three simultaneous, first-order differential equations are required along with
three state variables. From the perspective of the transfer function, the order of the
differential equation is the order of the denominator of the transfer function after
canceling common factors in the numerator and denominator.

In most cases, another way to determine the number of state variables is to
count the number of independent energy-storage elements in the system.5 The
number of these energy-storage elements equals the order of the differential
equation and the number of state variables. In Figure 3.2 there are two energy-
storage elements, the capacitor and the inductor. Hence, two state variables and two
state equations are required for the system.

If too few state variables are selected, it may be impossible to write particular
output equations, since some system variables cannot be written as a linear
combination of the reduced number of state variables. In many cases, it may be
impossible even to complete the writing of the state equations, since the derivatives
of the state variables cannot be expressed as linear combinations of the reduced
number of state variables.

If you select the minimum number of state variables but they are not linearly
independent, at best you may not be able to solve for all other system variables. At
worst you may not be able to complete the writing of the state equations.

Often the state vector includes more than the minimum number of state
variables required. Two possible cases exist. Often state variables are chosen to be
physical variables of a system, such as position and velocity in a mechanical system.
Cases arise where these variables, although linearly independent, are also decoupled.
That is, some linearly independent variables are not required in order to solve for
any of the other linearly independent variables or any other dependent system
variable. Consider the case of a mass and viscous damper whose differential
equation is Mdv=dt þDv ¼ f ðtÞ, where v is the velocity of the mass. Since this is
a first-order equation, one state equation is all that is required to define this system
in state space with velocity as the state variable. Also, since there is only one
energy-storage element, mass, only one state variable is required to repre-
sent this system in state space. However, the mass also has an associated
position, which is linearly independent of velocity. If we want to include
position in the state vector along with velocity, then we add position as a state
variable that is linearly independent of the other state variable, velocity.
Figure 3.4 illustrates what is happening. The first block is the transfer

F(s) V(s) X(s)
1
M

D
M

s +

1
s

FIGURE 3.4 Block diagram of a mass
and damper

5 Sometimes it is not apparent in a schematic how many independent energy-storage elements there are. It
is possible that more than the minimum number of energy-storage elements could be selected, leading to a
state vector whose components number more than the minimum required and are not linearly indepen-
dent. Selecting additional dependent energy-storage elements results in a system matrix of higher order
and more complexity than required for the solution of the state equations.
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function equivalent to M dvðtÞ=dt þDvðtÞ ¼ f ðtÞ. The second block shows that we
integrate the output velocity to yield output displacement (see Table 2.2, Item 10).
Thus, if we want displacement as an output, the denominator, or characteristic
equation, has increased in order to 2, the product of the two transfer functions. Many
times, the writing of the state equations is simplified by including additional state
variables.

Another case that increases the size of the state vector arises when the added
variable is not linearly independent of the other members of the state vector. This
usually occurs when a variable is selected as a state variable but its dependence on
the other state variables is not immediately apparent. For example, energy-storage
elements may be used to select the state variables, and the dependence of the
variable associated with one energy-storage element on the variables of other
energy-storage elements may not be recognized. Thus, the dimension of the system
matrix is increased unnecessarily, and the solution for the state vector, which we
cover in Chapter 4, is more difficult. Also, adding dependent state variables affects
the designer’s ability to use state-space methods for design.6

We saw in Section 3.2 that the state-space representation is not unique. The
following example demonstrates one technique for selecting state variables and
representing a system in state space. Our approach is to write the simple derivative
equation for each energy-storage element and solve for each derivative term as a
linear combination of any of the system variables and the input that are present in
the equation. Next we select each differentiated variable as a state variable. Then we
express all other system variables in the equations in terms of the state variables and
the input. Finally, we write the output variables as linear combinations of the state
variables and the input.

Example 3.1

Representing an Electrical Network

PROBLEM: Given the electrical network of Figure 3.5, find a state-space repre-
sentation if the output is the current through the resistor.

SOLUTION: The following steps will yield a viable representation of the network in
state space.

Step 1 Label all of the branch currents in the network. These include iL, iR, and iC,
as shown in Figure 3.5.

FIGURE 3.5 Electrical
network for representation in
state space

Node 1

C

L

R

iC(t)
iR(t)

iL

v(t)

(t)

+
–

6 See Chapter 12 for state-space design techniques.
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Step 2 Select the state variables by writing the derivative equation for all energy-
storage elements, that is, the inductor and the capacitor. Thus,

C
dvC
dt

¼ iC ð3:22Þ

L
diL
dt

¼ vL ð3:23Þ

From Eqs. (3.22) and (3.23), choose the state variables as the quantities that
are differentiated, namely vC and iL. Using Eq. (3.20) as a guide, we see that the
state-space representation is complete if the right-hand sides of Eqs. (3.22) and
(3.23) can be written as linear combinations of the state variables and the input.

Since iC and vL are not state variables, our next step is to express iC and vL as
linear combinations of the state variables, vC and iL, and the input, v(t).

Step 3 Apply network theory, such as Kirchhoff’s voltage and current laws, to
obtain iC and vL in terms of the state variables, vC and iL. At Node 1,

iC ¼ �iR þ iL

¼ � 1

R
vC þ iL

ð3:24Þ

which yields iC in terms of the state variables, vC and iL.
Around the outer loop,

vL ¼ �vC þ vðtÞ ð3:25Þ
which yields vL in terms of the state variable, vC, and the source, v(t).

Step 4 Substitute the results of Eqs. (3.24) and (3.25) into Eqs. (3.22) and (3.23) to
obtain the following state equations:

C
dvC
dt

¼ � 1

R
vC þ iL ð3:26aÞ

L
diL
dt

¼ �vC þ vðtÞ ð3:26bÞ

or
dvC
dt

¼ � 1

RC
vC þ 1

C
iL ð3:27aÞ

diL
dt

¼ � 1

L
vC þ 1

L
vðtÞ ð3:27bÞ

Step 5 Find the output equation. Since the output is iR(t),

iR ¼ 1

R
vC ð3:28Þ

The final result for the state-space representation is found by representing
Eqs. (3.27) and (3.28) in vector-matrix form as follows:

_vC
_iL

" #
¼ �1=ðRCÞ 1=C

�1=L 0

" #
vC

iL

" #
þ 0

1=L

" #
vðtÞ ð3:29aÞ

iR ¼ ½ 1=R 0 � vC

iL

" #
ð3:29bÞ

where the dot indicates differentiation with respect to time.
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In order to clarify the representation of physical systems in state space, we will
look at two more examples. The first is an electrical network with a dependent
source. Although we will follow the same procedure as in the previous problem, this
problem will yield increased complexity in applying network analysis to find the
state equations. For the second example, we find the state-space representation of a
mechanical system.

Example 3.2

Representing an Electrical Network with a Dependent Source

PROBLEM: Find the state and output equations for the electrical network shown in
Figure 3.6 if the output vector is y ¼ ½ vR2 iR2 �T, where T means transpose.7

SOLUTION: Immediately notice that this network has a voltage-dependent current
source.

Step 1 Label all of the branch currents on the network, as shown in Figure 3.6.

Step 2 Select the state variables by listing the voltage-current relationships for all
of the energy-storage elements:

L
diL
dt

¼ vL ð3:30aÞ

C
dvC
dt

¼ iC ð3:30bÞ

From Eqs. (3.30) select the state variables to be the differentiated variables. Thus,
the state variables, x1 and x2, are

x1 ¼ iL; x2 ¼ vC ð3:31Þ
Step 3 Remembering that the form of the state equation is

_x ¼ Axþ Bu ð3:32Þ
we see that the remaining task is to transform the right-hand side of Eq. (3.30)
into linear combinations of the state variables and input source current. Using
Kirchhoff’s voltage and current laws, we find vL and iC in terms of the state
variables and the input current source.

FIGURE 3.6 Electrical
network for Example 3.2

C

R1

iR1
(t)

L

Node 1 Node 2+ –

i(t)

iL(t)

iC(t)

iR2
(t)

R2
4vL(t)

7 See Appendix G for a discussion of the transpose. Appendix G is located at www.wiley.com/college/nise.
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Around the mesh containing L and C,

vL ¼ vC þ vR2 ¼ vC þ iR2R2 ð3:33Þ
But at Node 2, iR2 ¼ iC þ 4vL. Substituting this relationship for iR2 into Eq. (3.33) yields

vL ¼ vC þ ðiC þ 4vLÞR2 ð3:34Þ
Solving for vL, we get

vL ¼ 1

1 � 4R2
ðvC þ iCR2Þ ð3:35Þ

Notice that since vC is a state variable, we only need to find iC in terms of the state
variables. We will then have obtained vL in terms of the state variables.

Thus, at Node 1 we can write the sum of the currents as

iC ¼ iðtÞ � iR1 � iL

¼ iðtÞ � vR1

R1
� iL

¼ iðtÞ � vL
R1

� iL ð3:36Þ

where vR1 ¼ vL. Equations (3.35) and (3.36) are two equations relating vL and iC in
terms of the state variables iL and vC. Rewriting Eqs. (3.35) and (3.36), we obtain
two simultaneous equations yielding vL and iC as linear combinations of the state
variables iL and vC:

ð1 � 4R2ÞvL � R2iC ¼ vC ð3:37aÞ

� 1

R1
vL � iC ¼ iL � iðtÞ ð3:37bÞ

Solving Eq. (3.37) simultaneously for vL and iC yields

vL ¼ 1

D
½R2iL � vC � R2iðtÞ� ð3:38Þ

and

iC ¼ 1

D
ð1 � 4R2ÞiL þ 1

R1
vC � ð1 � 4R2ÞiðtÞ

� �
ð3:39Þ

where

D ¼ � ð1 � 4R2Þ þ R2

R1

� �
ð3:40Þ

Substituting Eqs. (3.38) and (3.39) into (3.30), simplifying, and writing the result in
vector-matrix form renders the following state equation:

_iL
_vC

� �
¼ R2=ðLDÞ �1=ðLDÞ

ð1 � 4R2Þ=ðCDÞ 1=ðR1CDÞ
� �

iL
vC

� �

þ �R2=ðLDÞ
�ð1 � 4R2Þ=ðCDÞ
� �

iðtÞ ð3:41Þ
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Step 4 Derive the output equation. Since the specified output variables are vR2

and iR2 , we note that around the mesh containing C, L, and R2,

vR2 ¼ �vC þ vL ð3:42aÞ
iR2 ¼ iC þ 4vL ð3:42bÞ

Substituting Eqs. (3.38) and (3.39) into Eq. (3.42), vR2 and iR2 are obtained as linear
combinations of the state variables, iL and vC. In vector-matrix form, the output
equation is

vR2

iR2

� �
¼ R2=D �ð1 þ 1=DÞ

1=D ð1 � 4R1Þ=ðDR1Þ
� �

iL
vC

� �
þ �R2=D

�1=D

� �
iðtÞ ð3:43Þ

In the next example, we find the state-space representation for a mechanical
system. It is more convenient when working with mechanical systems to obtain the
state equations directly from the equations of motion rather than from the energy-
storage elements. For example, consider an energy-storage element such as a spring,
where F ¼ Kx. This relationship does not contain the derivative of a physical
variable as in the case of electrical networks, where i ¼ C dv=dt for capacitors,
and v ¼ L di=dt for inductors. Thus, in mechanical systems we change our selection
of state variables to be the position and velocity of each point of linearly indepen-
dent motion. In the example, we will see that although there are three energy-
storage elements, there will be four state variables; an additional linearly indepen-
dent state variable is included for the convenience of writing the state equations. It is
left to the student to show that this system yields a fourth-order transfer function if
we relate the displacement of either mass to the applied force, and a third-order
transfer function if we relate the velocity of either mass to the applied force.

Example 3.3

Representing a Translational Mechanical System

PROBLEM: Find the state equations for the translational mechanical system shown
in Figure 3.7.

SOLUTION: First write the differential equations for the network in Figure 3.7,
using the methods of Chapter 2 to find the Laplace-transformed equations of
motion. Next take the inverse Laplace transform of these equations, assuming zero

FIGURE 3.7 Translational
mechanical system

D K

f (t)

Frictionless

M1 M2

x1 x2
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initial conditions, and obtain

M1
d2x1

dt2
þD

dx1

dt
þKx1 �Kx2 ¼ 0 ð3:44Þ

�Kx1 þM2
d2x2

dt2
þKx2 ¼ f ðtÞ ð3:45Þ

Now let d2x1=dt2 ¼ dv1=dt, and d2x2=dt2 ¼ dv2=dt, and then select x1, v1, x2, and
v2 as state variables. Next form two of the state equations by solving Eq. (3.44) for
dv1/dt and Eq. (3.45) for dv2 /dt. Finally, add dx1=dt ¼ v1 and dx2=dt ¼ v2 to
complete the set of state equations. Hence,

dx1

dt
¼ þv1 ð3:46aÞ

dv1

dt
¼ � K

M1
x1 � D

M1
v1 þ K

M1
x2 ð3:46bÞ

dx2

dt
¼ þv2 ð3:46cÞ

dv2

dt
¼ þ K

M2
x1 � K

M2
x2 þ 1

M2
f ðtÞ ð3:46dÞ

In vector-matrix form,

_x1

_v1

_x2

_v2

2
66664

3
77775 ¼

0 1 0 0

�K=M1 �D=M1 K=M1 0

0 0 0 1

K=M2 0 �K=M2 0

2
66664

3
77775

x1

v1

x2

v2

2
66664

3
77775 þ

0

0

0

1=M2

2
66664

3
77775 f ðtÞ ð3:47Þ

where the dot indicates differentiation with respect to time. What is the output
equation if the output is x(t)?

Skill-Assessment Exercise 3.1

PROBLEM: Find the state-space representation of the electrical network shown in
Figure 3.8. The output is vo(t).

vi(t) vo(t)+
+

–
–

L C2

C1 R

FIGURE 3.8 Electric circuit
for Skill-Assessment
Exercise 3.1
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ANSWER:

_x ¼
1=C1 1=C1 �1=C1

�1=L 0 0

1=C2 0 �1=C2

2
664

3
775xþ

0

1

0

2
664

3
775viðtÞ

y ¼ ½ 0 0 1�x
The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 3.2

PROBLEM: Represent the translational mechanical system shown in Figure 3.9 in
state space, where x3(t) is the output.

ANSWER:

_z ¼

0 1 0 0 0 0

�1 �1 0 1 0 0

0 0 0 1 0 0

0 1 �1 �1 1 0

0 0 0 0 0 1

0 0 1 0 �1 �1

2
6666666664

3
7777777775
zþ

0

1

0

0

0

0

2
6666666664

3
7777777775
f ðtÞ

y ¼ ½ 0 0 0 0 1 0 �z
where

z ¼ ½ x1 _x1 x2 _x2 x3 _x3 �T

The complete solution is at www.wiley.com/college/nise.

3.5 Converting a Transfer Function to State Space

In the last section, we applied the state-space representation to electrical and
mechanical systems. We learn how to convert a transfer function representation to
a state-space representation in this section. One advantage of the state-space

f(t)
1 kg

1 N/m 1 N-s/m 1 N/m 1 N-s/m

1 kg 1 kg

x1(t) x2(t) x3(t)

FIGURE 3.9 Translational mechanical system for Skill-Assessment Exercise 3.2
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representation is that it can be used for the simulation of physical systems on the digital
computer. Thus, if we want to simulate a system that is represented by a transfer
function, we must first convert the transfer function representation to state space.

At first we select a set of state variables, called phase variables, where each
subsequent state variable is defined to be the derivative of the previous state
variable. In Chapter 5 we show how to make other choices for the state variables.

Let us begin by showing how to represent a general, nth-order, linear differ-
ential equation with constant coefficients in state space in the phase-variable form.
We will then show how to apply this representation to transfer functions.

Consider the differential equation

dny

dtn
þ an�1

dn�1y

dtn�1
þ � � � þ a1

dy

dt
þ a0y ¼ b0u ð3:48Þ

A convenient way to choose state variables is to choose the output, y(t), and its
(n� 1) derivatives as the state variables. This choice is called the phase-variable
choice. Choosing the state variables, xi, we get

x1 ¼ y ð3:49aÞ

x2 ¼ dy

dt
ð3:49bÞ

x3 ¼ d2y

dt2
ð3:49cÞ

..

.

xn ¼ dn�1y

dtn�1

ð3:49dÞ

and differentiating both sides yields

_x1 ¼ dy

dt
ð3:50aÞ

_x2 ¼ d2y

dt2
ð3:50bÞ

_x3 ¼ d3y

dt3
ð3:50cÞ

..

.

_xn ¼ dny

dtn

ð3:50dÞ

where the dot above the x signifies differentiation with respect to time.
Substituting the definitions of Eq. (3.49) into Eq. (3.50), the state equations are

evaluated as

_x1 ¼ x2 ð3:51aÞ
_x2 ¼ x3 ð3:51bÞ

..

.

_xn�1 ¼ xn

ð3:51cÞ

_xn ¼ �a0x1 � a1x2 � � � �an�1xn þ b0u ð3:51dÞ
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where Eq. (3.51d) was obtained from Eq. (3.48) by solving for dny/dtn and using
Eq. (3.49). In vector-matrix form, Eq. (3.51) become

_x1

_x2

_x3

..

.

_xn�1

_xn

2
666666664

3
777777775

¼

0 1 0 0 0 0 � � � 0

0 0 1 0 0 0 � � � 0

0 0 0 1 0 0 � � � 0

..

.

0 0 0 0 0 0 � � � 1

�a0 �a1 �a2 �a3 �a4 �a5 � � � �an�1

2
666666664

3
777777775

x1

x2

x3

..

.

xn�1

xn

2
666666664

3
777777775
þ

0

0

0

..

.

0

b0

2
666666664

3
777777775
u

ð3:52Þ
Equation (3.52) is the phase-variable form of the state equations. This form is easily
recognized by the unique pattern of 1’s and 0’s and the negative of the coefficients
of the differential equation written in reverse order in the last row of the system
matrix.

Finally, since the solution to the differential equation is y(t), or x1, the output
equation is

y ¼ 1 0 0 � � � 0½ �

x1

x2

x3

..

.

xn�1

xn

2
66666664

3
77777775

ð3:53Þ

In summary, then, to convert a transfer function into state equations in phase-
variable form, we first convert the transfer function to a differential equation by
cross-multiplying and taking the inverse Laplace transform, assuming zero initial
conditions. Then we represent the differential equation in state space in phase-
variable form. An example illustrates the process.

Example 3.4

Converting a Transfer Function with Constant Term in Numerator

PROBLEM: Find the state-space representation in phase-variable form for the
transfer function shown in Figure 3.10(a).

SOLUTION:

Step 1 Find the associated differential equation. Since

CðsÞ
RðsÞ ¼

24

ðs3 þ 9s2 þ 26sþ 24Þ ð3:54Þ

cross-multiplying yields

ðs3 þ 9s2 þ 26sþ 24ÞCðsÞ ¼ 24RðsÞ ð3:55Þ
The corresponding differential equation is found by taking the inverse Laplace
transform, assuming zero initial conditions:

€c_þ 9 €c þ 26 _cþ 24c ¼ 24r ð3:56Þ
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Step 2 Select the state variables.
Choosing the state variables as successive derivatives, we get

x1 ¼ c ð3:57aÞ
x2 ¼ _c ð3:57bÞ
x3 ¼ €c ð3:57cÞ

Differentiating both sides and making use of Eq. (3.57) to find _x1 and _x2, and Eq.
(3.56) to find ~c ¼ _x3, we obtain the state equations. Since the output is c ¼ x1, the
combined state and output equations are

_x1 ¼ x2 ð3:58aÞ
_x2 ¼ x3 ð3:58bÞ
_x3 ¼ �24x1 � 26x2 � 9x3 þ 24r ð3:58cÞ
y ¼ c ¼ x1 ð3:58dÞ

In vector-matrix form,

_x1

_x2

_x3

2
4

3
5 ¼

0 1 0

0 0 1

�24 �26 �9

2
4

3
5

x1

x2

x3

2
4

3
5 þ

0

0

24

2
4

3
5r ð3:59aÞ

y ¼ ½ 1 0 0 �
x1

x2

x3

2
4

3
5 ð3:59bÞ

Notice that the third row of the system matrix has the same coefficients as the
denominator of the transfer function but negative and in reverse order.

At this point, we can create an equivalent block diagram of the system of Figure
3.10(a) to help visualize the state variables. We draw three integral blocks as shown in
Figure 3.10(b) and label each output as one of the state variables, xi(t), as shown. Since
the input to each integrator is xi(t), use Eqs. (3.58a), (3.58b), and (3.58c) to determine

R(s) C(s)24

s3 + 9s2 + 26s + 24

(a)

24
+r(t) x3(t) x3(t) x2(t) x1(t) y(t)

(b)

9

26

24

– ––

FIGURE 3.10 a. Transfer function; b. equivalent block diagram showing phase variables.
Note: yðtÞ ¼ cðtÞ.
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the combination of input signals to each integrator. Form and label each input. Finally,
use Eq. (3.58d) to form and label the output, yðtÞ ¼ cðtÞ. The final result of Figure 3.10
(b) is a system equivalent to Figure 3.10(a) that explicitly shows the state variables and
gives a vivid picture of the state-space representation.

Students who are using MATLAB should now run ch3p1 through ch3p4
in Appendix B. You will learn how to represent the system matrix
A, the input matrix B, and the output matrix C using MATLAB. You
will learn how to convert a transfer function to the state-space
representation in phase-variable form. Finally, Example 3.4
will be solved using MATLAB.

The transfer function of Example 3.4 has a constant term in the numerator. If a
transfer function has a polynomial in s in the numerator that is of order less than the
polynomial in the denominator, as shown in Figure 3.11(a), the numerator and
denominator can be handled separately. First separate the transfer function into two
cascaded transfer functions, as shown in Figure 3.11(b); the first is the denominator,
and the second is just the numerator. The first transfer function with just the
denominator is converted to the phase-variable representation in state space as
demonstrated in the last example. Hence, phase variable x1 is the output, and the
rest of the phase variables are the internal variables of the first block, as shown in
Figure 3.11(b). The second transfer function with just the numerator yields

YðsÞ ¼ CðsÞ ¼ ðb2s
2 þ b1sþ b0ÞX1ðsÞ ð3:60Þ

where, after taking the inverse Laplace transform with zero initial conditions,

yðtÞ ¼ b2
d2x1

dt2
þ b1

dx1

dt
þ b0x1 ð3:61Þ

But the derivative terms are the definitions of the phase variables obtained in the
first block. Thus, writing the terms in reverse order to conform to an output equation,

yðtÞ ¼ b0x1 þ b1x2 þ b2x3 ð3:62Þ
Hence, the second block simply forms a specified linear combination of the state
variables developed in the first block.

From another perspective, the denominator of the transfer function yields the
state equations, while the numerator yields the output equation. The next example
demonstrates the process.

FIGURE 3.11 Decomposing a
transfer function

R(s) X1(s)1
a3s3 + a2s2 + a1s + a0

b2s2 + b1s + b0

b2s2 + b1s + b0

a3s3 + a2s2 + a1s + a0 

(a)

(b)

Internal variables:
X2(s), X3(s)

C(s)

R(s) C(s)
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Example 3.5

Converting a Transfer Function with Polynomial in Numerator

PROBLEM: Find the state-space representation of the transfer function shown in
Figure 3.12(a).

SOLUTION: This problem differs from Example 3.4 since the numerator has a
polynomial in s instead of just a constant term.

Step 1 Separate the system into two cascaded blocks, as shown in Figure 3.12(b). The
first block contains the denominator and the second block contains the
numerator.

Step 2 Find the state equations for the block containing the denominator. We
notice that the first block’s numerator is 1/24 that of Example 3.4. Thus,
the state equations are the same except that this system’s input matrix is
1/24 that of Example 3.4. Hence, the state equation is

_x1

_x2

_x3

2
4

3
5 ¼

0 1 0

0 0 1

�24 �26 �9

2
4

3
5

x1

x2

x3

2
4

3
5 þ

0

0

1

2
4
3
5r ð3:63Þ

R(s) X1(s)
s2 + 7s + 21

s3 + 9s2 + 26s + 24

(b)

Internal variables:
X2(s),  X3(s)

C(s)

s2 + 7s + 2
s3 + 9s2 + 26s + 24

(a)

R(s) C(s)

1

9

26

24

+r(t)

(c)

x3(t)  x3(t) x2(t) x1(t)

y(t)

1

7

2

+

+

+

– ––

FIGURE 3.12 a. Transfer
function; b. decomposed trans-
fer function; c. equivalent block
diagram Note: yðtÞ ¼ cðtÞ.

3.5 Converting a Transfer Function to State Space 137



Apago PDF Enhancer

E1C03 11/03/2010 12:0:9 Page 138

Step 3 Introduce the effect of the block with the numerator. The second block of
Figure 3.12(b), where b2 ¼ 1; b1 ¼ 7, and b0 ¼ 2, states that

CðsÞ ¼ ðb2s
2 þ b1sþ b0ÞX1ðsÞ ¼ ðs2 þ 7sþ 2ÞX1ðsÞ ð3:64Þ

Taking the inverse Laplace transform with zero initial conditions, we get

c ¼ €x1 þ 7 _x1 þ 2x1 ð3:65Þ
But

x1 ¼ x1

_x1 ¼ x2

€x1 ¼ x3

Hence,

y ¼ cðtÞ ¼ b2x3 þ b1x2 þ b0x1 ¼ x3 þ x2 þ 2x1 ð3:66Þ
Thus, the last box of Figure 3.11(b) ‘‘collects’’ the states and generates the output
equation. From Eq. (3.66),

y ¼ b0 b1 b2½ �
x1

x2

x3

2
4

3
5 ¼ 2 7 1½ �

x1

x2

x3

2
4

3
5 ð3:67Þ

Although the second block of Figure 3.12(b) shows differentiation, this block was
implemented without differentiation because of the partitioning that was applied
to the transfer function. The last block simply collected derivatives that were
already formed by the first block.

Once again we can produce an equivalent block diagram that vividly repre-
sents our state-space model. The first block of Figure 3.12(b) is the same as Figure
3.10(a) except for the different constant in the numerator. Thus, in Figure 3.12(c)
we reproduce Figure 3.10(b) except for the change in the numerator constant,
which appears as a change in the input multiplying factor. The second block of
Figure 3.12(b) is represented using Eq. (3.66), which forms the output from a linear
combination of the state variables, as shown in Figure 3.12(c).

Skill-Assessment Exercise 3.3

PROBLEM: Find the state equations and output equation for the phase-variable

representation of the transfer function GðsÞ ¼ 2sþ 1

s2 þ 7sþ 9
.

ANSWER:

_x ¼
0 1

�9 �7

" #
xþ

0

1

" #
rðtÞ

y ¼ ½ 1 2 �x
The complete solution is at www.wiley.com/college.nise.

TryIt 3.1

Use the following MATLAB
statements to form an LTI
state-space representation
from the transfer function
shown in Figure 3.12(a). The
A matrix and B vector are
shown in Eq. (3.63). The C
vector is shown in Eq. (3.67).

num=[1 7 2];
den=[1 9 26 24];
[A,B,C,D]=tf2ss...
(num,den);
P=[0 0 1;0 1 0;1 0 0];
A=inv(P)�A�P
B=inv(P)�B
C=C�P
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3.6 Converting from State Space to a
Transfer Function

In Chapters 2 and 3, we have explored two methods of representing systems: the
transfer function representation and the state-space representation. In the last
section, we united the two representations by converting transfer functions into
state-space representations. Now we move in the opposite direction and convert the
state-space representation into a transfer function.

Given the state and output equations

_x ¼ Axþ Bu ð3:68aÞ
y ¼ CxþDu ð3:68bÞ

take the Laplace transform assuming zero initial conditions:8

sXðsÞ ¼ AXðsÞ þ BUðsÞ ð3:69aÞ
YðsÞ ¼ CXðsÞ þDUðsÞ ð3:69bÞ

Solving for X(s) in Eq. (3.69a),

ðsI�AÞXðsÞ ¼ BUðsÞ ð3:70Þ

or

XðsÞ ¼ ðsI�AÞ�1BUðsÞ ð3:71Þ

where I is the identity matrix.
Substituting Eq. (3.71) into Eq. (3.69b) yields

YðsÞ ¼ CðsI�AÞ�1BUðsÞ þDUðsÞ ¼ ½CðsI�AÞ�1BþD�UðsÞ ð3:72Þ

We call the matrix ½CðsI�AÞ�1BþD� the transfer function matrix, since it relates
the output vector, Y(s), to the input vector, U(s). However, if UðsÞ ¼ UðsÞ and
YðsÞ ¼ YðsÞ are scalars, we can find the transfer function,

TðsÞ ¼ YðsÞ
UðsÞ ¼ CðsI�AÞ�1 BþD ð3:73Þ

Let us look at an example.

8 The Laplace transform of a vector is found by taking the Laplace transform of each component. Since _x
consists of the derivatives of the state variables, the Laplace transform of _x with zero initial conditions
yields each component with the form sXi(s), where Xi(s) is the Laplace transform of the state variable.
Factoring out the complex variable, s, in each component yields the Laplace transform of _x as sX(s), where
X(s) is a column vector with components Xi(s).
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Example 3.6

State-Space Representation to Transfer Function

PROBLEM: Given the system defined by Eq. (3.74), find the transfer function,
TðsÞ ¼ YðsÞ=UðsÞ, where U(s) is the input and Y(s) is the output.

_x ¼
0 1 0
0 0 1

�1 �2 �3

2
4

3
5xþ

10
0
0

2
4

3
5u ð3:74aÞ

y ¼ 1 0 0½ �x ð3:74bÞ
SOLUTION: The solution revolves around finding the term ðsI�AÞ�1 in
Eq. (3.73).9 All other terms are already defined. Hence, first find ðsI�AÞ:

ðsI�AÞ ¼
s 0 0

0 s 0

0 0 s

2
4

3
5 �

0 1 0

0 0 1

�1 �2 �3

2
4

3
5 ¼

s �1 0

0 s �1

1 2 sþ 3

2
4

3
5 ð3:75Þ

Now form ðsI�AÞ�1:

ðsI�AÞ�1 ¼ adjðsI�AÞ
detðsI�AÞ ¼

ðs2 þ 3sþ 2Þ sþ 3 1

�1 sðsþ 3Þ s

�s �ð2sþ 1Þ s2

2
64

3
75

s3 þ 3s2 þ 2sþ 1
ð3:76Þ

Substituting ðsI�AÞ�1, B, C, and D into Eq. (3.73), where

B ¼
10

0

0

2
64

3
75

C ¼ ½ 1 0 0 �
D ¼ 0

we obtain the final result for the transfer function:

TðsÞ ¼ 10ðs2 þ 3sþ 2Þ
s3 þ 3s2 þ 2sþ 1

ð3:77Þ

Students who are using MATLAB should now run ch3p5 in Appendix B.
You will learn how to convert a state-space representation to a
transfer function using MATLAB. You can practice by writing a
MATLAB program to solve Example 3.6.

StudentswhoareperformingtheMATLABexercisesandwanttoexplore
the added capability of MATLAB’s Symbolic Math Toolbox should now
run ch3sp1 in Appendix F located at www.wiley.com/college/nise.
YouwilllearnhowtousetheSymbolicMathToolboxtowritematrices
and vectors. You will see that the Symbolic Math Toolbox yields
an alternative way to use MATLAB to solve Example 3.6.

9 See Appendix G. It is located at www.wiley.com/college/nise and discusses the evaluation of the matrix
inverse.
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Skill-Assessment Exercise 3.4

PROBLEM: Convert the state and output equations shown in Eq. (3.78) to a
transfer function.

x ¼
�4 �1:5

4 0

" #
xþ

2

0

" #
uðtÞ ð3:78aÞ

y ¼ ½ 1:5 0:625 �x ð3:78bÞ

ANSWER:

GðsÞ ¼ 3sþ 5

s2 þ 4sþ 6

The complete solution is located at www.wiley.com/college/nise.

In Example 3.6, the state equations in phase-variable form were converted to
transfer functions. In Chapter 5, we will see that other forms besides the phase-
variable form can be used to represent a system in state space. The method of finding
the transfer function representation for these other forms is the same as that
presented in this section.

3.7 Linearization

A prime advantage of the state-space representation over the transfer function
representation is the ability to represent systems with nonlinearities, such as the
one shown in Figure 3.13. The ability to represent nonlinear systems does not imply the
ability to solve their state equations for the state variables and the output. Techniques
do exist for the solution of some nonlinear state equations, but this study is beyond the
scope of this course. However, in Appendix H, located at www.wiley.com/college/nise,

TryIt 3.2

Use the following MATLAB
and the Control System
Toolbox statements to obtain
the transfer function shown in
Skill-Assessment Exercise 3.4
from the state-space repre-
sentation of Eq. (3.78).

A=[�4 �1.5;4 0];
B=[2 0]’;
C=[1.5 0.625];
D=0;
T=ss(A,B,C,D);
T=tf(T)

FIGURE 3.13 Walking robots, such as Hannibal shown here, can be used to explore hostile
environments and rough terrain, such as that found on other planets or inside volcanoes.
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you can see how to use the digital computer to solve state equations. This method also
can be used for nonlinear state equations.

If we are interested in small perturbations about an equilibrium point, as we
were when we studied linearization in Chapter 2, we can also linearize the state
equations about the equilibrium point. The key to linearization about an equilibrium
point is, once again, the Taylor series. In the following example, we write the state
equations for a simple pendulum, showing that we can represent a nonlinear system
in state space; then we linearize the pendulum about its equilibrium point, the
vertical position with zero velocity.

Example 3.7

Representing a Nonlinear System

PROBLEM: First represent the simple pendulum shown in Figure 3.14(a) (which
could be a simple model for the leg of the robot shown in Figure 3.13) in state space:
Mg is the weight, T is an applied torque in the u direction, and L is the length of the
pendulum. Assume the mass is evenly distributed, with the center of mass at L/2.
Then linearize the state equations about the pendulum’s equilibrium point—the
vertical position with zero angular velocity.

SOLUTION: First draw a free-body diagram as shown in Figure 3.14(c). Summing
the torques, we get

J
d2u

dt2
þMgL

2
sin u ¼ T ð3:79Þ

where J is the moment of inertia of the pendulum around the point of rotation.
Select the state variables x1 and x2 as phase variables. Letting x1 ¼ u and
x2 ¼ du=dt, we write the state equations as

_x1 ¼ x2 ð3:80aÞ
_x2 ¼ �MgL

2J
sin x1 þ T

J
ð3:80bÞ

where _x2 ¼ d2u=dt2 is evaluated from Eq. (3.79).

(  ) (  ) (  )
Mg

T

θ

L2

Mg sin θ

T

MgL
2

d2θ
dt2

J

a b c

L2

θ θ
Mg cos θ

sin θ

Mg

FIGURE 3.14 a. Simple pendulum; b. force components of Mg; c. free-body diagram

Virtual Experiment 3.1
Rotary Inverted

Pendulum

Put theory into practice by
simulating the linear and
non-linear model of the
Quanser Rotary Inverted
Pendulum in LabVIEW. The
behavior of an inverted pen-
dulum is similar to a variety of
systems, such as Segway trans-
porters and human
posture.

Virtual experiments are found
on WileyPLUS.
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Thus, we have represented a nonlinear system in state space. It is interesting
to note that the nonlinear Eq. (3.80) represent a valid and complete model of the
pendulum in state space even under nonzero initial conditions and even if
parameters are time varying. However, if we want to apply classical techniques
and convert these state equations to a transfer function, we must linearize them.

Let us proceed now to linearize the equation about the equilibrium point,
x1 ¼ 0; x2 ¼ 0, that is, u ¼ 0 and du=dt ¼ 0. Let x1 and x2 be perturbed about the
equilibrium point, or

x1 ¼ 0 þ dx1 ð3:81aÞ
x2 ¼ 0 þ dx2 ð3:81bÞ

Using Eq. (2.182), we obtain

sin x1 � sin 0 ¼ dðsin x1Þ
dx1

����
x1¼0

dx1 ¼ dx1 ð3:82Þ

from which

sin x1 ¼ dx1 ð3:83Þ
Substituting Eqs. (3.81) and (3.83) into Eq. (3.80) yields the following state
equations:

_dx1 ¼ dx2 ð3:84aÞ
_dx2 ¼ �MgL

2J
dx1 þ T

J
ð3:84bÞ

which are linear and a good approximation to Eq. (3.80) for small excursions away
from the equilibrium point. What is the output equation?

Skill-Assessment Exercise 3.5

PROBLEM: Represent the translational mechanical system shown in Figure 3.15 in
state space about the equilibrium displacement. The spring is nonlinear, where the
relationship between the spring force, fs(t), and the spring displacement, xs(t), is
f sðtÞ ¼ 2x2

s ðtÞ. The applied force is f ðtÞ ¼ 10 þ df ðtÞ, where df(t) is a small force
about the 10 N constant value.

Assume the output to be the displacement of the mass, x(t).

ANSWER:

x ¼
0 1

�4
ffiffiffi
5

p
0

" #
xþ

0

1

" #
df ðtÞ

y ¼ ½ 1 0 �x
The complete solution is located at www.wiley.com/college/nise.

x(t)

f (t)

Nonlinear
spring

1 kg

FIGURE 3.15 Nonlinear translational
mechanical system for Skill-
Assessment Exercise 3.5
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Case Studies

Antenna Control: State-Space Representation

We have covered the state-space representation of individual physical subsystems
in this chapter. In Chapter 5, we will assemble individual subsystems into feedback
control systems and represent the entire feedback system in state space. Chapter 5
also shows how the state-space representation, via signal-flow diagrams, can be
used to interconnect these subsystems and permit the state-space representation of
the whole closed-loop system. In the following case study, we look at the antenna
azimuth position control system and demonstrate the concepts of this chapter by
representing each subsystem in state space.

PROBLEM: Find the state-space representation in phase-variable form for each
dynamic subsystem in the antenna azimuth position control system shown on the
front endpapers, Configuration 1. By dynamic, we mean that the system does not
reach the steady state instantaneously. For example, a system described by a
differential equation of first order or higher is a dynamic system. A pure gain, on
the other hand, is an example of a nondynamic system, since the steady state is
reached instantaneously.

SOLUTION: In the case study problem of Chapter 2, each subsystem of the antenna
azimuth position control system was identified. We found that the power amplifier
and the motor and load were dynamic systems. The preamplifier and the potenti-
ometers are pure gains and so respond instantaneously. Hence, we will find the
state-space representations only of the power amplifier and of the motor and load.

Power amplifier:
The transfer function of the power amplifier is given on the front endpapers as
GðsÞ ¼ 100=ðsþ 100Þ. We will convert this transfer function to its state-space
representation. Letting vp(t) represent the power amplifier input and ea(t) repre-
sent the power amplifier output,

GðsÞ ¼ EaðsÞ
VpðsÞ ¼

100

ðsþ 100Þ ð3:85Þ

Cross-multiplying, ðsþ 100ÞEaðsÞ ¼ 100VpðsÞ, from which the differential equation
can be written as

dea
dt

þ 100ea ¼ 100vpðtÞ ð3:86Þ
Rearranging Eq. (3.86) leads to the state equation with ea as the state variable:

dea
dt

¼ �100ea þ 100vpðtÞ ð3:87Þ
Since the output of the power amplifier is ea(t), the output equation is

y ¼ ea ð3:88Þ

Motor and load:
We now find the state-space representation for the motor and load. We could of course
use the motor and load block shown in the block diagram on the front endpapers
to obtain the result. However, it is more informative to derive the state-space
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representation directly from the physics of the motor without first deriving the transfer
function. The elements of the derivation were covered in Section 2.8 but are repeated
here for continuity. Starting with Kirchhoff’s voltage equation around the armature
circuit, we find

eaðtÞ ¼ iaðtÞRa þKb
dum
dt

ð3:89Þ

where ea(t) is the armature input voltage, ia(t) is the armature current, Ra is the
armature resistance, Kb is the armature constant, and um is the angular displace-
ment of the armature.

The torque, Tm(t), delivered by the motor is related separately to the armature
current and the load seen by the armature. From Section 2.8,

TmðtÞ ¼ KtiaðtÞ ¼ Jm
d2um

dt2
þDm

dum
dt

ð3:90Þ

where Jm is the equivalent inertia as seen by the armature, and Dm is the equivalent
viscous damping as seen by the armature.

Solving Eq. (3.90) for ia(t) and substituting the result into Eq. (3.89) yields

eaðtÞ ¼ RaJm
Kt

� 	
d2um

dt2
þ DmRa

Kt
þKb

� 	
dum
dt

ð3:91Þ

Defining the state variables x1 and x2 as

x1 ¼ um ð3:92aÞ

x2 ¼ dum
dt

ð3:92bÞ

and substituting into Eq. (3.91), we get

eaðtÞ ¼ RaJm
Kt

� 	
dx2

dt
þ DmRa

Kt
þKb

� 	
x2 ð3:93Þ

Solving for dx2=dt yields

dx2

dt
¼ � 1

Jm
Dm þKtKb

Ra

� 	
x2 þ Kt

RaJm

� 	
eaðtÞ ð3:94Þ

Using Eqs. (3.92) and (3.94), the state equations are written as

dx1

dt
¼ x2 ð3:95aÞ

dx2

dt
¼ � 1

Jm
Dm þKtKb

Ra

� 	
x2 þ Kt

RaJm

� 	
eaðtÞ ð3:95bÞ

The output, uo(t), is 1/10 the displacement of the armature, which is x1. Hence, the
output equation is

y ¼ 0:1x1 ð3:96Þ
In vector-matrix form,

_x ¼
0 1

0 � 1

Jm
Dm þKtKb

Ra

� 	
2
4

3
5xþ

0

Kt

RaJm

2
4

3
5eaðtÞ ð3:97aÞ

y ¼ ½ 0:1 0 �x ð3:97bÞ
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But from the case study problem in Chapter 2, Jm ¼ 0:03 and Dm ¼ 0:02. Also,
Kt=Ra ¼ 0:0625 and Kb ¼ 0:5. Substituting the values into Eq. (3.97a), we obtain
the final state-space representation:

_x ¼
0 1

0 �1:71

" #
xþ

0

2:083

" #
eaðtÞ ð3:98aÞ

y ¼ ½ 0:1 0 �x ð3:98bÞ
CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. Referring to the antenna azimuth position control system shown on the
front endpapers, find the state-space representation of each dynamic subsystem.
Use Configuration 2.

Pharmaceutical Drug Absorption

An advantage of state-space representation over the transfer function representa-
tion is the ability to focus on component parts of a system and write n simultaneous,
first-order differential equations rather than attempt to represent the system as a
single, nth-order differential equation, as we have done with the transfer function.
Also, multiple-input, multiple-output systems can be conveniently represented in
state space. This case study demonstrates both of these concepts.

PROBLEM: In the pharmaceutical industry we want to de-
scribe the distribution of a drug in the body. A simple model
divides the process into compartments: the dosage, the absorp-
tion site, the blood, the peripheral compartment, and the urine.
The rate of change of the amount of a drug in a compartment is
equal to the input flow rate diminished by the output flow rate.
Figure 3.16 summarizes the system. Here each xi is the amount
of drug in that particular compartment (Lordi, 1972). Repre-
sent the system in state space, where the outputs are the
amounts of drug in each compartment.

SOLUTION: The flow rate of the drug into any given compart-
ment is proportional to the concentration of the drug in the

previous compartment, and the flow rate out of a given compartment is propor-
tional to the concentration of the drug in its own compartment.

We now write the flow rate for each compartment. The dosage is released to the
absorption site at a rate proportional to the dosage concentration, or

dx1

dt
¼ �K1x1 ð3:99Þ

The flow into the absorption site is proportional to the concentration of the drug
at the dosage site. The flow from the absorption site into the blood is proportional
to the concentration of the drug at the absorption site. Hence,

dx2

dt
¼ K1x1 �K2x2 ð3:100Þ

Similarly, the net flow rate into the blood and peripheral compartment is
dx3

dt
¼ K2x2 �K3x3 þK4x4 �K5x3 ð3:101Þ

dx4

dt
¼ K5x3 �K4x4 ð3:102Þ

x1

Dosage
Absorption

site Blood Urine

x2 x3 x5

x4

Peripheral
compartment

FIGURE 3.16 Pharmaceutical drug-level
concentrations in a human
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where ðK4x4 �K5x3Þ is the net flow rate into the blood from the peripheral
compartment. Finally, the amount of the drug in the urine is increased as the
blood releases the drug to the urine at a rate proportional to the concentration of
the drug in the blood. Thus,

dx5

dt
¼ K3x3 ð3:103Þ

Equations (3.99) through (3.103) are the state equations. The output equation is
a vector that contains each of the amounts, xi. Thus, in vector-matrix form,

_x ¼

�K1 0 0 0 0

K1 �K2 0 0 0

0 K2 �ðK3 þK5Þ K4 0

0 0 K5 �K4 0

0 0 K3 0 0

2
666664

3
777775
x ð3:104aÞ

y ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
666664

3
777775
x ð3:104bÞ

You may wonder how there can be a solution to these equations if there is no
input. In Chapter 4, when we study how to solve the state equations, we will see that
initial conditions will yield solutions without forcing functions. For this problem, an
initial condition on the amount of dosage, x1, will generate drug quantities in all
other compartments.

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. The problem concerns the storage of water in aquifers. The principles
are similar to those used to model pharmaceutical drug absorption.

Underground water supplies, called aquifers, are used in many areas for
agricultural, industrial, and residential purposes. An aquifer system consists of a
number of interconnected natural storage tanks. Natural water flows through the
sand and sandstone of the aquifer system, changing the water levels in the tanks on
its way to the sea. A water conservation policy can be established whereby water is
pumped between tanks to prevent its loss to the sea.

A model for the aquifer system is shown in Figure 3.17. In this model, the aquifer
is represented by three tanks, with water level hi called the head. Each qn is the

q21 = G21(H1–h1)

q2 = G2(h2–h1) q3 = G3(h3–h2)

q1 = G1h1

qi1 qi2qo2 qi3qo3

h3h2h1

FIGURE 3.17 Aquifer system
model
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natural water flow to the sea and is proportional to the difference in head between

two adjoining tanks, or qn ¼ Gnðhn � hn�1Þ, where Gn is a constant of proportion-
ality and the units of qn are m3/yr.

The engineered flow consists of three components, also measured in m3/yr: (1) flow
from the tanks for irrigation, industry, and homes, qon; (2) replenishing of the tanks
from wells, qin; and (3) flow, q21, created by the water conservation policy to prevent
loss to the sea. In this model, water for irrigation and industry will be taken only from
Tank 2 and Tank 3. Water conservation will take place only between Tank 1 and Tank 2,
as follows. LetH1 be a reference head for Tank 1. If the water level in Tank 1 falls below
H1, water will be pumped from Tank 2 to Tank 1 to replenish the head. If h1 is higher
than H1, water will be pumped back to Tank 2 to prevent loss to the sea. Calling this
flow for conservationq21, we can say this flow is proportional to the difference between
the head of Tank 1, h1, and the reference head, H1, or q21 ¼ G21ðH1 � h1Þ.

The net flow into a tank is proportional to the rate of change of head in each
tank. Thus,

Cndhn=dt ¼ qin � qon þ qnþ1 � qn þ qðnþ1Þn � qnðn�1Þ

(Kandel, 1973).
Represent the aquifer system in state space, where the state variables and the

outputs are the heads of each tank.

Summary

This chapter has dealt with the state-space representation of physical systems, which
took the form of a state equation,

_x ¼ Axþ Bu ð3:105Þ
and an output equation,

y ¼ CxþDu ð3:106Þ
for t � t0, and initial conditions x(t0). Vector x is called the state vector and contains
variables, called state variables. The state variables can be combined algebraically
with the input to form the output equation, Eq. (3.106), from which any other system
variables can be found. State variables, which can represent physical quantities such
as current or voltage, are chosen to be linearly independent. The choice of state
variables is not unique and affects how the matrices A, B, C, and D look. We will
solve the state and output equations for x and y in Chapter 4.

In this chapter, transfer functions were represented in state space. The form
selected was the phase-variable form, which consists of state variables that are
successive derivatives of each other. In three-dimensional state space, the resulting
system matrix, A, for the phase-variable representation is of the form

0 1 0

0 0 1

�a0 �a1 �a2

2
664

3
775 ð3:107Þ
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where the ai’s are the coefficients of the characteristic polynomial or denominator of
the system transfer function. We also discussed how to convert from a state-space
representation to a transfer function.

In conclusion, then, for linear, time-invariant systems, the state-space repre-
sentation is simply another way of mathematically modeling them. One major
advantage of applying the state-space representation to such linear systems is
that it allows computer simulation. Programming the system on the digital computer
and watching the system’s response is an invaluable analysis and design tool.
Simulation is covered in Appendix H located at www.wiley.com/college/nise.

Review Questions

1. Give two reasons for modeling systems in state space.

2. State an advantage of the transfer function approach over the state-space
approach.

3. Define state variables.

4. Define state.

5. Define state vector.

6. Define state space.

7. What is required to represent a system in state space?

8. An eighth-order system would be represented in state space with how many
state equations?

9. If the state equations are a system of first-order differential equations whose
solution yields the state variables, then the output equation performs what
function?

10. What is meant by linear independence?

11. What factors influence the choice of state variables in any system?

12. What is a convenient choice of state variables for electrical networks?

13. If an electrical network has three energy-storage elements, is it possible to have a
state-space representation with more than three state variables? Explain.

14. What is meant by the phase-variable form of the state-equation?

Problems

1. Represent the electrical network shown in Figure P3.1
in state space, where vo(t) is the output. [Section: 3.4]

1 Ω

+
vi(t) 1 F vo(t)

–
+
–

1 Ω 1 Ω

1 H 1 H

FIGURE P3.1

2. Represent the electrical network shown in Figure P3.2
in state space, where iR(t) is the output. [Section: 3.4]

3 Ω3 F

v1(t)

4v1(t)

3 Ω

vi(t)

2 H

iR(t)+
–

FIGURE P3.2
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3. Find the state-space representation of
the network shown in Figure P3.3 if the
output is vo(t). [Section: 3.4]

vo(t)

+

vi(t) 1 F

1 H

1 Ω

1 Ω

–

i3(t)

i2(t)i1(t)

+
–

1 F

FIGURE P3.3

4. Represent the system shown in Figure P3.4 in state
space where the output is x3(t). [Section: 3.4]

fv2 = 1 N-s/m

fv3 = 1 N-s/m

fv1 = 1 N-s/m

fv4 = 1 N-s/m fv5 = 1 N-s/m

K = 2 N/m

M3 = 1 kg

M2 = 1 kgM1 = 2 kg

x1(t) x2(t)

f (t)

x3(t)

Frictionless

FIGURE P3.4

5. Represent the translational mechanical system
shown in Figure P3.5 in state space, where x1(t) is
the output. [Section: 3.4]

f (t)

x2(t) x3(t)

x1(t)

fv1
= 1 N-s/m

fv2
= 1 N-s/m

M1 = 2 kg

M2 = 1 kg

M3 = 1 kg

K1 = 1 N/m

K2 = 1 N/m

fv3
= 1 N-s/m

FIGURE P3.5

6. Represent the rotational mechanical system shown
in Figure P3.6 in state space, where u1(t) is the
output. [Section: 3.4]

N2 = 100

100 N-m/rad 100 N-m-s/rad

100 kg-m2

N1 = 30

T(t)θ1(t)

50 kg-m2

FIGURE P3.6

7. Represent the system shown in Figure P3.7 in state
space where the output is uL(t). [Section: 3.4]

2 N-m/rad 3 N-m-s/rad

 N-m/rad

200 N-m-s/rad

T(t)

θL(t)N4 = 100

N2 = 300

N1 = 30

N3 = 101
10

FIGURE P3.7

8. Show that the system of Figure 3.7 in the text yields
a fourth-order transfer function if we relate the
displacement of either mass to the applied force,
and a third-order one if we relate the velocity of
either mass to the applied force. [Section: 3.4]

9. Find the state-space representation
in phase-variable form for each of the
systems shown in Figure P3.8.
[Section: 3.5]

R(s) 30

s5 + 8s4 + 9s3 + 6s2 + s + 30 

C(s)

(b)

100
s4 + 20s3 + 10s2 + 7s + 100

C(s)R(s)

(a)

FIGURE P3.8

10. Repeat Problem 9 using MATLAB.
[Section:3.5]
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11. For each system shown in Figure P3.9, write the
state equations and the output equation for the
phase-variable representation. [Section: 3.5]

s5 + 9s4 + 13s3 + 8s2
s4 + 2s3 + 12s2 + 7s + 6 C(s)R(s)

(b)

R(s) 8s + 10

s4 + 5s3 + s2 + 5s + 13  

C(s)

(a)

FIGURE P3.9

12. Repeat Problem 11 using MATLAB.
[Section: 3.5]

13. Represent the following transfer function in state
space. Give your answer in vector-matrix form.
[Section: 3.5]

TðsÞ ¼ ðs2 þ 3sþ 8Þ
ðsþ 1Þðs2 þ 5sþ 5Þ

14. Find the transfer function GðsÞ ¼ YðsÞ=RðsÞ
for each of the following systems
represented in state space: [Section: 3.6]

a. _x ¼
0 1 0

0 0 1

�3 �2 �5

2
64

3
75xþ

0

0

10

2
64

3
75 r

y ¼ 1 0 0½ �x

b. _x ¼
2 �3 �8

0 5 3

�3 �5 �4

2
64

3
75xþ

1

4

6

2
64
3
75 r

y ¼ 1 3 6½ �x

c. _x ¼
3 �5 2

1 �8 7

�3 �6 2

2
64

3
75xþ

5

�3

2

2
64

3
75 r

y ¼ 1 �4 3½ �x
15. Use MATLAB to find the transfer

function, GðsÞ ¼ YðsÞ=RðsÞ, for
each of the following systems
representedinstatespace:[Section:3.6]

a. _x ¼
0 1 5 0

0 0 1 0

0 0 0 1

�7 �9 �2 �3

2
6664

3
7775xþ

0

5

8

2

2
6664

3
7775 r

y ¼ 1 3 6 6½ �x

b. _x ¼

3 1 0 4 �2

�3 5 �5 2 �1

0 1 �1 2 8

�7 6 �3 �4 0

�6 0 4 �3 1

2
666664

3
777775
xþ

2
7
8
5
4

2
66664

3
77775 r

y ¼ 1 �2 �9 7 6½ �x
16. Repeat Problem 15 using MATLAB,

the Symbolic Math Toolbox,
and Eq. (3.73). [Section: 3.6]

17. Gyros are used on space vehicles,
aircraft, and ships for inertial nav-
igation. The gyro shown in Fig-
ure P3.10 is a rate gyro restrained by springs connected
between the inner gimbal and the outer gimbal (frame)
as shown. A rotational rate about the z-axis causes the
rotating disk to precess about the x-axis. Hence, the
input is a rotational rate about thez-axis, and the output
is an angular displacement about the x-axis. Since the
outer gimbal is secured to the vehicle, the displacement
about the x-axis is a measure of the vehicle’s angular
rate about the z-axis. The equation of motion is

Jx
d2ux

dt2
þDx

dux
dt

þKxux ¼ Jv
duz
dt

Spring

Bearing

y

Bearing

Frame

x

θx

Bearing

Spring

Inner gimbal

J

ω

θ
z

z

FIGURE P3.10 Gyro system
Represent the gyro in state space. [Section: 3.4]
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18. A missile in flight, as shown in Figure P3.11, is subject
to several forces: thrust, lift, drag, and gravity.
The missile flies at an angle of attack, a, from its
longitudinal axis, creating lift. For steering, the body
angle from vertical, f, is controlled by rotating the
engine at the tail. The transfer function relating
the body angle, f, to the angular displacement, d, of
the engine is of the form

FðsÞ
dðsÞ ¼ KasþKb

K3s3 þK2s2 þK1sþK0

δ

Thrust

Lift

Drag

Vertical

α
Velocity

φ

c. g.

FIGURE P3.11 Missile

Represent the missile steering control in state space.
[Section: 3.5]

19. Given the dc servomotor and load shown in Figure
P3.12, represent the system in state space, where the
state variables are the armature current, ia, load
displacement, uL, and load angular velocity, vL.
Assume that the output is the angular displacement
of the armature. Do not neglect armature induc-
tance. [Section: 3.4]

N2

DL

Armature

Fixed
field

θ

θ

JL

L(t)

N1

m(t)

LaRa

ea(t)
ia(t)

+

–

FIGURE P3.12 Motor and load

20. Consider the mechanical system of Figure P3.13. If
the spring is nonlinear, and the force, Fs, required to

stretch the spring is Fs ¼ 2x2
1, represent the system

in state space linearized about x1 ¼ 1 if the output is
x2. [Section: 3.7]

1 N-s/m

f(t)1 kg 1 kg

Fs = 2x1
2 N

x2(t)x1(t)

FIGURE P3.13 Nonlinear mechanical system

21. Image-based homing for robots can be
implemented by generating heading
command inputs to a steering system
based on the following guidance algorithm. Suppose
the robot shown in Figure P3.14(a) is to go from point
R to a target, point T, as shown in Figure P3.14(b). If
Rx, Ry, and Rz are vectors from the robot to each
landmark, X, Y, Z, respectively, and Tx, Ty, and Tz are
vectors from the target to each landmark, respectively,
then heading commands would drive the robot to
minimize Rx � Tx; Ry � Ty; and Rz � Tz simulta-
neously, since the differences will be zero when the
robot arrives at the target (Hong, 1992). If Figure
P3.14(c) represents the control system that steers the
robot, represent each block—the controller, wheels,
and vehicle—in state space. [Section: 3.5]

X

Z

Y

Heading
command

Heading
error

Steering
command

Wheel
angle

Actual
heading

Controller

+

–

K1(s + a)
(s + b)

Wheels

c
s + c

Vehicle

(c)

(b)
R

T

Rx

Rz

Ry Tz

Tx
Ty

Robot

Camera

Spherical
mirror

(a)

1
s

FIGURE P3.14 a. Robot with television imaging system;
b. vector diagram showing concept behind image-based
homing; c. heading control system (# 1992 IEEE)

22. Given the F4-E military aircraft shown in Figure
P3.15(a), where normal acceleration, an, and pitch
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rate, q, are controlled by elevator deflection, de, on
the horizontal stabilizers and by canard deflection,
de. A commanded deflection, dcom, as shown in
Figure P3.15(b), is used to effect a change in both
de and dc. The relationships are

deðsÞ
dcomðsÞ ¼

1=t

sþ 1=t

dcðsÞ
dcomðsÞ ¼

Kc=t

sþ 1=t

Kc

Aircraft
longitudinal
dynamics

1/ττ
s+1/ 

q

ane(s)δ

c(s)δ

δcom(s)δ

Horizontal
canards (  c)

Elevator (  e)

(a)

δ 
δ

τ

(b)

FIGURE P3.15 a. F4-E with canards b. open-loop flight
control system

These deflections yield, via the aircraft longitudinal
dynamics, an andq. The state equations describing the
effect of dcom on an and q is given by (Cavallo, 1992)

_an
_q
_de

2
4

3
5 ¼

�1:702 50:72 263:38
0:22 �1:418 �31:99
0 0 �14

2
4

3
5 an

q
de

2
4

3
5

þ
�272:06

0
14

2
4

3
5dcom

Find the following transfer functions: [Section: 3.5]

G1ðsÞ ¼ AnðsÞ
dcomðsÞ

G2ðsÞ ¼ QðsÞ
dcomðsÞ

23. Modern robotic manipulators that act directly upon
their target environments must be controlled so that
impact forces as well as steady-state forces do not
damage the targets. At the same time, the manipu-
lator must provide sufficient force to perform the
task. In order to develop a control system to regu-
late these forces, the robotic manipulator and target
environment must be modeled. Assuming the
model shown in Figure P3.16, represent in state
space the manipulator and its environment under
the following conditions (Chiu, 1997). [Section: 3.5]

a. The manipulator is not in contact with its target
environment.

b. The manipulator is in constant contact with its
target environment.

1 N/m

1 N/m

1 N/m

1 N-s/m 1 N-s/m 1 N-s/m1 N-s/m

1 N/m1 N/m

u(t) 1 kg 1 kg 1 kg

Contact
point

Manipulator Sensor Internal force
model

Environment

FIGURE P3.16 Robotic manipulator and target
environment (# 1997 IEEE)

24. In the past, Type-1 diabetes patients had to inject
themselves with insulin three to four times a day. New
delayed-action insulin analogues such as insulin Glar-
gine require a single daily dose. A similar procedure
to the one described in the Pharmaceutical Drug
Absorption case study of this chapter is used to
find a model for the concentration-time evolution
of plasma for insulin Glargine. For a specific patient,
state-space model matrices are given by (Tar�ın, 2007)

A ¼
�0:435 0:209 0:02

0:268 �0:394 0

0:227 0 �0:02

2
64

3
75; B ¼

1

0

0

2
64
3
75;

C ¼ 0:0003 0 0½ �; D ¼ 0

where the state vector is given by

x ¼
x1

x2

x3

2
664

3
775:
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The state variables are

x1 ¼ insulin amount in plasma compartment

x2 ¼ insulin amount in liver compartment

x3 ¼ insulin amount in interstitial ðin body tissueÞ
compartment

The system’s input is u ¼ external insulin flow.
The system’s output is y ¼ plasma insulin
concentration.

a. Find the system’s transfer function.

b. Verify your result using MATLAB.

25. A linear, time-invariant model of the hypothalamic-
pituitary-adrenal axis of the endocrine system with
five state variables has been proposed as follows
(Kyrylov, 2005):

dx0

dt
¼ a00x0 þ a02x2 þ d0

dx1

dt
¼ a10x0 þ a11x1 þ a12x2

dx2

dt
¼ a20x0 þ a21x1 þ a22x2 þ a23x3 þ a24x4

dx3

dt
¼ a32x2 þ a33x3

dx4

dt
¼ a42x2 þ a44x4

where each of the state variables represents circula-
tory concentrations as follows:

x0 ¼ corticotropin-releasing hormone

x1 ¼ corticotropin

x2 ¼ free cortisol

x3 ¼ albumin-bound cortisol

x4 ¼ corticosteroid-binding globulin

d0 ¼ an external generating factor

Express the system in the form _x ¼ Axþ Bu.

26. In this chapter, we described the state-space repre-
sentation of single-input, single-output systems. In
general, systems can have multiple inputs and multiple
outputs. An autopilot is to be designed for a submarine
as shown in Figure P3.17 to maintain a constant depth
under severe wave disturbances. We will see that this
system has two inputs and two outputs and thus the
scaler u becomes a vector, u, and the scaler y becomes
a vector, y, in the state equations.

FIGURE P3.17 (# 1995 IEEE)

It has been shown that the system’s linearized dy-
namics under neutral buoyancy and at a given
constant speed are given by (Liceaga-Castro, 2009):

_x ¼ Axþ Bu

y ¼ Cx

where

x ¼
w
q
z
u

2
664

3
775; y ¼ z

u

� �
; u ¼ dB

dS

� �

A¼
�0:038 0:896 0 0:0015

0:0017 �0:092 0 �0:0056

1 0 0 �3:086

0 1 0 0

2
6664

3
7775;

B ¼
�0:0075 �0:023

0:0017 �0:0022

0 0

0 0

2
6664

3
7775; C ¼ 0 0 1 0

0 0 0 1

� �

and where
w ¼ the heave velocity
q ¼ the pitch rate
z ¼ the submarine depth
u ¼ the pitch angle
dB ¼ the bow hydroplane angle
dS ¼ the stern hydroplane angle
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Since this system has two inputs and two outputs,
four transfer functions are possible.

a. Use MATLAB to calculate the
system’s matrix transfer
function.

b. Using the results from Part a, write the transfer

function
zðsÞ
dBðsÞ ;

zðsÞ
dSðsÞ ;

uðsÞ
dBðsÞ ; and

uðsÞ
dSðsÞ .

27. Experiments to identify precision grip dynamics
between the index finger and thumb have been
performed using a ball-drop experiment. A subject
holds a device with a small receptacle into which an
object is dropped, and the response is measured
(Fagergren, 2000). Assuming a step input, it has
been found that the response of the motor sub-
system together with the sensory system is of the
form

GðsÞ ¼ YðsÞ
RðsÞ ¼

sþ c

ðs2 þ asþ bÞðsþ dÞ

Convert this transfer function to a state-space
representation.

28. State-space representations are, in general, not unique.
One system can be represented in several possible
ways. For example, consider the following systems:

a. _x ¼ �5xþ 3u

y ¼ 7x

b.
_x1

_x2

" #
¼

�5 0

0 �1

" #
x1

x2

" #
þ

3

1

" #
u

y ¼ 7 0½ �
x1

x2

" #

c.
_x1

_x2

" #
¼

�5 0

0 �1

" #
x1

x2

" #
þ

3

0

" #
u

y ¼ 7 3½ �
x1

x2

" #

Show that these systems will result in the same
transfer function. We will explore this phenomenon
in more detail in Chapter 5.

29. Figure P3.18 shows a schematic description of the
global carbon cycle (Li, 2009). In the figure, mA(t)

represents the amount of carbon in gigatons (GtC)
present in the atmosphere of earth; mV(t) the
amount in vegetation; ms(t) the amount in soil;
mSO(t) the amount in surface ocean; and mIDO(t)
the amount in intermediate and deep-ocean reser-
voirs. Let uE(t) stand for the human generated CO2

emissions (GtC/yr). From the figure, the atmo-
spheric mass balance in the atmosphere can be
expressed as:

dmA

dt
ðtÞ ¼ uEðtÞ � ðkO1 þ kL1ÞmAðtÞ þ kL2mVðtÞ

þ kO2mSOðtÞ þ kL4mSðtÞ

where the k’s are exchange coefficients (yr�1).

a. Write the remaining reservoir mass balances.

Namely, write equations for
dmSOðtÞ

dt
;
dmIDOðtÞ

dt
;

dmVðtÞ
dt

; and
dmSðtÞ

dt

b. Express the system in state space form.

Atmosphere

Surface ocean

Intermediate and deep ocean

Ocean sink

Vegetation

Soil

Land sink

mV

mS

mA

mSO

mIDO

kL2

kL1

kL4kO1 kO2

kO3 kO4

kL3

uE (t )

FIGURE P3.18 Global carbon cycle

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
30. High-speed rail pantograph. A translational me-

chanical system model for a high-speed rail panto-
graph, used to supply electricity to a train from an
overhead catenary, is shown in Figure P2.39(b)
(O’Connor, 1979). Represent the pantograph in
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state space, where the output is the displacement
of the top of the pantograph, yhðtÞ � ycatðtÞ.

31. Control of HIV/AIDS. Problem 68 in Chapter 2 intro-
duced a model for HIV infection. If retroviral drugs,
RTIs and PIs as discussed in Problem 22 in Chapter 1,
are used, the model is modified as follows (Craig,2004):

dT

dt
¼ s� dT � ð1 � u1ÞbTv

dT�

dt
¼ ð1 � u1ÞbTv� mT�

dv

dt
¼ ð1 � u2ÞkT� � cv

where 0 � u1 � 1, 0 � u2 � 1 represent the effective-
ness of the RTI and PI medication, respectively.

a. Obtain a state-space representation of the HIV/
AIDS model by linearizing the equations about the

ðT0; T�
0; v0Þ ¼ cm

bk
;
s

m
� cd

bk
;
sk

cm
� d

b

� 	

equilibrium with u10 ¼ u20 ¼ 0. This equilibrium
represents the asymptomatic HIV-infected pa-
tient. Note that each one of the above equations
is of the form _xi ¼ f iðxi; u1; u2Þi ¼ 1; 2; 3.

b. If Matrices A and B are given by

A ¼

@f 1

@x1

@f 1

@x2

@f 1

@x3

@f 2

@x1

@f 2

@x2

@f 2

@x3

@f 3

@x1

@f 3

@x2

@f 3

@x3

2
666666664

3
777777775
T0;T

�
0;v0

; B ¼

@f 1

@u1

@f 1

@u2

@f 2

@u1

@f 2

@u2

@f 3

@u1

@f 3

@u2

2
6666664

3
7777775
T0;T

�
0;v0

and we are interested in the number of free HIV
viruses as the system’s output,

C ¼ ½ 0 0 1 �
show that

A ¼
�ðdþ bv0Þ 0 �bT0

bv0 �m bT0

0 k �c

2
4

3
5; B ¼

bT0v0 0

�bT0v0 0

0 �kT�
0

2
4

3
5

c. Typical parameter values and descriptions for the
HIV/AIDS model are shown in the following table.

Substitute the values from the table into your model
and write as

_x ¼ Axþ Bu

y ¼ Cx

32. Hybrid vehicle. For Problem 23 in Chapter 1 we
developed the functional block diagrams for the
cruise control of serial, parallel, and split-power
hybrid electric vehicles (HEV). Those diagrams
showed that the engine or electric motor or both
may propel the vehicle. When electric motors are
the sole providers of the motive force, the forward
paths of all HEV topologies are similar. In general,
such a forward path can be represented (Preitl,
2007) by a block diagram similar to the one of
Figure P3.19.

Assume the motor to be an armature-
controlled dc motor. In this diagram, KA is the
power amplifier gain; Ge(s) is the transfer func-
tion of the motor electric circuit and consists of a
series inductor and resistor, La and Ra, respec-
tively; Kt is the motor torque constant; Jtot, is the
sum of the motor inertia, Jm, the inertias of the
vehicle, Jveh, and the two driven wheels, Jw, both
of which are reflected to the motor shaft; kf is the
coefficient of viscous friction; and kb is the back
emf constant.

The input variables are uc(t), the command volt-
age from the electronic control unit and Tc(t), the
load torque. The output variables in this block
diagram are the motor angular speed, v(t), and its
armature current, Ia(t).

a. Write the basic time-domain equations that char-
acterize the relationships between the state, in-
put, and output variables for the block diagram
of Figure P3.19, given that the state variables are
the motor armature current, Ia(t), and angular
speed, v(t).

t Time days

d Death of uninfected T cells 0.02/day

k Rate of free viruses produced
per infected T cell

100 counts/cell

s Source term for
uninfected T cells

10/mm3/day

b Infectivity rate of
free virus particles

2:4 	 10�5/mm3/day

c Death rate of viruses 2.4/day

m Death rate of infected
T cells

0.24/day

(# 2004 IEEE)
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b. Write the resulting state-space equations and
then represent them in matrix form. Regard the
load torque Tc(t) as an extra input to the system.

Thus, in your resulting state-space representa-
tion, the system will have two inputs and two
outputs.

Angular 
speed,
ω (t)

Motive 
torque,

T(t)

sJtot

1+
_

_

Vehicle
dynamics

kf

Load
torque,

Tc (t)

kb

Friction
torque,
Tf (t)

Δu (t)
Ge(s)KA

Control 
command, 

uc(t)

Kt

Armature 
current,

Ia(t)

Ia(t)

Amplifier 
output 

voltage, 
ua(t)

Back emf, 
eb (t)

_
+

FIGURE P3.19 Block diagram representation of an HEV forward path (# 2007 IEEE)

Cyber Exploration Laboratory

Experiment 3.1

Objectives To learn to use MATLAB to (1) generate an LTI state-space
representation of a system and (2) convert an LTI state-space representation of a
system to an LTI transfer function.

MinimumRequired Software Packages MATLAB and the Control System
Toolbox

Prelab

1. Derive the state-space representation of the translational mechanical system
shown in Skill-Assessment Exercise 3.2 if you have not already done so. Consider
the output to be x3(t).

2. Derive the transfer function, X3ðsÞ
FðsÞ , from the equations of motion for the transla-

tional mechanical system shown in Skill-Assessment Exercise 3.2.

Lab

1. Use MATLAB to generate the LTI state-space representation derived in Prelab 1.

2. Use MATLAB to convert the LTI state-space representation found in Lab 1 to
the LTI transfer function found in Prelab 2.

Postlab

1. Compare your transfer functions as found from Prelab 2 and Lab 2.

2. Discuss the use of MATLAB to create LTI state-space representations and the
use of MATLAB to convert these representations to transfer functions.

Cyber Exploration Laboratory 157



Apago PDF Enhancer

E1C03 11/03/2010 12:0:19 Page 158

Experiment 3.2

Objectives To learn to use MATLAB and the Symbolic Math Toolbox to (1) find
a symbolic transfer function from the state-space representation and (2) find a state-
space representation from the equations of motion.

Minimum Required Software Packages MATLAB, the Symbolic Math
Toolbox, and the Control System Toolbox

Prelab

1. Perform Prelab 1 and Prelab 2 of Experiment 3.1 if you have not already
done so.

2. Using the equation TðsÞ ¼ CðsI�AÞ�1B to find a transfer function from a state-
space representation, write a MATLAB program using the Symbolic Math
Toolbox to find the symbolic transfer function from the state-space representa-
tion of the translational mechanical system shown in Skill-Assessment Exercise
3.2 and found as a step in Prelab 1.

3. Using the equations of motion of the translational mechanical system shown in
Skill-Assessment Exercise 3.2 and found in Prelab 1, write a symbolic MATLAB
program to find the transfer function, X3ðsÞ

FðsÞ , for this system.

Lab

1. Run the programs composed in Prelabs 2 and Prelab 3 and obtain the symbolic
transfer functions by the two methods.

Postlab

1. Compare the symbolic transfer function obtained from TðsÞ ¼ CðsI�AÞ�1B
with the symbolic transfer function obtained from the equations of motion.

2. Discuss the advantages and disadvantages between the two methods.

3. Describe how you would obtain an LTI state-space representation and an LTI
transfer function from your symbolic transfer function.

Experiment 3.3

Objectives To learn to use LabVIEW to (1) generate state-space representa-
tions of transfer functions, (2) generate transfer functions from state-space
representations, and (3) verify that there are multiple state-space representations
for a transfer function.

Minimum Required Software Packages LabVIEW, the LabVIEW Control
Design and Simulation Module, and the MathScript RT Module.

Prelab

1. Study Appendix D, Sections D.1 through Section D.4, Example D.1.

2. Solve Skill-Assessment Exercise 3.3 in Chapter 3.

3. Use your solution to Prelab 2 and convert back to the transfer function.
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Lab

1. Use LabVIEW to convert the transfer function, GðsÞ ¼ 2sþ 1

s2 þ 7sþ 9
, into a state-

space representation using both the graphical and MathScript approaches. The
front panel will contain controls for the entry of the transfer function and
indicators of the transfer function and the two state-space results. Functions
for this experiment can be found in the following palettes: (1) Control Design
and Simulation/Control Design/Model Construction, (2) Control Design and
Simulation/Control Design/Model Conversion, and (3) Programming/Structures
Hint: Coefficients are entered in reverse order when using MathScript with
MATLAB.

2. Use LabVIEW to convert all state-space representations found in Lab 1 to a
transfer function. All state-space conversions should yield the transfer function
given in Lab 1. The front panel will contain controls for entering state-space
representations and indicators of the transfer function results as well as the state
equations used.

Postlab

1. Describe any correlation found between the results of Lab 1 and calculations
made in the Prelab.

2. Describe and account for any differences between the results of Lab 1 and
calculations made in the Prelab.

3. Explain the results of Lab 2 and draw conclusions from the results.
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Time Response

4

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Use poles and zeros of transfer functions to determine the time response of a control
system (Sections 4.1–4.2)

� Describe quantitatively the transient response of first-order systems (Section 4.3)

� Write the general response of second-order systems given the pole location
(Section 4.4)

� Find the damping ratio and natural frequency of a second-order system (Section 4.5)

� Find the settling time, peak time, percent overshoot, and rise time for an under-
damped second-order system (Section 4.6)

� Approximate higher-order systems and systems with zeros as first- or second-order
systems (Sections 4.7–4.8)

� Describe the effects of nonlinearities on the system time response (Section 4.9)

� Find the time response from the state-space representation (Sections 4.10–4.11)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to (1) predict, by inspection, the form of the open-loop angular
velocity response of the load to a step voltage input to the power amplifier;
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(2) describe quantitatively the transient response of the open-loop system;
(3) derive the expression for the open-loop angular velocity output for a step
voltage input; (4) obtain the open-loop state-space representation; (5) plot the
open-loop velocity step response using a computer simulation.

� Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch control system shown on the back endpapers, you will be able to
predict, find, and plot the response of the vehicle dynamics to a step input
command. Further, you will be able to evaluate the effect of system zeros and
higher-order poles on the response. You also will be able to evaluate the roll
response of a ship at sea.

4.1 Introduction

In Chapter 2, we saw how transfer functions can represent linear, time-invariant
systems. In Chapter 3, systems were represented directly in the time domain via the
state and output equations. After the engineer obtains a mathematical representa-
tion of a subsystem, the subsystem is analyzed for its transient and steady-state
responses to see if these characteristics yield the desired behavior. This chapter is
devoted to the analysis of system transient response.

It may appear more logical to continue with Chapter 5, which covers the
modeling of closed-loop systems, rather than to break the modeling sequence with
the analysis presented here in Chapter 4. However, the student should not continue
too far into system representation without knowing the application for the effort
expended. Thus, this chapter demonstrates applications of the system representation
by evaluating the transient response from the system model. Logically, this approach
is not far from reality, since the engineer may indeed want to evaluate the response
of a subsystem prior to inserting it into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin
analyzing our models to find the step response of first- and second-order systems.
The order refers to the order of the equivalent differential equation representing the
system—the order of the denominator of the transfer function after cancellation of
common factors in the numerator or the number of simultaneous first-order
equations required for the state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the forced response and
the natural response.1 Although many techniques, such as solving a differential
equation or taking the inverse Laplace transform, enable us to evaluate this output
response, these techniques are laborious and time-consuming. Productivity is aided
by analysis and design techniques that yield results in a minimum of time. If the
technique is so rapid that we feel we derive the desired result by inspection, we
sometimes use the attribute qualitative to describe the method. The use of poles and

1 The forced response is also called the steady-state response or particular solution. The natural response is
also called the homogeneous solution.
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zeros and their relationship to the time response of a system is such a technique.
Learning this relationship gives us a qualitative ‘‘handle’’ on problems. The concept
of poles and zeros, fundamental to the analysis and design of control systems,
simplifies the evaluation of a system’s response. The reader is encouraged to master
the concepts of poles and zeros and their application to problems throughout this
book. Let us begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become infinite or (2) any roots of the
denominator of the transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the
definition. For example, the roots of the characteristic polynomial in the denomina-
tor are values of s that make the transfer function infinite, so they are thus poles.
However, if a factor of the denominator can be canceled by the same factor in the
numerator, the root of this factor no longer causes the transfer function to become
infinite. In control systems, we often refer to the root of the canceled factor in the
denominator as a pole even though the transfer function will not be infinite at this
value. Hence, we include part (2) of the definition.

Zeros of a Transfer Function
The zeros of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become zero, or (2) any roots of the numerator
of the transfer function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this
definition. For example, the roots of the numerator are values of s that make the
transfer function zero and are thus zeros. However, if a factor of the numerator can
be canceled by the same factor in the denominator, the root of this factor no longer
causes the transfer function to become zero. In control systems, we often refer to the
root of the canceled factor in the numerator as a zero even though the transfer
function will not be zero at this value. Hence, we include part (2) of the definition.

Poles and Zeros of a First-Order System: An Example
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s ¼ �5, and a zero
exists at �2. These values are plotted on the complex s-plane in Figure 4.1(b), using
an� for the pole and a � for the zero. To show the properties of the poles and zeros,
let us find the unit step response of the system. Multiplying the transfer function of
Figure 4.1(a) by a step function yields

CðsÞ ¼ ðsþ 2Þ
sðsþ 5Þ ¼

A

s
þ B

sþ 5
¼ 2=5

s
þ 3=5

sþ 5
ð4:1Þ

where

A ¼ ðsþ 2Þ
ðsþ 5Þ

����
s!0

¼ 2

5

B ¼ ðsþ 2Þ
s

����
s!�5

¼ 3

5

Thus,

cðtÞ ¼ 2

5
þ 3

5
e�5t ð4:2Þ
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From the development summarized in Figure 4.1(c), we draw the following
conclusions:

1. A pole of the input function generates the form of the forced response (that is, the
pole at the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (that is,
the pole at �5 generated e�5t).

3. A pole on the real axis generates an exponential response of the form e�at, where
�a is the pole location on the real axis. Thus, the farther to the left a pole is on the
negative real axis, the faster the exponential transient response will decay to
zero (again, the pole at �5 generated e�5t; see Figure 4.2 for the general case).

4. The zeros and poles generate the amplitudes for both the forced and natural
responses (this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles
to obtain the form of the system response. We will learn to write the form of the
response by inspection. Each pole of the system transfer function that is on the real
axis generates an exponential response that is a component of the natural response.
The input pole generates the forced response.

G(s) 
C(s)

1
s

(b)(a)

j

s-plane

1
s

s + 2

j j j

Input pole System zero System pole

Output
transform

2/5 + 3/5
s + 5

2
5

3
5

e–5t
Output
time

response
+

Forced response Natural response
(c)

–5

R(s) = s + 2

ω

1
s + 5

ω ω ω

C(s) =

c(t) =

s

–2 –5

s-planes-planes-plane

s + 5 –2
σ

σ σ σ

FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; c. evolution
of a system response. Follow blue arrows to see the evolution of the response component
generated by the pole or zero.
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Example 4.1

Evaluating Response Using Poles

PROBLEM: Given the system of Figure 4.3, write the output, c(t), in general terms.
Specify the forced and natural parts of the solution.

SOLUTION: By inspection, each system pole generates an exponen-
tial as part of the natural response. The input’s pole generates the
forced response. Thus,

C sð Þ � K1

s

Forced

response

þ K2

sþ 2
þ K3

sþ 4
þ K4

sþ 5

Natural

response

ð4:3Þ

Taking the inverse Laplace transform, we get

cðtÞ � K1

Forced

response

þK2e�2t þK3e�4t þK4e�5t

Natural

response

ð4:4Þ

Skill-Assessment Exercise 4.1

PROBLEM: A system has a transfer function, GðsÞ ¼ 10ðsþ 4Þðsþ 6Þ
ðsþ 1Þðsþ 7Þðsþ 8Þðsþ 10Þ.

Write, by inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER: cðtÞ � Aþ Be�t þ Ce�7t þDe�8t þ Ee�10t

In this section, we learned that poles determine the nature of the time
response: Poles of the input function determine the form of the forced response,
and poles of the transfer function determine the form of the natural response.
Zeros and poles of the input or transfer function contribute to the amplitudes of the
component parts of the total response. Finally, poles on the real axis generate
exponential responses.

j
Pole at −    generatesα

response Ke−      

σ

ω

s-plane
α

α−

t

FIGURE 4.2 Effect of a real-axis pole upon transient response.

(s + 2)(s + 4)(s + 5)

C(s)
1
sR(s) = (s + 3)

FIGURE 4.3 System for Example 4.1
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4.3 First-Order Systems

We now discuss first-order systems without zeros to define a
performance specification for such a system. A first-order system
without zeros can be described by the transfer function shown in
Figure 4.4(a). If the input is a unit step, where RðsÞ ¼ 1=s, the Laplace
transform of the step response is C(s), where

CðsÞ ¼ RðsÞGðsÞ ¼ a

sðsþ aÞ ð4:5Þ

Taking the inverse transform, the step response is given by

cðtÞ ¼ cf ðtÞ þ cnðtÞ ¼ 1 � e�at ð4:6Þ

where the input pole at the origin generated the forced response cf ðtÞ ¼ 1, and the
system pole at �a, as shown in Figure 4.4(b), generated the natural response
cnðtÞ ¼ �e�at. Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter a, the only parameter needed to
describe the transient response. When t ¼ 1=a,

e�atjt¼1=a ¼ e�1 ¼ 0:37 ð4:7Þ
or

cðtÞjt¼1=a ¼ 1 � e�atjt¼1=a ¼ 1 � 0:37 ¼ 0:63 ð4:8Þ
We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response

performance specifications.

Time Constant
We call 1=a the time constant of the response. From Eq. (4.7), the time constant can
be described as the time for e�at to decay to 37% of its initial value. Alternately, from
Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of
its final value (see Figure 4.5).

σaR(s)  

(a)

jω

–a

(b)

s + a

G(s)

C(s)
s-plane

ω

FIGURE 4.4 a. First-order system; b. pole plot

FIGURE 4.5 First-order system
response to a unit step

t
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0.4

0.3

0.2

0.1

0

Ts

Tr

a
1

a
2

a
3

a
4

a
5

Initial slope =

c(t)
1

time constant

63% of final value
at t = one time constant

= a

Virtual Experiment 4.1
First-Order

Open-Loop Systems

Put theory into practice and find
a first-order transfer function
representing the Quanser Rotary
Servo. Then validate the model
by simulating it in LabVIEW.
Such a servo motor is used in
mechatronic gadgets such as
cameras.

Virtual experiments are found
on WileyPLUS.
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The reciprocal of the time constant has the units (1/seconds), or frequency.
Thus, we can call the parameter a the exponential frequency. Since the derivative of
e�at is �a when t ¼ 0, a is the initial rate of change of the exponential at t ¼ 0. Thus,
the time constant can be considered a transient response specification for a first-
order system, since it is related to the speed at which the system responds to a
step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)).
Since the pole of the transfer function is at �a, we can say the pole is located at the
reciprocal of the time constant, and the farther the pole from the imaginary axis, the
faster the transient response.

Let us look at other transient response specifications, such as rise time, Tr, and
settling time, Ts, as shown in Figure 4.5.

Rise Time, Tr
Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final
value. Rise time is found by solving Eq. (4.6) for the difference in time at cðtÞ ¼ 0:9
and cðtÞ ¼ 0:1. Hence,

Tr ¼ 2:31

a
� 0:11

a
¼ 2:2

a
ð4:9Þ

Settling Time, Ts
Settling time is defined as the time for the response to reach, and stay within, 2% of
its final value.2 Letting cðtÞ ¼ 0:98 in Eq. (4.6) and solving for time, t, we find the
settling time to be

Ts ¼ 4

a
ð4:10Þ

First-Order Transfer Functions via Testing
Often it is not possible or practical to obtain a system’s transfer function analytically.
Perhaps the system is closed, and the component parts are not easily identifiable.
Since the transfer function is a representation of the system from input to output, the
system’s step response can lead to a representation even though the inner construc-
tion is not known. With a step input, we can measure the time constant and the
steady-state value, from which the transfer function can be calculated.

Consider a simple first-order system, GðsÞ ¼ K=ðsþ aÞ, whose step response is

CðsÞ ¼ K

sðsþ aÞ ¼
K=a

s
� K=a

ðsþ aÞ ð4:11Þ

If we can identify K and a from laboratory testing, we can obtain the transfer
function of the system.

For example, assume the unit step response given in Figure 4.6. We determine
that it has the first-order characteristics we have seen thus far, such as no overshoot
and nonzero initial slope. From the response, we measure the time constant, that is,
the time for the amplitude to reach 63% of its final value. Since the final value is

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for example 5%, also can
be used. We will use settling time throughout the book to mean 2% settling time.

4.3 First-Order Systems 167



Apago PDF Enhancer

E1C04 11/03/2010 12:25:19 Page 168

about 0.72, the time constant is evaluated where the curve reaches 0:63 � 0:72 ¼
0:45, or about 0.13 second. Hence, a ¼ 1=0:13 ¼ 7:7.

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-
state value of K=a ¼ 0:72. Substituting the value of a, we find K ¼ 5:54. Thus, the
transfer function for the system is GðsÞ ¼ 5:54=ðsþ 7:7Þ. It is interesting to note that
the response of Figure 4.6 was generated using the transfer function GðsÞ ¼
5=ðsþ 7Þ.

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, GðsÞ ¼ 50

sþ 50
. Find the time con-

stant, Tc, settling time, Ts, and rise time, Tr.

ANSWER: Tc ¼ 0:02 s; Ts ¼ 0:08 s; and Tr ¼ 0:044 s:

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed and described.
Whereas varying a first-order system’s parameter simply changes the speed of the
response, changes in the parameters of a second-order system can change the form of
the response. For example, a second-order system can display characteristics much
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FIGURE 4.6 Laboratory results of a system step response test
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like a first-order system, or, depending on component values, display damped or
pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numerical examples of the second-
order system responses shown in Figure 4.7. All examples are derived from Figure
4.7(a), the general case, which has two finite poles and no zeros. The term in the
numerator is simply a scale or input multiplying factor that can take on any value
without affecting the form of the derived results. By assigning appropriate values to
parameters a and b, we can show all possible second-order transient responses. The
unit step response then can be found using CðsÞ ¼ RðsÞGðsÞ, where RðsÞ ¼ 1=s,
followed by a partial-fraction expansion and the inverse Laplace transform. Details
are left as an end-of-chapter problem, for which you may want to review Section 2.2.

b
s2 + as + b

1 2 3 4 5
t

0.5

1

c(t) c(t) = 1 + 0.171e–7.854t  – 
       

9
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FIGURE 4.7 Second-order
systems, pole plots, and step
responses

4.4 Second-Order Systems: Introduction 169



Apago PDF Enhancer

E1C04 11/03/2010 12:25:19 Page 170

We now explain each response and show how we can use the poles to determine
the nature of the response without going through the procedure of a partial-fraction
expansion followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)
For this response,

CðsÞ ¼ 9

sðs2 þ 9sþ 9Þ ¼
9

sðsþ 7:854Þðsþ 1:146Þ ð4:12Þ

This function has a pole at the origin that comes from the unit step input and two real
poles that come from the system. The input pole at the origin generates the constant
forced response; each of the two system poles on the real axis generates an exponential
natural response whose exponential frequency is equal to the pole location. Hence, the
output initially could have been written as cðtÞ ¼ K1 þK2e�7:854t þK3e�1:146t. This
response, shown in Figure 4.7(b), is calledoverdamped.3 We see that the poles tell us the
form of the response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)
For this response,

CðsÞ ¼ 9

sðs2 þ 2sþ 9Þ ð4:13Þ

This function has a pole at the origin that comes from the unit step input and two
complex poles that come from the system. We now compare the response of the
second-order system to the poles that generated it. First we will compare the pole
location to the time function, and then we will compare the pole location to the plot.
From Figure 4.7(c), the poles that generate the natural response are at s ¼ �1 � j

ffiffiffi
8

p
.

Comparing these values to c(t) in the same figure, we see that the real part of the pole
matches the exponential decay frequency of the sinusoid’s amplitude, while the
imaginary part of the pole matches the frequency of the sinusoidal oscillation.

Let us now compare the pole location to the plot. Figure
4.8 shows a general, damped sinusoidal response for a second-
order system. The transient response consists of an exponen-
tially decaying amplitude generated by the real part of the
system pole times a sinusoidal waveform generated by
the imaginary part of the system pole. The time constant of
the exponential decay is equal to the reciprocal of the real part
of the system pole. The value of the imaginary part is the
actual frequency of the sinusoid, as depicted in Figure 4.8. This
sinusoidal frequency is given the name damped frequency of
oscillation, vd. Finally, the steady-state response (unit step)
was generated by the input pole located at the origin. We call
the type of response shown in Figure 4.8 an underdamped
response, one which approaches a steady-state value via a
transient response that is a damped oscillation.

The following example demonstrates how a knowledge
of the relationship between the pole location and the transient response can lead
rapidly to the response form without calculating the inverse Laplace transform.

c(t)

Exponential decay generated by 
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

t

FIGURE 4.8 Second-order step response components
generated by complex poles

3 So named because overdamped refers to a large amount of energy absorption in the system, which
inhibits the transient response from overshooting and oscillating about the steady-state value for a step
input. As the energy absorption is reduced, an overdamped system will become underdamped and exhibit
overshoot.
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Example 4.2

Form of Underdamped Response Using Poles

PROBLEM: By inspection, write the form of the step response of the
system in Figure 4.9.

SOLUTION: First we determine that the form of the forced response is a
step. Next we find the form of the natural response. Factoring the
denominator of the transfer function in Figure 4.9, we find the poles
to be s ¼ �5 � j13:23. The real part, �5, is the exponential frequency for the
damping. It is also the reciprocal of the time constant of the decay of the
oscillations. The imaginary part, 13.23, is the radian frequency for the sinusoidal
oscillations. Using our previous discussion and Figure 4.7(c) as a guide, we ob-
tain cðtÞ ¼ K1 þ e�5tðK2 cos 13:23t þK3 sin 13:23tÞ ¼ K1 þK4e�5tðcos 13:23t � fÞ,
where f ¼ tan�1K3=K2; K4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þK2
3

q
, and c(t) is a constant plus an exponen-

tially damped sinusoid.

We will revisit the second-order underdamped response in Sections 4.5 and 4.6,
where we generalize the discussion and derive some results that relate the pole
position to other parameters of the response.

Undamped Response, Figure 4.7(d)
For this response,

CðsÞ ¼ 9

sðs2 þ 9Þ ð4:14Þ

This function has a pole at the origin that comes from the unit step input and two
imaginary poles that come from the system. The input pole at the origin generates
the constant forced response, and the two system poles on the imaginary axis
at �j3 generate a sinusoidal natural response whose frequency is equal to the
location of the imaginary poles. Hence, the output can be estimated as cðtÞ ¼ K1þ
K4 cosð3t � fÞ. This type of response, shown in Figure 4.7(d), is called undamped.
Note that the absence of a real part in the pole pair corresponds to an exponential
that does not decay. Mathematically, the exponential is e�0t ¼ 1.

Critically Damped Response, Figure 4.7 (e)
For this response,

CðsÞ ¼ 9

sðs2 þ 6sþ 9Þ ¼
9

sðsþ 3Þ2 ð4:15Þ

This function has a pole at the origin that comes from the unit step input and two
multiple real poles that come from the system. The input pole at the origin generates
the constant forced response, and the two poles on the real axis at �3 generate a
natural response consisting of an exponential and an exponential multiplied by time,
where the exponential frequency is equal to the location of the real poles. Hence, the
output can be estimated as cðtÞ ¼ K1 þK2e�3t þK3te�3t. This type of response, shown
in Figure 4.7(e), is called critically damped. Critically damped responses are the fastest
possible without the overshoot that is characteristic of the underdamped response.

200
C(s)

s2 + 10s + 200

1
sR(s) = 

FIGURE 4.9 System for Example 4.2
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We now summarize our observations. In this section we defined the following
natural responses and found their characteristics:

1. Overdamped responses

Poles: Two real at �s1; �s2

Natural response: Two exponentials with time constants equal to the reciprocal of
the pole locations, or

cðtÞ ¼ K1e
�s1t þK2e

�s2t

2. Underdamped responses

Poles: Two complex at �sd � jvd

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency of
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part
of the poles, or

cðtÞ ¼ Ae�sdt cosðvdt � fÞ
3. Undamped responses

Poles: Two imaginary at �jv1

Natural response: Undamped sinusoid with radian frequency equal to the
imaginary part of the poles, or

cðtÞ ¼ Acosðv1t � fÞ
4. Critically damped responses

Poles: Two real at �s1

Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, t, and an
exponential with time constant equal to the reciprocal of the pole location, or

cðtÞ ¼ K1e
�s1t þK2te

�s1t

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the division
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FIGURE 4.10 Step responses for second-order system damping cases
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between the overdamped cases and the underdamped cases and is the fastest
response without overshoot.

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the
general form of the step response:

a. GðsÞ ¼ 400

s2 þ 12sþ 400

b. GðsÞ ¼ 900

s2 þ 90sþ 900

c. GðsÞ ¼ 225

s2 þ 30sþ 225

d. GðsÞ ¼ 625

s2 þ 625

ANSWERS:

a. cðtÞ ¼ Aþ Be�6t cosð19:08t þ fÞ
b. cðtÞ ¼ Aþ Be�78:54t þ Ce�11:46t

c. cðtÞ ¼ Aþ Be�15t þ Cte�15t

d. cðtÞ ¼ Aþ B cosð25t þ fÞ
The complete solution is located at www.wiley.com/college/nise.

In the next section, we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of
second-order systems. In Section 4.6, we will focus on the underdamped case and
derive some specifications unique to this response that we will use later for analysis
and design.

4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses,
we generalize the discussion and establish quantitative specifications defined in such
a way that the response of a second-order system can be described to a designer
without the need for sketching the response. In this section, we define two physically
meaningful specifications for second-order systems. These quantities can be used to
describe the characteristics of the second-order transient response just as time
constants describe the first-order system response. The two quantities are called
natural frequency and damping ratio. Let us formally define them.

Natural Frequency, vn
The natural frequency of a second-order system is the frequency of oscillation of the
system without damping. For example, the frequency of oscillation of a series RLC
circuit with the resistance shorted would be the natural frequency.
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Damping Ratio, z
Before we state our next definition, some explanation is in order. We have already seen
that a second-order system’s underdamped step response is characterized by damped
oscillations. Our definition is derived from the need to quantitatively describe this
dampedoscillationregardlessofthetimescale.Thus,asystemwhosetransientresponse
goes through three cycles in a millisecond before reaching the steady state would have
the same measure as a system that went through three cycles in a millennium before
reaching the steady state. For example, the underdamped curve in Figure 4.10 has an
associated measure that defines its shape. This measure remains the same even if we
change the time base from seconds to microseconds or to millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless
of the time scale of the response. Also, the reciprocal, which is proportional to the
ratio of the natural period to the exponential time constant, remains the same
regardless of the time base.

We define the damping ratio, z, to be

z ¼ Exponential decay frequency

Natural frequency ðrad=secondÞ ¼
1

2p

Natural period ðsecondsÞ
Exponential time constant

Let us now revise our description of the second-order system to reflect the new
definitions. The general second-order system shown in Figure 4.7(a) can be trans-
formed to show the quantities z and vn. Consider the general system

GðsÞ ¼ b

s2 þ asþ b
ð4:16Þ

Without damping, the poles would be on the jv-axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, a ¼ 0. Hence,

GðsÞ ¼ b

s2 þ b
ð4:17Þ

By definition, the natural frequency, vn, is the frequency of oscillation of this system.
Since the poles of this system are on the jv-axis at �j

ffiffiffi
b

p
,

vn ¼
ffiffiffi
b

p
ð4:18Þ

Hence,

b ¼ v2
n ð4:19Þ

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the
complex poles have a real part, s, equal to �a=2. The magnitude of this value is then
the exponential decay frequency described in Section 4.4. Hence,

z ¼ Exponential decay frequency

Natural frequency ðrad=secondÞ ¼
jsj
vn

¼ a=2

vn
ð4:20Þ

from which
a ¼ 2zvn ð4:21Þ

Our general second-order transfer function finally looks like this:

GðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð4:22Þ
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In the following example we find numerical values for z and vn by matching the
transfer function to Eq. (4.22).

Example 4.3

Finding z and vn For a Second-Order System

PROBLEM: Given the transfer function of Eq. (4.23), find z and vn.

GðsÞ ¼ 36

s2 þ 4:2sþ 36
ð4:23Þ

SOLUTION: Comparing Eq. (4.23) to (4.22), v2
n ¼ 36, from which vn ¼ 6. Also,

2zvn ¼ 4:2. Substituting the value of vn; z ¼ 0:35.

Now that we have defined z and vn, let us relate these quantities to the pole
location. Solving for the poles of the transfer function in Eq. (4.22) yields

s1; 2 ¼ �zvn � vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
ð4:24Þ

From Eq. (4.24) we see that the various cases of second-order response are a function
of z; they are summarized in Figure 4.11.4

4 The student should verify Figure 4.11 as an exercise.

FIGURE 4.11 Second-order response as a function of damping ratio
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In the following example we find the numerical value of z and determine the
nature of the transient response.

Example 4.4

Characterizing Response from the Value of z

PROBLEM: For each of the systems shown in Figure 4.12, find the value of z and
report the kind of response expected.

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16)
and (4.22). Since a ¼ 2zvn and vn ¼

ffiffiffi
b

p
,

z ¼ a

2
ffiffiffi
b

p ð4:25Þ

Using the values of a and b from each of the systems of Figure 4.12, we find
z ¼ 1:155 for system (a), which is thus overdamped, since z > 1; z ¼ 1 for system
(b), which is thus critically damped; and z ¼ 0:894 for system (c), which is thus
underdamped, since z < 1.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do
the following: (1) Find the values of z and vn; (2) characterize the nature of the
response.

ANSWERS:

a. z ¼ 0:3; vn ¼ 20; system is underdamped

b. z ¼ 1:5; vn ¼ 30; system is overdamped

c. z ¼ 1; vn ¼ 15; system is critically damped

d. z ¼ 0; vn ¼ 25; system is undamped

The complete solution is located at www.wiley.com/college/nise.

12

(a)

16

(b)

20 C(s)

(c)

s2+8s+12

C(s)C(s)

R(s)

R(s)R(s)

s2+8s+16

s2+8s+20

FIGURE 4.12 Systems for Example 4.4
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This section defined two specifications, or parameters, of second-order sys-
tems: natural frequency, vn, and damping ratio, z. We saw that the nature of the
response obtained was related to the value of z. Variations of damping ratio alone
yield the complete range of overdamped, critically damped, underdamped, and
undamped responses.

4.6 Underdamped Second-Order Systems

Now that we have generalized the second-order transfer function in terms of z and
vn, let us analyze the step response of an underdamped second-order system. Not
only will this response be found in terms of z and vn, but more specifications
indigenous to the underdamped case will be defined. The underdamped second-
order system, a common model for physical problems, displays unique behavior that
must be itemized; a detailed description of the underdamped response is necessary
for both analysis and design. Our first objective is to define transient specifications
associated with underdamped responses. Next we relate these specifications to the
pole location, drawing an association between pole location and the form of the
underdamped second-order response. Finally, we tie the pole location to system
parameters, thus closing the loop: Desired response generates required system
components.

Let us begin by finding the step response for the general second-order system
of Eq. (4.22). The transform of the response, C(s), is the transform of the input times
the transfer function, or

CðsÞ ¼ v2
n

sðs2 þ 2zvnsþ v2
nÞ

¼ K1

s
þ K2sþK3

s2 þ 2zvnsþ v2
n

ð4:26Þ

where it is assumed that z < 1 (the underdamped case). Expanding by partial
fractions, using the methods described in Section 2.2, Case 3, yields

CðsÞ ¼ 1

s
�
ðsþ zvnÞ þ zffiffiffiffiffiffiffiffi

1�z2
p vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p

ðsþ zvnÞ2 þ v2
nð1 � z2Þ ð4:27Þ

Taking the inverse Laplace transform, which is left as an exercise for the student,
produces

cðtÞ ¼ 1 � e�zvnt cos vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t þ zffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p sin vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t

 !

¼ 1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p e�zvnt cosðvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t � fÞ

ð4:28Þ

where f ¼ tan�1ðz=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
Þ.

A plot of this response appears in Figure 4.13 for various values of z, plotted
along a time axis normalized to the natural frequency. We now see the relationship
between the value of z and the type of response obtained: The lower the value of z,
the more oscillatory the response. The natural frequency is a time-axis scale factor
and does not affect the nature of the response other than to scale it in time.
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We have defined two parameters associated with second-order systems, z and
vn. Other parameters associated with the underdamped response are rise time, peak
time, percent overshoot, and settling time. These specifications are defined as
follows (see also Figure 4.14):

1. Rise time, Tr. The time required for the waveform to go from 0.1 of the final value
to 0.9 of the final value.

2. Peak time, TP. The time required to reach the first, or maximum, peak.

3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-
state, or final, value at the peak time, expressed as a percentage of the steady-state
value.

4. Settling time, Ts. The time required for the transient’s damped oscillations to
reach and stay within �2% of the steady-state value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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FIGURE 4.13 Second-order underdamped responses for damping ratio values

Tr Tp Ts

t

0.1cfinal

0.9cfinal

0.98cfinal

cfinal

1.02cfinal

cmax

c(t)

FIGURE 4.14 Second-order underdamped response specifications
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Notice that the definitions for settling time and rise time are basically the same as the
definitions for the first-order response. All definitions are also valid for systems of
order higher than 2, although analytical expressions for these parameters cannot be
found unless the response of the higher-order system can be approximated as a
second-order system, which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the
transient response. This information can help a designer determine if the speed and
the nature of the response do or do not degrade the performance of the system. For
example, the speed of an entire computer system depends on the time it takes for a
hard drive head to reach steady state and read data; passenger comfort depends in
part on the suspension system of a car and the number of oscillations it goes through
after hitting a bump.

We now evaluate Tp, %OS, and Ts as functions of z and vn. Later in this
chapter we relate these specifications to the location of the system poles. A precise
analytical expression for rise time cannot be obtained; thus, we present a plot and a
table showing the relationship between z and rise time.

Evaluation of Tp
Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing
after t ¼ 0. This task is simplified by ‘‘differentiating’’ in the frequency domain
by using Item 7 of Table 2.2. Assuming zero initial conditions and using Eq. (4.26),
we get

L½ _cðtÞ� ¼ sCðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð4:29Þ

Completing squares in the denominator, we have

L½ _cðtÞ� ¼ v2
n

ðsþ zvnÞ2 þ v2
nð1 � z2Þ ¼

vnffiffiffiffiffiffiffiffi
1�z2

p vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p

ðsþ zvnÞ2 þ v2
nð1 � z2Þ ð4:30Þ

Therefore,

_cðtÞ ¼ vnffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p e�zvntsinvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t ð4:31Þ

Setting the derivative equal to zero yields

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t ¼ np ð4:32Þ

or

t ¼ np

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð4:33Þ

Each value of n yields the time for local maxima or minima. Letting n ¼ 0 yields
t ¼ 0, the first point on the curve in Figure 4.14 that has zero slope. The first peak,
which occurs at the peak time, Tp, is found by letting n ¼ 1 in Eq. (4.33):

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð4:34Þ
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Evaluation of%OS
From Figure 4.14 the percent overshoot, %OS, is given by

%OS ¼ cmax � cfinal

cfinal
� 100 ð4:35Þ

The term cmax is found by evaluating c(t) at the peak time, c(Tp). Using Eq. (4.34) for
Tp and substituting into Eq. (4.28) yields

cmax ¼ cðTpÞ ¼ 1 � e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ cos pþ zffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p sin p

 !

¼ 1 þ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ

ð4:36Þ

For the unit step used for Eq. (4.28),

cfinal ¼ 1 ð4:37Þ
Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

%OS ¼ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ � 100 ð4:38Þ

Notice that the percent overshoot is a function only of the damping ratio, z.
Whereas Eq. (4.38) allows one to find %OS given z, the inverse of the equation

allows one to solve for z given %OS. The inverse is given by

z ¼ �lnð%OS=100Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln2ð%OS=100Þ

q ð4:39Þ

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or,
equivalently, (4.39)) is plotted in Figure 4.15.
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Evaluation of Ts
In order to find the settling time, we must find the time for which c(t) in Eq. (4.28)
reaches and stays within �2% of the steady-state value, cfinal. Using our definition,
the settling time is the time it takes for the amplitude of the decaying sinusoid in
Eq. (4.28) to reach 0.02, or

e�zvnt
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p ¼ 0:02 ð4:40Þ

This equation is a conservative estimate, since we are assuming that cos

ðvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t � fÞ ¼ 1 at the settling time. Solving Eq. (4.40) for t, the settling time is

Ts ¼ �lnð0:02
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
Þ

zvn
ð4:41Þ

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as z varies
from 0 to 0.9. Let us agree on an approximation for the settling time that will be used
for all values of z; let it be

Ts ¼ 4

zvn
ð4:42Þ

Evaluation of Tr
A precise analytical relationship between rise time and damping ratio, z, cannot be
found. However, using a computer and Eq. (4.28), the rise time can be found. We
first designate vnt as the normalized time variable and select a value for z. Using the
computer, we solve for the values of vnt that yield cðtÞ ¼ 0:9 and cðtÞ ¼ 0:1.
Subtracting the two values of vnt yields the normalized rise time, vnTr, for that
value of z. Continuing in like fashion with other values of z, we obtain the results
plotted in Figure 4.16.5 Let us look at an example.
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FIGURE 4.16 Normalized rise
time versus damping ratio for
a second-order underdamped
response

5 Figure 4.16 can be approximated by the following polynomials: vnTr ¼ 1:76z3 � 0:417z2 þ 1:039z þ 1
(maximum error less than 1

2 % for 0 < z < 0:9), and z ¼ 0:115ðvnTrÞ3 � 0:883ðvnTrÞ2 þ 2:504ðvnTrÞ �
1:738 (maximum error less than 5% for 0:1 < z < 0:9). The polynomials were obtained using MATLAB’s
polyfit function.
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Example 4.5

Finding Tp, %OS, Ts, and Tr from a Transfer Function

PROBLEM: Given the transfer function

GðsÞ ¼ 100

s2 þ 15sþ 100
ð4:43Þ

find Tp, %OS, Ts, and Tr.

SOLUTION: vn and z are calculated as 10 and 0.75, respectively. Now substitute
z and vn into Eqs. (4.34), (4.38), and (4.42) and find, respectively, that
Tp ¼ 0:475 second, %OS ¼ 2:838, and Ts ¼ 0:533 second. Using the table
in Figure 4.16, the normalized rise time is approximately 2.3 seconds. Dividing byvn

yields Tr ¼ 0:23 second. This problem demonstrates that we can find Tp, %OS, Ts,
and Tr without the tedious task of taking an inverse Laplace transform, plotting the
output response, and taking measurements from the plot.

We now have expressions that relate peak time, percent over-
shoot, and settling time to the natural frequency and the damping
ratio. Now let us relate these quantities to the location of the poles
that generate these characteristics.

The pole plot for a general, underdamped second-order sys-
tem, previously shown in Figure 4.11, is reproduced and expanded in
Figure 4.17 for focus. We see from the Pythagorean theorem that the
radial distance from the origin to the pole is the natural frequency,
vn, and the cos u ¼ z.

Now, comparing Eqs. (4.34) and (4.42) with the pole location,
we evaluate peak time and settling time in terms of the pole location.
Thus,

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ p

vd
ð4:44Þ

Ts ¼ 4

zvn
¼ p

sd
ð4:45Þ

where vd is the imaginary part of the pole and is called the damped frequency of
oscillation, and sd is the magnitude of the real part of the pole and is the exponential
damping frequency.

nω dσ
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FIGURE 4.17 Pole plot for an underdamped
second-order system

Virtual Experiment 4.2
Second-Order

System Response

Put theory into practice studying
the effect that natural frequency
and damping ratio have on
controlling the speed response
of the Quanser Linear Servo in
LabVIEW. This concept is ap-
plicable to automobile cruise
controls or speed controls of
subways or trucks.

Virtual experiments are found
on WileyPLUS.
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Equation (4.44) shows that Tp is inversely proportional to the imaginary
part of the pole. Since horizontal lines on the s-plane are lines of constant imaginary
value, they are also lines of constant peak time. Similarly, Eq. (4.45) tells us that
settling time is inversely proportional to the real part of the pole. Since vertical lines
on the s-plane are lines of constant real value, they are also lines of constant settling
time. Finally, since z ¼ cos u, radial lines are lines of constant z. Since percent
overshoot is only a function of z, radial lines are thus lines of constant percent
overshoot, %OS. These concepts are depicted in Figure 4.18, where lines of constant
Tp, Ts, and %OS are labeled on the s-plane.

At this point, we can understand the significance of Figure 4.18 by examining
the actual step response of comparative systems. Depicted in Figure 4.19(a) are the
step responses as the poles are moved in a vertical direction, keeping the real part the
same. As the poles move in a vertical direction, the frequency increases, but the
envelope remains the same since the real part of the pole is not changing. The figure
shows a constant exponential envelope, even though the sinusoidal response is
changing frequency. Since all curves fit under the same exponential decay curve, the
settling time is virtually the same for all waveforms. Note that as overshoot increases,
the rise time decreases.

Let us move the poles to the right or left. Since the imaginary part is now
constant, movement of the poles yields the responses of Figure 4.19(b). Here the
frequency is constant over the range of variation of the real part. As the poles move
to the left, the response damps out more rapidly, while the frequency remains the
same. Notice that the peak time is the same for all waveforms because the imaginary
part remains the same.

Moving the poles along a constant radial line yields the responses shown in
Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the
responses look exactly alike, except for their speed. The farther the poles are from
the origin, the more rapid the response.

We conclude this section with some examples that demonstrate the relation-
ship between the pole location and the specifications of the second-order under-
damped response. The first example covers analysis. The second example is a simple
design problem consisting of a physical system whose component values we want to
design to meet a transient response specification.

%OS2

%OS1

ωj

σ

s-plane

Ts2
Ts1

Tp2

Tp1

ω

FIGURE 4.18 Lines of
constant peak time, Tp,
settling time, Ts, and percent
overshoot, %OS. Note:
Ts2 < Ts1 ; Tp2 < Tp1;
%OS1 < %OS2.
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Example 4.6

Finding Tp,%OS, and Ts from Pole Location

PROBLEM: Given the pole plot shown in Figure 4.20, find z; vn; Tp;
%OS, and Ts.

SOLUTION: The damping ratio is given by z ¼ cos u ¼ cos½arctan
ð7=3Þ� ¼ 0:394. The natural frequency, vn, is the radial distance

from the origin to the pole, or vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72 þ 32

p
¼ 7:616. The peak

time is

Tp ¼ p

vd
¼ p

7
¼ 0:449 second ð4:46Þ

The percent overshoot is

%OS ¼ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ � 100 ¼ 26% ð4:47Þ

The approximate settling time is

Ts ¼ 4

sd
¼ 4

3
¼ 1:333 seconds ð4:48Þ
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FIGURE 4.19 Step responses
of second-order underdamped systems
as poles move: a. with constant real
part; b. with constant imaginary part;
c. with constant damping ratio
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FIGURE 4.20 Pole plot for Example 4.6
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Students who are using MATLAB should now run ch4p1 in Appendix B.
You will learn how to generate a second-order polynomial from
two complex poles as well as extract and use the coefficients of
the polynomial to calculate Tp, %OS, and Ts. This exercise uses
MATLAB to solve the problem in Example 4.6.

Example 4.7

Transient Response Through Component Design

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20%
overshoot and a settling time of 2 seconds for a step input of torque T(t).

SOLUTION: First, the transfer function for the system is

GðsÞ ¼ 1=J

s2 þD

J
sþK

J

ð4:49Þ

From the transfer function,

vn ¼
ffiffiffiffi
K

J

r
ð4:50Þ

and

2zvn ¼ D

J
ð4:51Þ

But, from the problem statement,

Ts ¼ 2 ¼ 4

zvn
ð4:52Þ

or zvn ¼ 2. Hence,

2zvn ¼ 4 ¼ D

J
ð4:53Þ

Also, from Eqs. (4.50) and (4.52),

z ¼ 4

2vn
¼ 2

ffiffiffiffi
J

K

r
ð4:54Þ

From Eq. (4.39), a 20% overshoot implies z ¼ 0:456. Therefore, from Eq. (4.54),

z ¼ 2

ffiffiffiffi
J

K

r
¼ 0:456 ð4:55Þ

J

D

T(t) θ

K = 5 N-m/rad

(t)

FIGURE 4.21 Rotational mechanical system for Example 4.7
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Hence,
J

K
¼ 0:052 ð4:56Þ

From the problem statement, K ¼ 5 N-m/rad. Combining this value with Eqs.
(4.53) and (4.56), D¼ 1.04 N-m-s/rad, and J ¼ 0:26 kg-m2.

Second-Order Transfer Functions via Testing
Just as we obtained the transfer function of a first-order system experimentally, we
can do the same for a system that exhibits a typical underdamped second-order
response. Again, we can measure the laboratory response curve for percent over-
shoot and settling time, from which we can find the poles and hence the denomina-
tor. The numerator can be found, as in the first-order system, from a knowledge of
the measured and expected steady-state values. A problem at the end of the chapter
illustrates the estimation of a second-order transfer function from the step response.

Skill-Assessment Exercise 4.5

PROBLEM: Find z; vn; Ts; Tp; Tr, and %OS for a system whose

transfer function is GðsÞ ¼ 361

s2 þ 16sþ 361
.

ANSWERS:

z ¼ 0:421; vn ¼ 19; Ts ¼ 0:5 s; Tp ¼ 0:182 s; Tr ¼ 0:079 s; and %OS ¼ 23:3%:

The complete solution is located at www.wiley.com/college/nise.

Now that we have analyzed systems with two poles, how does the addition of
another pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles

In the last section, we analyzed systems with one or two poles. It must be emphasized
that the formulas describing percent overshoot, settling time, and peak time were
derived only for a system with two complex poles and no zeros. If a system such as
that shown in Figure 4.22 has more than two poles or has zeros, we cannot use the
formulas to calculate the performance specifications that we derived. However,
under certain conditions, a system with more than two poles or with zeros can be

TryIt 4.1

Use the following MATLAB
statements to calculate the
answers to Skill-Assessment
Exercise 4.5. Ellipses mean
code continues on next line.

numg=361;
deng=[1 16 361];
omegan=sqrt(deng(3)...
/deng(1))

zeta=(deng(2)/deng(1))...
/(2*omegan)

Ts=4/(zeta*omegan)
Tp=pi/(omegan*sqrt...
(1-zeta^2))

pos=100*exp(-zeta*...
pi/sqrt(1-zeta^2))

Tr=(1.768*zeta^3 -...
0.417*zeta^2þ1.039*...
zetaþ1)/omegan
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approximated as a second-order system that has just two complex dominant poles.
Once we justify this approximation, the formulas for percent overshoot, settling
time, and peak time can be applied to these higher-order systems by using the
location of the dominant poles. In this section, we investigate the effect of an
additional pole on the second-order response. In the next section, we analyze the
effect of adding a zero to a two-pole system.

Let us now look at the conditions that would have to exist in order to
approximate the behavior of a three-pole system as that of a two-pole system.
Consider a three-pole system with complex poles and a third pole on the real axis.
Assuming that the complex poles are at �zvn � jvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
and the real pole is at

�ar, the step response of the system can be determined from a partial-fraction
expansion. Thus, the output transform is

CðsÞ ¼ A

s
þ Bðsþ zvnÞ þ Cvd

ðsþ zvnÞ2 þ v2
d

þ D

sþ ar
ð4:57Þ

or, in the time domain,

cðtÞ ¼ AuðtÞ þ e�zvntðB cos vdt þ C sin vdtÞ þDe�ar t ð4:58Þ
The component parts of c(t) are shown in Figure 4.23 for three cases of ar. For

Case I, ar ¼ ar1 and is not much larger than zvn; for Case II, ar ¼ ar2 and is much
larger than zvn; and for Case III, ar ¼ 1.

Let us direct our attention to Eq. (4.58) and Figure 4.23. Ifar 	 zvn (Case II), the
pure exponential will die out much more rapidly than the second-order underdamped
stepresponse. If thepureexponential termdecaystoaninsignificantvalueat thetimeof
the first overshoot, such parameters as percent overshoot, settling time, and peak time
will be generated by the second-order underdamped step response component. Thus,
the total response will approach that of a pure second-order system (Case III).

FIGURE 4.22 Robot follows
input commands from a
human trainer
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If ar is not much greater than zvn (Case I), the real pole’s transient response
will not decay to insignificance at the peak time or settling time generated by the
second-order pair. In this case, the exponential decay is significant, and the system
cannot be represented as a second-order system.

The next question is, How much farther from the dominant poles does the third
pole have to be for its effect on the second-order response to be negligible? The
answer of course depends on the accuracy for which you are looking. However, this
book assumes that the exponential decay is negligible after five time constants. Thus,
if the real pole is five times farther to the left than the dominant poles, we assume
that the system is represented by its dominant second-order pair of poles.

What about the magnitude of the exponential decay? Can it be so large that its
contribution at the peak time is not negligible? We can show, through a partial-
fraction expansion, that the residue of the third pole, in a three-pole system with
dominant second-order poles and no zeros, will actually decrease in magnitude as
the third pole is moved farther into the left half-plane. Assume a step response, C(s),
of a three-pole system:

CðsÞ ¼ bc

sðs2 þ asþ bÞðsþ cÞ ¼
A

s
þ Bsþ C

s2 þ asþ b
þ D

sþ c
ð4:59Þ

where we assume that the nondominant pole is located at �c on the real axis and that
the steady-state response approaches unity. Evaluating the constants in the numer-
ator of each term,

A ¼ 1; B ¼ ca� c2

c2 þ b� ca
ð4:60aÞ

C ¼ ca2 � c2a� bc

c2 þ b� ca
; D ¼ �b

c2 þ b� ca
ð4:60bÞ

FIGURE 4.23 Component
responses of a three-pole
system: a. pole plot;
b. component responses:
Nondominant pole
is near dominant second-order
pair (Case I), far from the pair
(Case II), and at infinity
(Case III)

Au(t) + e–     nt(B cos    dt + C sin    dt)
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As the nondominant pole approaches 1; or c ! 1,
A ¼ 1; B ¼ �1; C ¼ �a; D ¼ 0 ð4:61Þ

Thus, for this example, D, the residue of the nondominant pole and its response,
becomes zero as the nondominant pole approaches infinity.

The designer can also choose to forgo extensive residue analysis, since all
system designs should be simulated to determine final acceptance. In this case, the
control systems engineer can use the ‘‘five times’’ rule of thumb as a necessary but
not sufficient condition to increase the confidence in the second-order approxima-
tion during design, but then simulate the completed design.

Let us look at an example that compares the responses of two different three-
pole systems with that of a second-order system.

Example 4.8

Comparing Responses of Three-Pole Systems

PROBLEM: Find the step response of each of the transfer functions shown in
Eqs. (4.62) through (4.64) and compare them.

T1ðsÞ ¼ 24:542

s2 þ 4sþ 24:542
ð4:62Þ

T2ðsÞ ¼ 245:42

ðsþ 10Þðs2 þ 4sþ 24:542Þ ð4:63Þ

T3ðsÞ ¼ 73:626

ðsþ 3Þðs2 þ 4sþ 24:542Þ ð4:64Þ

SOLUTION: The step response, CiðsÞ, for the transfer function, TiðsÞ, can be found
by multiplying the transfer function by 1=s, a step input, and using partial-fraction
expansion followed by the inverse Laplace transform to find the response, ciðtÞ.
With the details left as an exercise for the student, the results are

c1ðtÞ ¼ 1 � 1:09e�2tcosð4:532t � 23:8
Þ ð4:65Þ
c2ðtÞ ¼ 1 � 0:29e�10t � 1:189e�2tcosð4:532t � 53:34
Þ ð4:66Þ
c3ðtÞ ¼ 1 � 1:14e�3t þ 0:707e�2tcosð4:532t þ 78:63
Þ ð4:67Þ

The three responses are plotted in Figure 4.24. Notice that c2ðtÞ, with its third pole
at �10 and farthest from the dominant poles, is the better approximation of c1ðtÞ,
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FIGURE 4.24 Step responses
of system T1ðsÞ, system T2ðsÞ,
and system T3ðsÞ
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the pure second-order system response; c3ðtÞ, with a third pole close to the
dominant poles, yields the most error.

Students who are using MATLAB should now run ch4p2 in Appendix B.
You will learn how to generate a step response for a transfer
function and how to plot the response directly or collect the
points for future use. The example shows how to collect the points
and then use them to create a multiple plot, title the graph, and
labeltheaxesandcurvestoproducethegraphinFigure4.24tosolve
Example 4.8.

System responses can alternately be obtained using Simulink.
Simulink is a software package that is integrated with MATLAB
to provide a graphical user interface (GUI) for defining systems
and generating responses. The reader is encouraged to study
Appendix C, which contains a tutorial on Simulink as well as
some examples. One of the illustrative examples, Example C.1,
solves Example 4.8 using Simulink.

Another method to obtain systems responses is through the use of
MATLAB’s LTI Viewer. An advantage of the LTI Viewer is that it
displaysthevaluesofsettlingtime,peaktime,risetime,maximum
response,andthefinalvalueonthestepresponseplot.Thereaderis
encouraged to study Appendix E at www.wiley.com/college/nise,
whichcontainsatutorialontheLTIVieweraswellassomeexamples.
Example E.1 solves Example 4.8 using the LTI Viewer.

Skill-Assessment Exercise 4.6

PROBLEM: Determine the validity of a second-order approximation for each of
these two transfer functions:

a. GðsÞ ¼ 700

ðsþ 15Þðs2 þ 4sþ 100Þ

b. GðsÞ ¼ 360

ðsþ 4Þðs2 þ 2sþ 90Þ

ANSWERS:

a. The second-order approximation is valid.

b. The second-order approximation is not valid.

The complete solution is located at www.wiley.com/college/nise.

TryIt 4.2

Use the following MATLAB
and Control System Toolbox
statements to investigate the
effect of the additional pole
in Skill-Assessment Exer-
cise 4.6(a). Move the higher-
order pole originally at �15
to other values by changing
‘‘a’’ in the code.

a=15
numga=100*a;
denga=conv([1 a],...
[1 4 100]);

Ta=tf(numga,denga);
numg=100;
deng=[1 4 100];
T=tf (numg,deng);
step(Ta, ’. ’,T,’- ’)
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4.8 System Response With Zeros

Now that we have seen the effect of an additional pole, let us add a zero to the
second-order system. In Section 4.2, we saw that the zeros of a response affect
the residue, or amplitude, of a response component but do not affect the nature of
the response—exponential, damped sinusoid, and so on. In this section, we add a
real-axis zero to a two-pole system. The zero will be added first in the left half-plane
and then in the right half-plane and its effects noted and analyzed. We conclude the
section by talking about pole-zero cancellation.

Starting with a two-pole system with poles at ð�1 � j 2:828Þ, we consecutively
add zeros at �3, �5, and �10. The results, normalized to the steady-state value, are
plotted in Figure 4.25. We can see that the closer the zero is to the dominant poles,
the greater its effect on the transient response. As the zero moves away from the
dominant poles, the response approaches that of the two-pole system. This analysis
can be reasoned via the partial-fraction expansion. If we assume a group of poles and
a zero far from the poles, the residue of each pole will be affected the same by the
zero. Hence, the relative amplitudes remain appreciably the same. For example,
assume the partial-fraction expansion shown in Eq. (4.68):

TðsÞ ¼ ðsþ aÞ
ðsþ bÞðsþ cÞ ¼

A

sþ b
þ B

sþ c

¼ ð�bþ aÞ=ð�bþ cÞ
sþ b

þ ð�cþ aÞ=ð�cþ bÞ
sþ c

ð4:68Þ

If the zero is far from the poles, then a is large compared to b and c, and

TðsÞ � a
1=ð�bþ cÞ

sþ b
þ 1=ð�cþ bÞ

sþ c

� �
¼ a

ðsþ bÞðsþ cÞ ð4:69Þ

Hence, the zero looks like a simple gain factor and does not change the relative
amplitudes of the components of the response.

Another way to look at the effect of a zero, which is more general, is as follows
(Franklin, 1991): Let C(s) be the response of a system, T(s), with unity in the

TryIt 4.3

Use the following MATLAB
and Control System Toolbox
statements to generate Figure
4.25.

deng=[1 2 9];
Ta=tf([1 3]*9/3,deng);
Tb=tf([1 5]*9/5,deng);
Tc=tf([1 10]*9/10,deng);
T=tf(9,deng);
step(T,Ta,Tb,Tc)
text(0.5,0.6, ’no zero ’)
text(0.4,0.7,...

’zero at -10 ’)
text(0.35,0.8,...

’zero at -5 ’)
text(0.3,0.9,’zero at -3 ’)
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FIGURE 4.25 Effect of adding
a zero to a two-pole system
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numerator. If we add a zero to the transfer function, yielding ðsþ aÞTðsÞ, the Laplace
transform of the response will be

ðsþ aÞCðsÞ ¼ sCðsÞ þ aCðsÞ ð4:70Þ

Thus, the response of a system with a zero consists of two parts: the derivative of the
original response and a scaled version of the original response. If a, the negative of
the zero, is very large, the Laplace transform of the response is approximately aC(s),
or a scaled version of the original response. If a is not very large, the response has an
additional component consisting of the derivative of the original response. As a
becomes smaller, the derivative term contributes more to the response and has
a greater effect. For step responses, the derivative is typically positive at the start of a
step response. Thus, for small values of a, we can expect more overshoot in second-
order systems because the derivative term will be additive around the first over-
shoot. This reasoning is borne out by Figure 4.25.

An interesting phenomenon occurs if a is negative, placing the zero in the right
half-plane. From Eq. (4.70) we see that the derivative term, which is typically
positive initially, will be of opposite sign from the scaled response term. Thus, if the
derivative term, sC(s), is larger than the scaled response, aC(s), the response will
initially follow the derivative in the opposite direction from the scaled response. The
result for a second-order system is shown in Figure 4.26, where the sign of the input
was reversed to yield a positive steady-state value. Notice that the response begins to
turn toward the negative direction even though the final value is positive. A system
that exhibits this phenomenon is known as a nonminimum-phase system. If a
motorcycle or airplane was a nonminimum-phase system, it would initially veer
left when commanded to steer right.

Let us now look at an example of an electrical nonminimum-phase network.

Example 4.9

Transfer Function of a Nonminimum-Phase System

PROBLEM:

a. Find the transfer function, VoðsÞ=ViðsÞ for the operational amplifier circuit
shown in Figure 4.27.

FIGURE 4.26 Step response of a
nonminimum-phase system
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b. If R1 ¼ R2, this circuit is known as an all-pass filter, since it
passes sine waves of a wide range of frequencies without
attenuating or amplifying their magnitude (Dorf, 1993).
We will learn more about frequency response in Chap-
ter 10. For now, let R1 ¼ R2; R3C ¼ 1=10, and find the step
response of the filter. Show that component parts of the
response can be identified with those in Eq. (4.70).

SOLUTION:

a. Remembering from Chapter 2 that the operational ampli-
fier has a high input impedance, the current, I(s), through
R1 and R2, is the same and is equal to

IðsÞ ¼ ViðsÞ � VoðsÞ
R1 þ R2

ð4:71Þ
Also,

VoðsÞ ¼ AðV2ðsÞ � V1ðsÞÞ ð4:72Þ
But

V1ðsÞ ¼ IðsÞR1 þ VoðsÞ ð4:73Þ

Substituting Eq. (4.71) into (4.73),

V1ðsÞ ¼ 1

R1 þ R2
ðR1ViðsÞ þ R2V0ðsÞÞ ð4:74Þ

Using voltage division,

V2ðsÞ ¼ ViðsÞ 1=Cs

R3 þ 1

Cs

ð4:75Þ

Substituting Eqs. (4.74) and (4.75) into Eq. (4.72) and simplifying yields

VoðsÞ
ViðsÞ ¼ AðR2 � R1R3CsÞ

ðR3Csþ 1ÞðR1 þ R2ð1 þAÞÞ ð4:76Þ

Since the operational amplifier has a large gain, A, let A approach infinity.
Thus, after simplification

VoðsÞ
ViðsÞ ¼ R2 � R1R3Cs

R2R3Csþ R2
¼ �R1

R2

s� R2

R1R3C

� �

sþ 1

R3C

� � ð4:77Þ

b. Letting R1 ¼ R2 and R3C ¼ 1=10,

VoðsÞ
ViðsÞ ¼

s� 1

R3C

� �

sþ 1

R3C

� � ¼ �ðs� 10Þ
ðsþ 10Þ ð4:78Þ

Vi(s)

R2 V1(s)

R1

I(s)

R3
V2(s)

Vo(s)

C

+

–

FIGURE 4.27 Nonminimum-phase electric circuit
(Reprinted with permission of John Wiley &
Sons, Inc.)
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For a step input, we evaluate the response as suggested by Eq. (4.70):

CðsÞ ¼ � ðs� 10Þ
sðsþ 10Þ ¼ � 1

sþ 10
þ 10

1

sðsþ 10Þ ¼ sCoðsÞ � 10CoðsÞ ð4:79Þ

where
CoðsÞ ¼ � 1

sðsþ 10Þ ð4:80Þ

is the Laplace transform of the response without a zero. Expanding
Eq. (4.79) into partial fractions,

CðsÞ ¼ � 1

sþ 10
þ 10

1

sðsþ 10Þ ¼ � 1

sþ 10
þ 1

s
� 1

sþ 10
¼ 1

s
� 2

sþ 10

ð4:81Þ
or the response with a zero is

cðtÞ ¼ �e�10t þ 1 � e�10t ¼ 1 � 2e�10t ð4:82Þ
Also, from Eq. (4.80),

CoðsÞ ¼ � 1=10

s
þ 1=10

sþ 10
ð4:83Þ

or the response without a zero is

coðtÞ ¼ � 1

10
þ 1

10
e�10t ð4:84Þ

The normalized responses are plotted in Figure 4.28. Notice the immediate
reversal of the nonminimum-phase response, c(t).

We conclude this section by talking about pole-zero cancellation and its effect
on our ability to make second-order approximations to a system. Assume a three-
pole system with a zero as shown in Eq. (4.85). If the pole term, ðsþ p3Þ, and the zero
term, ðsþ zÞ, cancel out, we are left with

TðsÞ ¼ Kðsþ zÞ
ðsþ p3Þ ðs2 þ asþ bÞ ð4:85Þ
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FIGURE 4.28 Step response of the nonminimum-phase network of Figure 4.27 (c(t)) and
normalized step response of an equivalent network without the zero ð�10coðtÞÞ
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as a second-order transfer function. From another perspective, if the zero at �z is
very close to the pole at �p3, then a partial-fraction expansion of Eq. (4.85) will show
that the residue of the exponential decay is much smaller than the amplitude of the
second-order response. Let us look at an example.

Example 4.10

Evaluating Pole-Zero Cancellation Using Residues

PROBLEM: For each of the response functions in Eqs. (4.86) and (4.87), determine
whether there is cancellation between the zero and the pole closest to the zero. For
any function for which pole-zero cancellation is valid, find the approximate response.

C1ðsÞ ¼ 26:25ðsþ 4Þ
sðsþ 3:5Þðsþ 5Þðsþ 6Þ ð4:86Þ

C2ðsÞ ¼ 26:25ðsþ 4Þ
sðsþ 4:01Þðsþ 5Þðsþ 6Þ ð4:87Þ

SOLUTION: The partial-fraction expansion of Eq. (4.86) is

C1ðsÞ ¼ 1

s
� 3:5

sþ 5
þ 3:5

sþ 6
� 1

sþ 3:5
ð4:88Þ

The residue of thepole at�3.5, which is closest to thezero at�4, is equal to 1 andis not
negligible compared to the other residues. Thus, a second-order step response
approximation cannot be made for C1ðsÞ. The partial-fraction expansion for C2ðsÞ is

C2ðsÞ ¼ 0:87

s
� 5:3

sþ 5
þ 4:4

sþ 6
þ 0:033

sþ 4:01
ð4:89Þ

The residue of the pole at �4.01, which is closest to the zero at �4, is equal to 0.033,
about two orders of magnitude below any of the other residues. Hence, we make a
second-orderapproximationbyneglectingtheresponsegeneratedbythepoleat�4.01:

C2ðsÞ � 0:87

s
� 5:3

sþ 5
þ 4:4

sþ 6
ð4:90Þ

and the response c2ðtÞ is approximately

c2ðtÞ � 0:87 � 5:3e�5t þ 4:4e�6t ð4:91Þ

Skill-Assessment Exercise 4.7

PROBLEM: Determine the validity of a second-order step-response approxima-
tion for each transfer function shown below.

a. GðsÞ ¼ 185:71ðsþ 7Þ
ðsþ 6:5Þðsþ 10Þðsþ 20Þ

b. GðsÞ ¼ 197:14ðsþ 7Þ
ðsþ 6:9Þðsþ 10Þðsþ 20Þ

TryIt 4.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to evaluate the ef-
fect of higher-order poles by
finding the component parts of
the time response of c1ðtÞ and
c2ðtÞ in Example 4.10.

syms s
C1=26.25�(s+4)/...
(s�(sþ3.5)�...
(s+5)�(s+6));

C2=26.25�(s+4)/...
(s�(s+4.01)�...
(s+5)�(sþ6));

c1=ilaplace(C1);
c1=vpa(c1,3);
’c1’

pretty (c1)
c2=ilaplace(C2);
c2=vpa(c2,3);
’c2 ’

pretty(c2);
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ANSWERS:

a. A second-order approximation is not valid.

b. A second-order approximation is valid.

The complete solution is located at www.wiley.com/college/nise.

In this section, we have examined the effects of additional transfer func-
tion poles and zeros upon the response. In the next section we add nonlinearities of
the type discussed in Section 2.10 and see what effects they have on system response.

4.9 Effects of Nonlinearities Upon Time Response

In this section, we qualitatively examine the effects of nonlinearities upon the time
response of physical systems. In the following examples, we insert nonlinearities,
such as saturation, dead zone, and backlash, as shown in Figure 2.46, into a system to
show the effects of these nonlinearities upon the linear responses.

The responses were obtained using Simulink, a simulation software package
that is integrated with MATLAB to provide a graphical user interface (GUI).
Readers who would like to learn how to use Simulink to generate nonlinear
responses should consult the Simulink tutorial in Appendix C. Simulink block
diagrams are included with all responses that follow.

Let us assume the motor and load from the Antenna Control Case Study of
Chapter 2 and look at the load angular velocity, voðsÞ, where voðsÞ ¼ 0:1 sumðsÞ ¼
0:2083 EaðsÞ=ðsþ 1:71Þ from Eq. (2.208). If we drive the motor with a step input
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FIGURE 4.29 a. Effect of amplifier saturation on load angular velocity response;
(figure continues)
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through an amplifier of unity gain that saturates at �5 volts, Figure 4.29 shows that
the effect of amplifier saturation is to limit the obtained velocity.

The effect of dead zone on the output shaft driven by a motor and gears is
shown in Figure 4.30. Here we once again assume the motor, load, and gears from
Antenna Control Case Study of Chapter 2. Dead zone is present when the motor
cannot respond to small voltages. The motor input is a sinusoidal waveform chosen
to allow us to see the effects of dead zone vividly. The response begins when the input
voltage to the motor exceeds a threshold. We notice a lower amplitude when dead
zone is present.

The effect of backlash on the output shaft driven by a motor and gears is shown
in Figure 4.31. Again we assume the motor, load, and gears from the Antenna
Control Case Study of Chapter 2. The motor input is again a sinusoidal waveform,

4.9 Effects of Nonlinearities Upon Time Response 197
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FIGURE4.30 a.Effect of dead zone on load angular displacement response; (figure continues)
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Mux Scope

Sine wave
Amplitude = 5

Frequency = 1 rad/s

Dead zone
–2 to +2

(b)

Motor, load,
& gears

Motor, load,
& gears

Integrator

Integrator

1
s

1
s

0.2083
s + 1.71

0.2083
s + 1.71

FIGURE 4.30 (Continued) b. Simulink block diagram
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FIGURE 4.31 a. Effect of backlash on load angular displacement response; b. Simulink block
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which is chosen to allow us to see vividly the effects of backlash in the gears driven by
the motor. As the motor reverses direction, the output shaft remains stationary while
the motor begins to reverse. When the gears finally connect, the output shaft itself
begins to turn in the reverse direction. The resulting response is quite different from
the linear response without backlash.

Skill-Assessment Exercise 4.8

PROBLEM: Use MATLAB’s Simulink to reproduce Figure 4.31.

ANSWER: See Figure 4.31.

Now that we have seen the effects of nonlinearities on the time response, let us
return to linear systems. Our coverage so far for linear systems has dealt with finding
the time response by using the Laplace transform in the frequency domain. Another
way to solve for the response is to use state-space techniques in the time domain.
This topic is the subject of the next two sections.

4.10 Laplace Transform Solution
of State Equations

In Chapter 3, systems were modeled in state space, where the state-space represen-
tation consisted of a state equation and an output equation. In this section, we use
the Laplace transform to solve the state equations for the state and output vectors.

Consider the state equation
_x ¼ Axþ Bu ð4:92Þ

and the output equation
y ¼ CxþDu ð4:93Þ

Taking the Laplace transform of both sides of the state equation yields

sXðsÞ � xð0Þ ¼ AXðsÞ þ BUðsÞ ð4:94Þ
In order to separate X(s), replace sX(s) with sIX(s), where I is an n� n
identity matrix, and n is the order of the system. Combining all of the X(s) terms,
we get

ðsI�AÞXðsÞ ¼ xð0Þ þ BUðsÞ ð4:95Þ
Solving for X(s) by premultiplying both sides of Eq. (4.95) by ðsI�AÞ�1, the final
solution for X(s) is

XðsÞ ¼ ðsI�AÞ�1xð0Þ þ ðsI�AÞ�1BUðsÞ

¼ adjðsI�AÞ
detðsI�AÞ ½xð0Þ þ BUðsÞ�

ð4:96Þ
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Taking the Laplace transform of the output equation yields

YðsÞ ¼ CXðsÞ þDUðsÞ ð4:97Þ

Eigenvalues and Transfer Function Poles
We saw that the poles of the transfer function determine the nature of the transient
response of the system. Is there an equivalent quantity in the state-space represen-
tation that yields the same information? Section 5.8 formally defines the roots of
detðsI�AÞ ¼ 0 (see the denominator of Eq. (4.96)) to be eigenvalues of the system
matrix, A.6 Let us show that the eigenvalues are equal to the poles of the system’s
transfer function. Let the output, Y(s), and the input, U(s), be scalar quantities Y(s)
and U(s), respectively. Further, to conform to the definition of a transfer function, let
x(0), the initial state vector, equal 0, the null vector. Substituting Eq. (4.96) into
Eq. (4.97) and solving for the transfer function, YðsÞ=UðsÞ, yields

YðsÞ
UðsÞ ¼ C

adjðsI�AÞ
detðsI�AÞ
� �

BþD

¼ C adjðsI�AÞBþD detðsI�AÞ
detðsI�AÞ ð4:98Þ

The roots of the denominator of Eq. (4.98) are the poles of the system. Since the
denominators of Eqs. (4.96) and (4.98) are identical, the system poles equal the
eigenvalues. Hence, if a system is represented in state-space, we can find the poles
from detðsI�AÞ ¼ 0. We will be more formal about these facts when we discuss
stability in Chapter 6.

The following example demonstrates solving the state equations using the
Laplace transform as well as finding the eigenvalues and system poles.

Example 4.11

Laplace Transform Solution; Eigenvalues and Poles

PROBLEM: Given the system represented in state space by Eqs. (4.99),

_x ¼
0 1 0

0 0 1

�24 �26 �9

2
664

3
775xþ

0

0

1

2
664

3
775e�t ð4:99aÞ

y ¼ ½ 1 1 0 �x ð4:99bÞ

xð0Þ ¼
1

0

2

2
664

3
775 ð4:99cÞ

6 Sometimes the symbol l is used in place of the complex variable s when solving the state equations
without using the Laplace transform. Thus, it is common to see the characteristic equation also written as
det ðlI�AÞ ¼ 0.
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do the following:

a. Solve the preceding state equation and obtain the output for the given
exponential input.

b. Find the eigenvalues and the system poles.

SOLUTION:

a. We will solve the problem by finding the component parts of Eq. (4.96),
followed by substitution into Eq. (4.97). First obtain A and B by comparing
Eq. (4.99a) to Eq. (4.92). Since

sI ¼
s 0 0

0 s 0

0 0 s

2
664

3
775 ð4:100Þ

then

ðsI�AÞ ¼
s �1 0

0 s �1

24 26 sþ 9

2
664

3
775 ð4:101Þ

and

ðsI�AÞ�1 ¼

ðs2 þ 9sþ 26Þ ðsþ 9Þ 1

�24 s2 þ 9s s

�24s �ð26sþ 24Þ s2

2
664

3
775

s3 þ 9s2 þ 26sþ 24
ð4:102Þ

Since U(s) (the Laplace transform for e�t) is 1=ðsþ 1Þ; XðsÞ can be calculated.
Rewriting Eq. (4.96) as

XðsÞ ¼ ðsI�AÞ�1½xð0Þ þ BUðsÞ� ð4:103Þ
and using B and x(0) from Eqs. (4.99a) and (4.99c), respectively, we get

X1ðsÞ ¼ ðs3 þ 10s2 þ 37sþ 29Þ
ðsþ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ ð4:104aÞ

X2ðsÞ ¼ ð2s2 � 21s� 24Þ
ðsþ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ ð4:104bÞ

X3ðsÞ ¼ sð2s2 � 21s� 24Þ
ðsþ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ ð4:104cÞ

The output equation is found from Eq. (4.99b). Performing the indicated addition
yields

YðsÞ ¼ 1 1 0½ �
X1ðsÞ
X2ðsÞ
X3ðsÞ

2
664

3
775 ¼ X1ðsÞ þX2ðsÞ ð4:105Þ
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or

YðsÞ ¼ ðs3 þ 12s2 þ 16sþ 5Þ
ðsþ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ

¼ �6:5

sþ 2
þ 19

sþ 3
� 11:5

sþ 4

ð4:106Þ

where the pole at �1 canceled a zero at �1. Taking the inverse Laplace
transform,

yðtÞ ¼ �6:5e�2t þ 19e�3t � 11:5e�4t ð4:107Þ
b. The denominator of Eq. (4.102), which is detðsI�AÞ, is also the denominator

of the system’s transfer function. Thus, detðsI�AÞ ¼ 0 furnishes both the
poles of the system and the eigenvalues �2; � 3, and �4.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch4sp1 in Appendix F at www.wiley.com/college/
nise. You will learn how to solve state equations for the output
response using the Laplace transform. Example 4.11 will be
solved using MATLAB and the Symbolic Math Toolbox.

Skill-Assessment Exercise 4.9

PROBLEM: Given the system represented in state space by Eqs. (4.108),

_x ¼
0 2

�3 �5

" #
xþ

0

1

" #
e�t ð4:108aÞ

y ¼ ½ 1 3 �x ð4:108bÞ

xð0Þ ¼
2

1

" #
ð4:108cÞ

do the following:

a. Solve for y(t) using state-space and Laplace transform techniques.

b. Find the eigenvalues and the system poles.

ANSWERS:

a. yðtÞ ¼ �0:5e�t � 12e�2t þ 17:5e�3t

b. �2; � 3

The complete solution is located at www.wiley.com/college/nise.

TryIt 4.5

Use the following MATLAB
and Symbolic Math Toolbox
statements to solve Skill-
Assessment Exercise 4.9.

Syms s
A=[0 2;-3 -5]; B=[0;1];
C=[1 3];X0=[2;1];
U=1/(s+1);
I=[1 0;0 1];
X=((s*I-A)^-1)*...
(X0þB*U);

Y=C*X;Y=simplify(Y);
y=ilaplace(Y);
pretty(y)
eig(A)
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4.11 Time Domain Solution of State
Equations

We now look at another technique for solving the state equations. Rather than using
the Laplace transform, we solve the equations directly in the time domain using a
method closely allied to the classical solution of differential equations. We will find
that the final solution consists of two parts that are different from the forced and
natural responses.

The solution in the time domain is given directly by

xðtÞ ¼ eAtxð0Þ þ
Z t

0
eAðt�tÞBuðtÞdt

¼ FðtÞxð0Þ þ
Z t

0
Fðt � tÞBuðtÞdt

ð4:109Þ

where FðtÞ ¼ eAt by definition, and which is called the state-transition matrix.
Eq. (4.109) is derived in Appendix I located at www.wiley.com/college/nise. Readers
who are not familiar with this equation or who may want to refresh their memory
should consult Appendix I before proceeding.

Notice that the first term on the right-hand side of the equation is the response
due to the initial state vector, x(0). Notice also that it is the only term dependent on
the initial state vector and not the input. We call this part of the response the zero-
input response, since it is the total response if the input is zero. The second term,
called the convolution integral, is dependent only on the input, u, and the input
matrix, B, not the initial state vector. We call this part of the response the zero-state
response, since it is the total response if the initial state vector is zero. Thus, there is a
partitioning of the response different from the forced/natural response we have seen
when solving differential equations. In differential equations, the arbitrary constants
of the natural response are evaluated based on the initial conditions and the initial
values of the forced response and its derivatives. Thus, the natural response’s
amplitudes are a function of the initial conditions of the output and the input. In
Eq. (4.109), the zero-input response is not dependent on the initial values of the
input and its derivatives. It is dependent only on the initial conditions of the state
vector. The next example vividly shows the difference in partitioning. Pay close
attention to the fact that in the final result the zero-state response contains not only
the forced solution but also pieces of what we previously called the natural response.
We will see in the solution that the natural response is distributed through the zero-
input response and the zero-state response.

Before proceeding with the example, let us examine the form the elements of
FðtÞ take for linear, time-invariant systems. The first term of Eq. (4.96), the Laplace
transform of the response for unforced systems, is the transform of FðtÞxð0Þ, the
zero-input response from Eq. (4.109). Thus, for the unforced system

L½xðtÞ� ¼ L½FðtÞxð0Þ� ¼ ðsI�AÞ�1xð0Þ ð4:110Þ
from which we can see that ðsI�AÞ�1is the Laplace transform of the state-transition
matrix, FðtÞ. We have already seen that the denominator of ðsI�AÞ�1 is a
polynomial in s whose roots are the system poles. This polynomial is found from
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the equation detðsI�AÞ ¼ 0. Since

L�1½ðsI�AÞ�1� ¼ L�1 adjðsI�AÞ
detðsI�AÞ
� �

¼ FðtÞ ð4:111Þ

each term of FðtÞ would be the sum of exponentials generated by the system’s poles.
Let us summarize the concepts with two numerical examples. The first example

solves the state equations directly in the time domain. The second example uses
the Laplace transform to solve for the state-transition matrix by finding the inverse
Laplace transform of ðsI�AÞ�1.

Example 4.12

Time Domain Solution

PROBLEM: For the state equation and initial state vector shown in Eqs. (4.112),
where u(t) is a unit step, find the state-transition matrix and then solve for x(t).

_xðtÞ ¼
0 1

�8 �6

" #
xðtÞ þ

0

1

" #
uðtÞ ð4:112aÞ

xð0Þ ¼
1

0

" #
ð4:112bÞ

SOLUTION: Since the state equation is in the form

_xðtÞ ¼ AxðtÞ þ BuðtÞ ð4:113Þ
find the eigenvalues using detðsI�AÞ ¼ 0. Hence, s2 þ 6sþ 8 ¼ 0, from which
s1 ¼ �2 and s2 ¼ �4. Since each term of the state-transition matrix is the sum of
responses generated by the poles (eigenvalues), we assume a state-transition
matrix of the form

FðtÞ ¼ ðK1e�2t þK2e�4tÞ ðK3e�2t þK4e�4tÞ
ðK5e�2t þK6e�4tÞ ðK7e�2t þK8e�4tÞ

" #
ð4:114Þ

In order to find the values of the constants, we make use of the properties of
the state-transition matrix derived in Appendix J located at www.wiley.com/
college/nise.

Fð0Þ ¼ I ð4:115Þ

K1 þK2 ¼ 1 ð4:116aÞ

K3 þK4 ¼ 0 ð4:116bÞ

K5 þK6 ¼ 0 ð4:116cÞ

K7 þK8 ¼ 1 ð4:116dÞ
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and since

_Fð0Þ ¼ A ð4:117Þ
then

�2K1 � 4K2 ¼ 0 ð4:118aÞ

�2K3 � 4K4 ¼ 1 ð4:118bÞ

�2K5 � 4K6 ¼ �8 ð4:118cÞ

�2K7 � 4K8 ¼ �6 ð4:118dÞ
The constants are solved by taking two simultaneous equations four times. For
example, Eq. (4.116a) can be solved simultaneously with Eq. (4.118a) to yield the
values of K1 and K2. Proceeding similarly, all of the constants can be found.
Therefore,

FðtÞ ¼
ð2e�2t � e�4tÞ 1

2
e�2t � 1

2
e�4t

� �

ð�4e�2t þ 4e�4tÞ ð�e�2t þ 2e�4tÞ

2
64

3
75 ð4:119Þ

Also,

Fðt � tÞB ¼
1

2
e�2ðt�tÞ � 1

2
e�4ðt�tÞ

� �

�
� e�2ðt�tÞ þ 2e�4ðt�tÞ

	

2
664

3
775 ð4:120Þ

Hence, the first term of Eq. (4.109) is

FðtÞxð0Þ ¼ ð2e�2t � e�4tÞ
ð�4e�2t þ 4e�4tÞ

" #
ð4:121Þ

The last term of Eq. (4.109) is

Z t

0
Fðt � tÞBuðtÞdt ¼

1

2
e�2t

Z t

0
e2tdt � 1

2
e�4t

Z t

0
e4tdt

�e�2t

Z t

0
e2tdt þ 2e�4t

Z t

0
e4tdt

2
666664

3
777775

¼

1

8
� 1

4
e�2t þ 1

8
e�4t

1

2
e�2t � 1

2
e�4t

2
66664

3
77775

ð4:122Þ

ð4:122Þ

Notice, as promised, that Eq. (4.122), the zero-state response, contains not only the
forced response, 1/8, but also terms of the form Ae�2t and Be�4t that are part of
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what we previously called the natural response. However, the coefficients, A and
B, are not dependent on the initial conditions.

The final result is found by adding Eqs. (4.121) and (4.122). Hence,

xðtÞ ¼ FðtÞxð0Þ þ
Z t

0
Fðt � tÞBuðtÞdt ¼

1

8
þ 7

4
e�2t � 7

8
e�4t

� 7

2
e�2t þ 7

2
e�4t

2
664

3
775 ð4:123Þ

Example 4.13

State-Transition Matrix via Laplace Transform

PROBLEM: Find the state-transition matrix of Example 4.12, using ðsI�AÞ�1.

SOLUTION: We use the fact that FðtÞ is the inverse Laplace transform of
ðsI�AÞ�1. Thus, first find ðsI�AÞ as

ðsI�AÞ ¼
s �1

8 ðsþ 6Þ

" #
ð4:124Þ

from which

ðsI�AÞ�1 ¼

sþ 6 1

�8 s

" #

s2 þ 6sþ 8
¼

sþ 6

s2 þ 6sþ 8

1

s2 þ 6sþ 8

�8

s2 þ 6sþ 8

s

s2 þ 6sþ 8

2
664

3
775 ð4:125Þ

Expanding each term in the matrix on the right by partial fractions yields

ðsI�AÞ�1 ¼

2

sþ 2
� 1

sþ 4

� �
1=2

sþ 2
� 1=2

sþ 4

� �

�4

sþ 2
þ 4

sþ 4

� � �1

sþ 2
þ 2

sþ 4

� �

2
6664

3
7775 ð4:126Þ

Finally, taking the inverse Laplace transform of each term, we obtain

FðtÞ ¼
ð2e�2t � e�4tÞ 1

2
e�2t � 1

2
e�4t

� �

ð�4e�2t þ 4e�4tÞ ð�e�2t þ 2e�4tÞ

2
64

3
75 ð4:127Þ

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch4sp2 in Appendix F at www.wiley.com/college/
nise. You will learn how to solve state equations for the output
response using the convolution integral. Examples 4.12 and 4.13
will be solved using MATLAB and the Symbolic Math Toolbox.
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Systems represented in state space can be simulated on the digital computer.
ProgramssuchasMATLABcanbeusedfor thispurpose.Alternately, theusercanwrite
specialized programs, as discussed in Appendix G.1 at www.wiley.com/college/nise.

Students who are using MATLAB should now run ch4p3 in Appendix B.
This exercise uses MATLAB to simulate the step response of systems
represented in state space. In addition to generating the step
response, you will learn how to specify the range on the time axis
for the plot.

Skill-Assessment Exercise 4.10

PROBLEM: Given the system represented in state space by Eqs. (4.128):

_x ¼
0 2

�2 �5

" #
xþ

0

1

" #
e�2t ð4:128aÞ

y ¼ 2 1½ �x ð4:128bÞ

xð0Þ ¼
1

2

" #
ð4:128cÞ

do the following:

a. Solve for the state-transition matrix.

b. Solve for the state vector using the convolution integral.

c. Find the output, y(t).

ANSWERS:

a. FðtÞ ¼

4

3
e�t � 1

3
e�4t

� �
2

3
e�t � 2

3
e�4t

� �

� 2

3
e�t þ 2

3
e�4t

� �
� 1

3
e�t þ 4

3
e�4t

� �

2
6664

3
7775

b. xðtÞ ¼

10

3
e�t � e�2t � 4

3
e�4t

� �

� 5

3
e�t þ e�2t þ 8

3
e�4t

� �

2
6664

3
7775

c. yðtÞ ¼ 5e�t � e�2t

The complete solution is located at www.wiley.com/college/nise.

Case Studies

Antenna Control: Open-Loop Response

In this chapter, we have made use of the transfer functions derived in Chapter 2
and the state equations derived in Chapter 3 to obtain the output response of an
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open-loop system. We also showed the importance of the poles of a system in deter-
mining thetransient response. The following case study uses these concepts to analyze
an open-loop portion of the antenna azimuth position control system. The open-loop
function that we will deal with consists of a power amplifier and motor with load.

PROBLEM: For the schematic of the azimuth position control system shown on
the front endpapers, Configuration 1, assume an open-loop system (feedback path
disconnected).

a. Predict, by inspection, the form of the open-loop angular velocity response of
the load to a step-voltage input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

c. Derive the complete analytical expression for the open-loop angular velocity
response of the load to a step-voltage input to the power amplifier, using
transfer functions.

d. Obtain the open-loop state and output equations.

e. Use M ATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

SOLUTION: The transfer functions of the power amplifier, motor, and load as
shown on the front endpapers, Configuration 1, were discussed in the Chapter 2
case study. The two subsystems are shown interconnected in Figure 4.32(a).
Differentiating the angular position of the motor and load output by multiplying
by s, we obtain the output angular velocity, vo, as shown in Figure 4.32(a). The
equivalent transfer function representing the three blocks in Figure 4.32(a) is the
product of the individual transfer functions and is shown in Figure 4.32(b).7

a. Using the transfer function shown in Figure 4.32(b), we can predict the nature of
the step response. The step response consists of the steady-state response
generated by the step input and the transient response, which is the sum of
two exponentials generated by each pole of the transfer function. Hence, the
form of the response is

voðtÞ ¼ Aþ Be�100t þ Ce�1:71t ð4:129Þ
b. The damping ratio and natural frequency of the open-loop system can be found

by expanding the denominator of the transfer function. Since the open-loop

Motor and load

s

Power amp
Convert to

angular velocity

Vp(s) 0.2083
 s(s+1.71)

(  )

(  )

θ

a

b

Ea(s) o(s) ωo(s)100
 (s+100)

20.83
(s+100)(s+1.71)

Vp(s) ωo(s)

FIGURE 4.32 Antenna azimuth position control system for angular velocity: a. forward
path; b. equivalent forward path

7 This product relationship will be derived in Chapter 5.
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transfer function is

GðsÞ ¼ 20:83

s2 þ 101:71sþ 171
ð4:130Þ

vn ¼
ffiffiffiffiffiffiffiffi
171

p ¼ 13:08; and z ¼ 3:89 (overdamped).

c. In order to derive the angular velocity response to a step input, we multiply the
transfer function of Eq. (4.130) by a step input, 1/s, and obtain

voðsÞ ¼ 20:83

sðsþ 100Þðsþ 1:71Þ ð4:131Þ

Expanding into partial fractions, we get

voðsÞ ¼ 0:122

s
þ 2:12 � 10�3

sþ 100
� 0:124

sþ 1:71
ð4:132Þ

Transforming to the time domain yields

voðtÞ ¼ 0:122 þ ð2:12 � 10�3Þe�100t � 0:124e�1:71t ð4:133Þ
d. First convert the transfer function into the state-space representation. Using

Eq. (4.130), we have

voðsÞ
VpðsÞ ¼

20:83

s2 þ 101:71sþ 171
ð4:134Þ

Cross-multiplying and taking the inverse Laplace transform with zero initial
conditions, we have

_vo þ 101:71 _vo þ 171vo ¼ 20:83vp ð4:135Þ
Defining the phase variables as

x1 ¼ vo ð4:136aÞ
x2 ¼ _vo ð4:136bÞ

and using Eq. (4.135), the state equations are written as

_x1 ¼ x2 ð4:137aÞ

_x2 ¼ �171x1 � 101:71x2 þ 20:83vp ð4:137bÞ
where vp ¼ 1, a unit step. Since x1 ¼ vo is the output, the output equation is

y ¼ x1 ð4:138Þ
Equations (4.137) and (4.138) can be programmed to obtain the step response
using MATLAB or alternative methods described in Appendix H.1 at
www.wiley.com/college/nise.

e. StudentswhoareusingMATLABshouldnowrunch4p4inAppendixB.
This exercise uses MATLAB to plot the step response.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. Refer to the antenna azimuth position control system shown on the
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front endpapers, Configuration 2. Assume an open-loop system (feedback path
disconnected) and do the following:

a. Predict the open-loop angular velocity response of the power amplifier, motor,
and load to a step voltage at the input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

c. Derive the open-loop angular velocity response of the power amplifier, motor,
and load to a step-voltage input using transfer functions.

d. Obtain the open-loop state and output equations.

e. Use MATLAB to obtain a plot of the open-loop angular velocity
response to a step-voltage input.

Unmanned Free-Swimming Submersible Vehicle:
Open-Loop Pitch Response

An Unmanned Free-Swimming Submersible (UFSS) vehicle is shown in Figure
4.33. The depth of the vehicle is controlled as follows. During forward motion, an
elevator surface on the vehicle is deflected by a selected amount. This deflection
causes the vehicle to rotate about the pitch axis. The pitch of the vehicle creates a
vertical force that causes the vehicle to submerge or rise. The pitch control system
for the vehicle is used here and in subsequent chapters as a case study to
demonstrate the covered concepts. The block diagram for the pitch control system
is shown in Figure 4.34 and on the back endpapers for future reference (Johnson,
1980). In this case study, we investigate the time response of the vehicle dynamics
that relate the pitch angle output to the elevator deflection input.

PROBLEM: The transfer function relating pitch angle, uðsÞ, to elevator surface
angle, deðsÞ, for the UFSS vehicle is

uðsÞ
deðsÞ ¼

�0:125ðsþ 0:435Þ
ðsþ 1:23Þðs2 þ 0:226sþ 0:0169Þ ð4:139Þ

FIGURE 4.33 Unmanned Free-Swimming Submersible (UFSS) vehicle.
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a. Using only the second-order poles shown in the transfer function, predict
percent overshoot, rise time, peak time, and settling time.

b. Using Laplace transforms, find the analytical expression for the response of the
pitch angle to a step input in elevator surface deflection.

c. Evaluate the effect of the additional pole and zero on the validity of the second-
order approximation.

d. Plot the step response of the vehicle dynamics and verify your conclusions found
in (c).

SOLUTION:

a. Using the polynomial s2 þ 0:226sþ 0:0169, we find that v2
n ¼ 0:0169 and

2zvn ¼ 0:226. Thus, vn ¼ 0:13 rad/s and z ¼ 0:869. Hence, %OS ¼ e�zp=
ffiffiffiffiffiffiffiffi
1�z2

p

100 ¼ 0:399%.FromFigure4.16,vnTr ¼ 2:75,orTr ¼ 21:2 s.Tofindpeaktime,we

use Tp ¼ p=vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
¼ 48:9 s. Finally, settling time is Ts ¼ 4=zvn ¼ 35:4 s.

b. In order to display a positive final value in Part d. we find the response of the
system to a negative unit step, compensating for the negative sign in the transfer
function. Using partial-fraction expansion, the Laplace transform of the
response, uðsÞ, is

uðsÞ ¼ 0:125ðsþ 0:435Þ
sðsþ 1:23Þðs2 þ 0:226sþ 0:0169Þ

¼ 2:616
1

s
þ 0:0645

1

sþ 1:23

� 2:68ðsþ 0:113Þ þ 3:478
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00413

p

ðsþ 0:113Þ2 þ 0:00413 ð4:140Þ
Taking the inverse Laplace transform,

uðtÞ ¼ 2:616 þ 0:0645e�1:23t

� e�0:113tð2:68 cos 0:0643t þ 3:478 sin 0:0643tÞ
¼ 2:616 þ 0:0645e�1:23t � 4:39e�0:113tcosð0:0643t þ 52:38
Þ ð4:141Þ

c. Looking at the relative amplitudes between the coefficient of the e�1:23t term
and the cosine term in Eq. (4.165), we see that there is pole-zero cancellation
between the pole at �1.23 and the zero at �0.435. Further, the pole at �1.23 is
more than five times farther from the jv axis than the second-order dominant

Pitch gain

–K1

Pitch
command

qc(s)

Commanded
elevator

deflection

ec
(s) 2

s+2

Elevator
actuator

Elevator
deflection

e(s)

Vehicle
dynamics

–0.125(s+0.435)
(s+1.23)(s2+0.226s+0.0169)

Pitch

q(s)

Pitch rate
sensor

–K2s

+

–

+

–

δ δ

FIGURE 4.34 Pitch control loop for the UFSS vehicle
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poles at �0:113 � j0:0643. We conclude that the response will be close to that
predicted.

d. Plotting Eq. (4.141) or using a computer simulation, we obtain the step response
shown in Figure 4.35. We indeed see a response close to that predicted.

Students who are using MATLAB should now run ch4p5 in Appendix B.
This exercise uses MATLAB to find z; vn; Ts; Tp, and Tr and plot a step
response. Table lookup is used to find Tr. The exercise applies the
concepts to the problem above.

CHALLENGE: You are now given a problem to test your
knowledge of this chapter’s objectives. This problem uses
the same principles that were applied to the Unmanned
Free-Swimming Submersible vehicle: Ships at sea undergo
motion about their roll axis, as shown in Figure 4.36. Fins
called stabilizers are used to reduce this rolling motion. The
stabilizers can be positioned by a closed-loop roll control
system that consists of components, such as fin actuators
and sensors, as well as the ship’s roll dynamics.

Assume the roll dynamics, which relates the roll-angle
output, uðsÞ, to a disturbance-torque input, TD(s), is

uðsÞ
TDðsÞ ¼

2:25

ðs2 þ 0:5sþ 2:25Þ ð4:142Þ

Do the following:

a. Find the natural frequency, damping ratio, peak time, settling time, rise time,
and percent overshoot.

b. Find the analytical expression for the output response to a unit step input in
voltage.

c. Use MATLAB to solve a and b and to plot the response found in b.
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FIGURE 4.35 Negative step response of pitch control for UFSS vehicle

θTD(t)

Roll axis

(t)

FIGURE 4.36 A ship at sea, showing roll axis
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Summary

In this chapter, we took the system models developed in Chapters 2 and 3 and found
the output response for a given input, usually a step. The step response yields a clear
picture of the system’s transient response. We performed this analysis for two types
of systems, first order and second order, which are representative of many physical
systems. We then formalized our findings and arrived at numerical specifications
describing the responses.

For first-order systems having a single pole on the real axis, the specification of
transient response that we derived was the time constant, which is the reciprocal of
the real-axis pole location. This specification gives us an indication of the speed of
the transient response. In particular, the time constant is the time for the step
response to reach 63% of its final value.

Second-order systems are more complex. Depending on the values of system
components, a second-order system can exhibit four kinds of behavior:

1. Overdamped

2. Underdamped

3. Undamped

4. Critically damped

We found that the poles of the input generate the forced response, whereas
the system poles generate the transient response. If the system poles are real, the
system exhibits overdamped behavior. These exponential responses have time
constants equal to the reciprocals of the pole locations. Purely imaginary poles
yield undamped sinusoidal oscillations whose radian frequency is equal to the
magnitude of the imaginary pole. Systems with complex poles display under-
damped responses. The real part of the complex pole dictates the exponential
decay envelope, and the imaginary part dictates the sinusoidal radian frequency.
The exponential decay envelope has a time constant equal to the reciprocal of the
real part of the pole, and the sinusoid has a radian frequency equal to the
imaginary part of the pole.

For all second-order cases, we developed specifications called the damping
ratio, z, and natural frequency, vn. The damping ratio gives us an idea about the
nature of the transient response and how much overshoot and oscillation it under-
goes, regardless of time scaling. The natural frequency gives an indication of the
speed of the response.

We found that the value of z determines the form of the second-order natural
response:

� If z ¼ 0, the response is undamped.

� If z < 1, the response is underdamped.

� If z ¼ 1, the response is critically damped.

� If z > 1, the response is overdamped.

The natural frequency is the frequency of oscillation if all damping is removed.
It acts as a scaling factor for the response, as can be seen from Eq. (4.28), in which the
independent variable can be considered to be vnt.
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For the underdamped case we defined several transient response specifica-
tions, including these:

� Percent overshoot, %OS

� Peak time, Tp

� Settling time, Ts

� Rise time, Tr

The peak time is inversely proportional to the imaginary part of the complex pole.
Thus, horizontal lines on the s-plane are lines of constant peak time. Percent
overshoot is a function of only the damping ratio. Consequently, radial lines are
lines of constant percent overshoot. Finally, settling time is inversely proportional to
the real part of the complex pole. Hence, vertical lines on the s-plane are lines of
constant settling time.

We found that peak time, percent overshoot, and settling time are related to
pole location. Thus, we can design transient responses by relating a desired response
to a pole location and then relating that pole location to a transfer function and the
system’s components.

The effects of nonlinearities, such as saturation, dead zone, and backlash were
explored using MATLAB’s Simulink.

In this chapter, we also evaluated the time response using the state-space
approach. The response found in this way was separated into the zero-input response,
and the zero-state response, whereas the frequency response method yielded a total
response divided into natural response and forced response components.

In the next chapter we will use the transient response specifications developed
here to analyze and design systems that consist of the interconnection of multiple
subsystems. We will see how to reduce these systems to a single transfer function in
order to apply the concepts developed in Chapter 4.

Review Questions

1. Name the performance specification for first-order systems.

2. What does the performance specification for a first-order system tell us?

3. In a system with an input and an output, what poles generate the steady-state
response?

4. In a system with an input and an output, what poles generate the transient
response?

5. The imaginary part of a pole generates what part of a response?

6. The real part of a pole generates what part of a response?

7. What is the difference between the natural frequency and the damped frequency
of oscillation?

8. If a pole is moved with a constant imaginary part, what will the responses have in
common?

9. If a pole is moved with a constant real part, what will the responses have in
common?

10. If a pole is moved along a radial line extending from the origin, what will the
responses have in common?
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11. List five specifications for a second-order underdamped system.

12. For Question 11 how many specifications completely determine the response?

13. What pole locations characterize (1) the underdamped system, (2) the over-
damped system, and (3) the critically damped system?

14. Name two conditions under which the response generated by a pole can be
neglected.

15. How can you justify pole-zero cancellation?

16. Does the solution of the state equation yield the output response of the system?
Explain.

17. What is the relationship between ðsI�AÞ, which appeared during the Laplace
transformation solution of the state equations, and the state-transition matrix,
which appeared during the classical solution of the state equation?

18. Name a major advantage of using time-domain techniques for the solution of the
response.

19. Name a major advantage of using frequency-domain techniques for the solution
of the response.

20. What three pieces of information must be given in order to solve for the output
response of a system using state-space techniques?

21. How can the poles of a system be found from the state equations?

Problems

1. Derive the output responses for all parts of
Figure 4.7. [Section: 4.4]

2. Find the output response, c(t), for each
of the systems shown in Figure P4.1.
Also find the time constant, rise time,
and settling time for each case. [Sections: 4.2, 4.3]

(a)

5
s+5

1
C(s)

20
s+20

1
s

s

C(s)

(b)

–

–

FIGURE P4.1

3. Plot the step responses for
Problem 2 using MATLAB.

4. Find the capacitor voltage in the network shown in
Figure P4.2 if the switch closes at t ¼ 0. Assume zero

initial conditions. Also find the time constant, rise
time, and settling time for the capacitor voltage.
[Sections: 4.2, 4.3]

5 V

t = 0

1.8 Ω

0.79 F

FIGURE P4.2

5. Plot the step response for
Problem 4 using MATLAB. From
your plots, find the time con-
stant, rise time, and settling
time.

6. For the system shown in Figure P4.3, (a) find an
equation that relates settling time of the velocity of
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the mass to M; (b) find an equation that relates rise
timeofthevelocityofthemasstoM. [Sections:4.2,4.3]

f (t )

x (t )

M

6 N-s/m

FIGURE P4.3

7. Plot the step response for
Problem 6 using MATLAB. From
your plots, find the time con-
stant, rise time, and settling
time. Use M ¼ 1 and M ¼ 2.

8. For each of the transfer functions shown below, find
the locations of the poles and zeros, plot them on the
s-plane, and then write an expression for the general
form of the step response without solving for the
inverse Laplace transform. State the nature of each
response (overdamped, underdamped, and so on).
[Sections: 4.3, 4.4]

a. TðsÞ ¼ 2

sþ 2

b. TðsÞ ¼ 5

ðsþ 3Þðsþ 6Þ

c. TðsÞ ¼ 10ðsþ 7Þ
ðsþ 10Þðsþ 20Þ

d. TðsÞ ¼ 20

s2 þ 6sþ 144

e. TðsÞ ¼ sþ 2

s2 þ 9

f. TðsÞ ¼ ðsþ 5Þ
ðsþ 10Þ2

9. Use MATLAB to find the poles of
[Section: 4.2]

TðsÞ ¼ s2 þ 2sþ 2

s4 þ 6s3 þ 4s2 þ 7sþ 2

10. Find the transfer function and poles of the system
represented in state space here: [Section: 4.10]

_x ¼
8 �4 1

�3 2 0
5 7 �9

2
4

3
5xþ

�4
�3

4

2
4

3
5uðtÞ

y ¼
"

2 8 �3

#
x; xð0Þ ¼

0

0

0

2
6664

3
7775

11. Repeat Problem 10 using
MATLAB. [Section: 4.10].

12. Write the general form of the capacitor
voltage for the electrical network shown
in Figure P4.4. [Section: 4.4].

R1 = 10 kΩ

L = 200 H C = 10    Fv(t) = u(t) R2 = 10 kΩ μ+
–

FIGURE P4.4

13. Use MATLAB to plot the capaci-
tor voltage in Problem 12.
[Section: 4.4].

14. Solve for x(t) in the system shown in Figure P4.5 if
f(t) is a unit step. [Section: 4.4].

(  )
Ks

fv

M
Ks

fv
f t(  )

1 kg=
5 N/m
1 N-s/m
u t(  ) N

f t(  )M

x t

=
=
=

FIGURE P4.5

15. The system shown in Figure P4.6 has a unit step
input. Find the output response as a function of
time. Assume the system is underdamped. Notice
that the result will be Eq. (4.28). [Section: 4.6].

ω n
2

ζω ω n
2s2+2 ns+

R(s) C(s)

FIGURE P4.6

16. Derive the relationship for damping ratio as a func-
tion of percent overshoot, Eq. (4.39). [Section: 4.6].

17. Calculate the exact response of each system of
Problem 8 using Laplace transform techniques,
and compare the results to those obtained in that
problem. [Sections: 4.3, 4.4].

18. Find the damping ratio and natural frequency for
each second-order system of Problem 8 and show
that the value of the damping ratio conforms to the
type of response (underdamped, overdamped, and
so on) predicted in that problem. [Section: 4.5].

19. A system has a damping ratio of 0.5, a
natural frequency of 100 rad/s, and a
dc gain of 1. Find the response of
the system to a unit step input. [Section: 4.6].
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20. For each of the second-order systems that follow,
find z; vn; Ts; Tp; Tr, and %OS. [Section: 4.6].

a. TðsÞ ¼ 16

s2 þ 3sþ 16

b. TðsÞ ¼ 0:04

s2 þ 0:02sþ 0:04

c. TðsÞ ¼ 1:05 � 107

s2 þ 1:6 � 103sþ 1:05 � 107

21. Repeat Problem 20 using MATLAB.
Have the computer program esti-
mate the given specifications and plot the
step responses. Estimate the rise time
from the plots. [Section: 4.6].

22. Use MATLAB’s LTI Viewer and ob-
tain settling time, peak time,
risetime,andpercentovershoot
for each of the systems in Problem 20.
[Section: 4.6].

23. For each pair of second-order system specifications
that follow, find the location of the second-order
pair of poles. [Section: 4.6].

a. %OS ¼ 12%; Ts ¼ 0:6 second

b. %OS ¼ 10%; Tp ¼ 5 seconds

c. Ts ¼ 7 seconds; Tp ¼ 3 seconds

24. Findthetransferfunctionofasecond-order
system that yields a 12.3% overshoot and a
settling time of 1 second. [Section: 4.6]

25. For the system shown in Figure P4.7, do the follow-
ing: [Section: 4.6]

a. Find the transfer function GðsÞ ¼ XðsÞ=FðsÞ.
b. Find z; vn; %OS; Ts; Tp, and Tr.

28 N/m

5 N-s/m

f (t)

x(t)

5 kg

FIGURE P4.7

26. For the system shown in Figure P4.8, a step torque is
applied at u1ðtÞ. Find

a. The transfer function, GðsÞ ¼ u2ðsÞ=TðsÞ.
b. The percent overshoot, settling time, and peak

time for u2ðtÞ. [Section: 4.6]

1.07 kg-m2

T(t) 1(t) θ2(t)

1.53 N-m-s/rad 1.92 N-m/rad

θθ

FIGURE P4.8

27. Derive the unit step response for each transfer
function in Example 4.8. [Section: 4.7].

28. Find the percent overshoot, settling time, rise time,
and peak time for

TðsÞ ¼ 14:145

ðs2 þ 0:842sþ 2:829Þðsþ 5Þ [Section: 4.7]

29. For each of the unit step responses shown
in Figure P4.9, find the transfer function
of the system. [Sections: 4.3, 4.6].
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30. For the following response functions, determine if
pole-zero cancellation can be approximated. If it
can, find percent overshoot, settling time, rise time,
and peak time. [Section: 4.8].

a. CðsÞ ¼ ðsþ 3Þ
sðsþ 2Þðs2 þ 3sþ 10Þ

b. CðsÞ ¼ ðsþ 2:5Þ
sðsþ 2Þðs2 þ 4sþ 20Þ

c. CðsÞ ¼ ðsþ 2:1Þ
sðsþ 2Þðs2 þ sþ 5Þ

d. CðsÞ ¼ ðsþ 2:01Þ
sðsþ 2Þðs2 þ 5sþ 20Þ

31. Using MATLAB, plot the time re-
sponse of Problem 30a and from
the plot determine percent overshoot,
settling time, rise time, and peak time.
[Section: 4.8]

32. Find peak time, settling time, and percent overshoot
for only those responses below that can be approxi-
mated as second-order responses. [Section: 4.8].

a. cðtÞ ¼ 0:003500 � 0:001524e�4t

�0:001976e�3tcosð22:16tÞ
�0:0005427e�3tsinð22:16tÞ

b. cðtÞ ¼ 0:05100 � 0:007353e�8t

�0:007647e�6tcosð8tÞ
�0:01309e�6tsinð8tÞ

c. cðtÞ ¼ 0:009804 � 0:0001857e�5:1t

�0:009990e�2tcosð9:796tÞ
�0:001942e�2tsinð9:796tÞ

d. cðtÞ ¼ 0:007000 � 0:001667e�10t

�0:008667e�2tcosð9:951tÞ
�0:0008040e�2tsinð9:951tÞ

33. For each of the following transfer functions with
zeros, find the component parts of the unit step
response: (1) the derivative of the response without
a zero and (2) the response without a zero, scaled to
the negative of the zero value. Also, find and plot
the total response. Describe any nonminimum-
phase behavior. [Section: 4.8].

a. GðsÞ ¼ sþ 2

s2 þ 3sþ 36

b. GðsÞ ¼ s� 2

s2 þ 3sþ 36

34. Use MATLAB’s Simulink to obtain
the step response of a system,

GðsÞ ¼ 1

s2 þ 3sþ 10

under the following conditions:
[Section: 4.9]

a. The system is linear and driven by an
amplifier whose gain is 10.

b. An amplifier whose gain is 10 drives the
system. The amplifier saturates at
�0:25 volts. Describe the effect of
the saturation on the system’s output.

c. An amplifier whose gain is 10 drives the
system. The amplifier saturates at
�0:25 volts. The system drives a 1:1
gear train that has backlash.The dead-
band width of the backlash is 0.02 rad.
Describe the effect of saturation and
backlash on the system’s output.

35. A system is represented by the state and
output equations that follow. Without
solving the state equation, find the poles
of the system. [Section: 4.10]

_x ¼ �2 �1
�3 �5

� �
xþ 1

2

� �
uðtÞ

y ¼ ½ 3 2 �x
36. A system is represented by the state

and output equations that follow. With-
out solving the state equation, find
[Section: 4.10]

a. the characteristic equation;

b. the poles of the system

_x ¼
0 2 3
0 6 5
1 4 2

" #
xþ

0
1
1

" #
uðtÞ

y ¼ ½ 1 2 0 �x
37. Given the following state-space re-

presentation of a system, find Y(s):
[Section: 4.10]

_x ¼ 1 2
�3 �1

� �
xþ 1

1

� �
sin 3t

y ¼ 1 2½ �x; xð0Þ ¼ 3
1

� �

38. Given the following system represented
in state space, solve for Y(s) using the
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Laplace transform method for solution of the state
equation: [Section: 4.10]

_x ¼
0 1 0

�2 �4 1

0 0 �6

2
64

3
75xþ

0

0

1

2
64
3
75e�t

y ¼ 0 0 1½ �x; xð0Þ ¼
0

0

0

2
64
3
75

39. Solve the following state equation and
output equation for y(t), where u(t) is
the unit step. Use the Laplace trans-
form method. [Section: 4.10]

_x ¼
�2 0

�1 �1

" #
xþ

1

1

" #
uðtÞ

y ¼ 0 1½ �x; xð0Þ ¼
3

0

" #

40. Solve for y(t) for the following system
represented in state space, where u(t) is
the unit step. Use the Laplace transform approach
to solve the state equation. [Section: 4.10]

_x ¼
�3 1 0

0 �6 1

0 0 �5

2
64

3
75xþ

0

1

1

2
64
3
75uðtÞ

y ¼ 0 1 1½ � x; xð0Þ ¼
0

0

0

2
64

3
75

41. Use MATLAB to plot the step re-
sponse of Problem 40. [Section:
4.10]

42. RepeatProblem40usingMATLAB’s
Symbolic Math Toolbox and Eq.
(4.96). In addition, run your program
with an initial condition,

xð0Þ ¼
1

1

0

2
664

3
775: ½Section : 4:10�

43. Using classical (not Laplace) methods
only, solve for the state-transition matrix,
the state vector, and the output of the

system represented here: [Section: 4.11]

_x ¼
0 1

�1 �5

" #
x; y ¼ 1 2½ �x;

xð0Þ ¼
1

0

2
4
3
5

44. Using classical (not Laplace) methods
only, solve for the state-transition
matrix, the state vector, and the output
of the system represented here, where u(t) is the unit
step: [Section: 4.11].

_x ¼ 0 1

�1 0

" #
xþ 0

1

" #
uðtÞ

y ¼ 3 4½ �x; xð0Þ ¼ 0

0

" #

45. Solve for y(t) for the following system
represented in state space, where u(t) is
the unit step. Use the classical approach
to solve the state equation. [Section: 4.11]

_x ¼
�2 1 0

0 0 1
0 �6 �1

2
4

3
5xþ

1
0
0

2
4
3
5uðtÞ

y ¼ 1 0 0½ � x; xð0Þ ¼
0

0

0

2
664

3
775

46. Repeat Problem 45 using MAT-
LAB’s Symbolic Math Toolbox
and Eq. (4.109). In addition, run your
program with an initial condition,

xð0Þ ¼
1
1
0

2
4

3
5: ½Section : 4:11�

47. Using methods described in Appendix
H.1 located at www.wiley.com/college/
nise simulate the following system and
plot the step response. Verify the expected values of
percent overshoot, peak time, and settling time.

TðsÞ ¼ 1

s2 þ 0:8sþ 1
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48. Using methods described in Appendix
H.1 located at www.wiley.com/college/
nise, simulate the following system and
plot the output, y(t), for a step input:

_x ¼
0 1 0

�10 �7 1

0 0 �2

2
64

3
75xþ

0

0

1

2
64
3
75uðtÞ

yðtÞ ¼ 1 1 0½ �x; xð0Þ ¼
�1

0

0

2
64

3
75

49. A human responds to a visual cue with a physical
response, as shown in Figure P4.10. The transfer
function that relates the output physical response,
P(s), to the input visual command, V(s), is

GðsÞ ¼ PðsÞ
VðsÞ ¼

ðsþ 0:5Þ
ðsþ 2Þðsþ 5Þ

(Stefani, 1973). Do the following:

a. Evaluate the output response for a unit step
input using the Laplace transform.

b. Represent the transfer function in
state space.

c. Use MATLAB to simulate the
system and obtain a plot of
the step response.

50. Industrial robots are used for myriad applications.
Figure P4.11 shows a robot used to move 55-pound
bags of salt pellets; a vacuum head lifts the bags
before positioning. The robot can move as many as
12 bags per minute (Schneider, 1992). Assume a

model for the open-loop swivel controller and
plant of

GeðsÞ ¼ voðsÞ
ViðsÞ ¼

K

ðsþ 10Þðs2 þ 4sþ 10Þ

where voðsÞ is the Laplace transform of the robot’s
output swivel velocity and Vi(s) is the voltage ap-
plied to the controller.

a. Evaluate percent overshoot, settling time, peak
time, and rise time of the response of the open-
loop swivel velocity to a step-voltage input.
Justify all second-order assumptions.

b. Represent the open-loop system in
state space.

Step 1: Light source on Step 2: Recognize light source Step 3: Respond to light source

P(t)

FIGURE P4.10 Steps in determining the transfer function relating output physical response to the input visual command

FIGURE P4.11 Vacuum robot lifts two bags of salt.
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c. Use MATLAB or any other com-
puter program to simulate the
system and compare your results to a.

51. Anesthesia induces muscle relaxation (paralysis)
and unconsciousness in the patient. Muscle relaxa-
tion can be monitored using electromyogram signals
from nerves in the hand; unconsciousness can be
monitored using the cardiovascular system’s mean
arterial pressure. The anesthetic drug is a mixture of
isoflurane and atracurium. An approximate model
relating muscle relaxation to the percent isoflurane
in the mixture is

PðsÞ
UðsÞ ¼

7:63 � 10�2

s2 þ 1:15sþ 0:28

where P(s) is muscle relaxation measured as a
fraction of total paralysis (normalized to unity)
and U(s) is the percent mixture of isoflurane (Link-
ens, 1992). [Section: 4.6]

a. Find the damping ratio and the natural frequency
of the paralysis transient response.

b. Find the maximum possible percent paralysis if a
2% mixture of isoflurane is used.

c. Plot the step response of paralysis if a 1% mix-
ture of isoflurane is used.

d. What percent isoflurane would have to be used
for 100% paralysis?

52. To treat acute asthma, the drug theophylline is
infused intravenously. The rate of change of the
drug concentration in the blood is equal to the
difference between the infused concentration and
the eliminated concentration. The infused concen-
tration is iðtÞ=Vd, where i(t) is the rate of flow of the
drug by weight and Vd is the apparent volume and
depends on the patient. The eliminated concentra-
tion is given by k10cðtÞ, where c(t) is the current
concentration of the drug in the blood and k10 is the
elimination rate constant. The theophylline concen-
tration in the blood is critical—if it is too low, the
drug is ineffective; if too high, the drug is toxic
(Jannett, 1992). You will help the doctor with
your calculations.

a. Derive an equation relating the desired blood
concentration, CD, to the required infusion rate
by weight of the drug, IR.

b. Derive an equation that will tell how long the
drug must be administered to reach the desired

blood concentration. Use both rise time and
settling time.

c. Find the infusion rate of theophylline if VD ¼
600 ml; k10 ¼ 0:07 h�1, and the required blood
levelof thedrug is12mcg/ml(‘‘mcg’’meansmicro-
grams). See (Jannett, 1992); for a description of
parameter values.

d. Find the rise and settling times for the constants
in c.

53. Upper motor neuron disorder patients can benefit
and regain useful function through the use of func-
tional neuroprostheses. The design requires a good
understanding of muscle dynamics. In an experi-
ment to determine muscle responses, the identified
transfer function was (Zhou, 1995)

MðsÞ ¼ 2:5e�0:008sð1 þ 0:172sÞð1 þ 0:008sÞ
ð1 þ 0:07sÞ2ð1 þ 0:05sÞ2

Find the unit step response of this transfer function.

54. When electrodes are attached to the mastoid bones
(right behind the ears) and current pulses are ap-
plied, a person will sway forward and backward. It
has been found that the transfer function from the
current to the subject’s angle (in degrees) with
respect to the vertical is given by (Nashner, 1974)

uðsÞ
IðsÞ ¼

5:8ð0:3sþ 1Þe�0:1s

ðsþ 1Þðs2=1:22 þ 0:6s=1:2 þ 1Þ

a. Determine whether a dominant pole approxima-
tion can be applied to this transfer function.

b. Find the body sway caused by a 250 mA pulse of
150 msec duration.

55. A MOEMS (optical MEMS) is a MEMS (Micro
Electromechanical Systems) with an optical fiber
channel that takes light generated from a laser
diode. It also has a photodetector that measures
light intensity variations and outputs voltage varia-
tions proportional to small mechanical device de-
flections. Additionally, a voltage input is capable of
deflecting the device. The apparatus can be used as
an optical switch or as a variable optical attenuator,
and it does not exceed 2000 mm in any dimension.
Figure P4.12 shows input-output signal pairs used to
identify the parameters of the system. Assume a
second-order transfer function and find the system’s
transfer function (Borovic, 2005).
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56. The response of the deflection of a fluid-filled cathe-
ter to changes in pressure can be modeled using a
second-order model. Knowledge of the parameters
of the model is important because in cardiovascular
applications the undamped natural frequency should
be close to five times the heart rate. However, due to
sterility and other considerations, measurement of
the parameters is difficult. A method to obtain trans-
fer functions using measurements of the amplitudes
of two consecutive peaks of the response and their
timing has been developed (Glantz, 1979). Assume
that Figure P4.13 is obtained from catheter measure-
ments. Using the information shown and assuming a
second-order model excited by a unit step input, find
the corresponding transfer function.

57. Several factors affect the workings of the kidneys.
For example, Figure P4.14 shows how a step change
in arterial flow pressure affects renal blood flow in
rats. In the ‘‘hot tail’’ part of the experiment, pe-
ripheral thermal receptor stimulation is achieved by
inserting the rat’s tail in heated water. Variations
between different test subjects are indicated by the
vertical lines. It has been argued that the ‘‘control’’
and ‘‘hot tail’’ responses are identical except for
their steady-state values (DiBona, 2005).

System: T
Time (sec): 0.0505
Amplitude: 1.15

Step Response
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FIGURE P4.13

Open-Loop Responses
10

  8

  6

  4

  2

  0

–2

Volt.

x[
nm

]:
 V

[V
]

Open-Loop Response
(simulated, d = 0.8)

0                            500                          1000                         1500t[us]

Open-Loop Response
(experimental)

FIGURE P4.12

HOT TAIL

CONTROL

Time (sec)

0.030

0.025

0.020

0.015

0.010

0.005

0.000

St
ep

 r
es

po
ns

e

–1             0              1             2             3             4             5             6

FIGURE P4.14

222 Chapter 4 Time Response



Apago PDF Enhancer

E1C04 11/03/2010 12:25:49 Page 223

a. Using Figure P4.14, obtain the normalized
ðcfinal ¼ 1Þ transfer functions for both responses.

b. Use MATLAB to prove or dis-
prove the assertion about
the ‘‘control’’ and ‘‘hot
tail’’ responses.

58. The transfer function of a nano-positioning device
capable of translating biological samples within a
few mm uses a piezoelectric actuator and a linear
variable differential transformer (LDVT) as a
displacement sensor. The transfer function from
input to displacement has been found to be
(Salapaka, 2002)

GðsÞ ¼ 9:7 � 104ðs2 � 14400sþ 106:6 � 106Þ
ðs2 þ 3800sþ 23:86 � 106Þðs2 þ 240sþ 2324:8 � 103Þ

Use a dominant-pole argument to find an
equivalent transfer function with the
same numerator but only three poles.
Use MATLAB to find the actual
size and approximate system unit step
responses, plotting them on the same
graph. Explain the differences between both
responses given that both pairs of poles are so far
apart.

59. At some point in their lives most people will suffer
from at least one onset of low back pain. This
disorder can trigger excruciating pain and tempo-
rary disability, but its causes are hard to diagnose.
It is well known that low back pain alters motor
trunk patterns; thus it is of interest to study the
causes for these alterations and their extent. Due
to the different possible causes of this type of pain,
a ‘‘control’’ group of people is hard to obtain for
laboratory studies. However, pain can be stimu-
lated in healthy people and muscle movement
ranges can be compared. Controlled back pain
can be induced by injecting saline solution directly
into related muscles or ligaments. The transfer
function from infusion rate to pain response was
obtained experimentally by injecting a 5% saline
solution at six different infusion rates over a period
of 12 minutes. Subjects verbally rated their pain
every 15 seconds on a scale from 0 to 10, with 0
indicating no pain and 10 unbearable pain. Several
trials were averaged and the data was fitted to the
following transfer function:

GðsÞ ¼ 9:72 � 10�8ðsþ 0:0001Þ
ðsþ 0:009Þ2ðs2 þ 0:018sþ 0:0001Þ

For experimentation it is desired to build an auto-
matic dispensing system to make the pain level
constant as shown in Figure P4.15. It follows that
ideally the injection system transfer function has
to be

MðsÞ ¼ 1

GðsÞ

to obtain an overall transfer function MðsÞGðsÞ � 1.
However, for implementation purposes M(s) must
have at least one more pole than zeros (Zedka,
1999). Find a suitable transfer function, M(s) by
inverting G(s) and adding poles that are far from
the imaginary axis.

60. An artificial heart works in closed loop by varying
its pumping rate according to changes in signals
from the recipient’s nervous system. For feedback
compensation design it is important to know the
heart’s open-loop transfer function. To identify this
transfer function, an artificial heart is implanted in a
calf while the main parts of the original heart are left
in place. Then the atrial pumping rate in the original
heart is measured while step input changes are
effected on the artificial heart. It has been found
that, in general, the obtained response closely
resembles that of a second-order system. In one
such experiment it was found that the step response
has a %OS¼ 30% and a time of first peak Tp ¼
127 sec (Nakamura, 2002). Find the corresponding
transfer function.

61. An observed transfer function from voltage poten-
tial to force in skeletal muscles is given by (Ionescu,
2005)

TðsÞ ¼ 450

ðsþ 5Þðsþ 20Þ

a. Obtain the system’s impulse response.

b. Integrate the impulse response to find the step
response.

c. Verify the result in Part b by obtaining the step
response using Laplace transform techniques.

62. In typical conventional aircraft, longitudinal flight
model linearization results in transfer functions with

( )G s
Constant
infusion

rate  

Constant
back pain

Human ResponseInfusion Pump

( )M s

FIGURE P4.15
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two pairs of complex conjugate poles. Consequently,
the natural response for these airplanes has two
modes in their natural response. The ‘‘short period’’
mode is relatively well-damped and has a high-
frequency oscillation. The ‘‘plugoid mode’’ is lightly
damped and its oscillation frequency is relatively
low. For example, in a specific aircraft the transfer
function from wing elevator deflection to nose angle
(angle of attack) is (McRuer, 1973)

uðsÞ
deðsÞ ¼

� 26:12ðsþ 0:0098Þðsþ 1:371Þ
ðs2 þ 8:99 � 10�3sþ 3:97 � 10�3Þðs2 þ 4:21sþ 18:23Þ

a. Find which of the poles correspond to the short
period mode and which to the phugoid mode.

b. Peform a ‘‘phugoid approximation’’ (dominant-
pole approximation), retaining the two poles and
the zero closest to the; v-axis.

c. Use MATLAB to compare the step
responses of the original
transfer function and the
approximation.

63. A crosslapper is a machine that
takes as an input a light fiber
fabric and produces a heavier
fabric by laying the original fabric in
layers rotated by 90 degrees. A feedback
system is required in order to maintain
consistent product width and thickness
by controlling its carriage velocity.
The transfer function from servomotor
torque, Tm(s), to carriage velocity,
Y(s), was developed for such a machine
(Kuo, 2008). Assume that the transfer
function is:

GðsÞ ¼ YðsÞ
TmðsÞ ¼

33s4 þ 202s3 þ 10061s2 þ 24332sþ 170704

s7 þ 8s6 þ 464s5 þ 2411s4 þ 52899s3 þ 167829s2 þ 913599sþ 1076555

a. Use MATLAB to find the partial fraction
residues and poles of G(s).

b. Find an approximation to G(s) by ne-
glecting the second-order terms found
in a.

c. Use MATLAB to plot on one graph the step
response of the transfer function

given above and the approximation
found in b. Explain the differences
between the two plots.

64. Although the use of fractional
calculus in control systems is
notnew,inthelastdecadethere
is increased interest in its use for sev-
eral reasons. The most relevant are that
fractional calculus differential equa-
tions may model certain systems with
higher accuracy than integer diffe-
rential equations, and that fractional
calculus compensators might exhibit ad-
vantageouspropertiesforcontrolsystem
design. An example of a transfer function
obtainedthroughfractionalcalculusis:

GðsÞ ¼ 1

s2:5 þ 4s1:7 þ 3s0:5 þ 5

This function can be approximated with
an integer rational transfer function
(integer powers of s) using Oustaloup’s
method (Xue, 2005). We ask you now to do a
little research and consult the afore-
mentioned reference to find and run an
M-file that will calculate the integer
rational transfer function approxima-
tion to G(s) and plot its step response.

65. Mathematical modeling and control of pH pro-
cesses are quite challenging since the processes are
highly nonlinear, due to the logarithmic relation-
ship between the concentration of hydrogen ions
[H+] and pH level. The transfer function from

input pH to output pH is GaðsÞ ¼ YaðsÞ
XaðsÞ ¼

14:49e�4s

1478:26sþ 1
:GaðsÞ is a model for the anaerobic

process in a wastewater treatment system in which
methane bacteria need the pH to be maintained in its
optimal range from 6.8 to 7.2 (Jiayu, 2009). Similarly,
(Elarafi, 2008) used empirical techniques to model a
pH neutralization plant as a second-order system
with a pure delay, yielding the following transfer
function relating output pH to input pH:

GpðsÞ ¼ YpðsÞ
XpðsÞ ¼

1:716 � 10�5e�30s

s2 þ 6:989 � 10�3sþ 1:185 � 10�6

a. Find analytical expressions for the unit-
step responses ya(t) and yp(t) for the two
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processes, Ga(s) and Gp(s).
(Hint: Use the time shift theorem in Table 2.2).

b. Use Simulink to plot ya(t) and
yp(t) on a single graph.

66. Using wind tunnel tests, insect flight dynamics can
be studied in a very similar fashion to that of man-
made aircraft. Linearized longitudinal flight equa-
tions for a bumblebee have been found in the
unforced case to be

_u

_w

_q

_u

2
666664

3
777775
¼

�8:792 � 10�3 0:56 � 10�3 �1:0 � 10�3 �13:79 � 10�3

�0:347 � 10�3 �11:7 � 10�3 �0:347 � 10�3 0

0:261 �20:8 � 10�3 �96:6 � 10�3 0

0 0 1 0

2
666664

3
777775

u

w

q

u

2
666664

3
777775

where u¼ forward velocity; w¼ vertical velocity,
q¼ angular pitch rate at center of mass, and u ¼
pitch angle between the flight direction and the
horizontal (Sun, 2005).

a. Use MATLAB to obtain the sys-
tem’s eigenvalues.

b. Write the general form of the state-transition
matrix. How many constants would have to be
found?

67. A dc-dc converter is a device that takes as
an input an unregulated dc voltage and
provides a regulated dc voltage as its
output. The output voltage may be lower (buck con-
verter), higher (boost converter), or the same as the
input voltage. Switching dc-dc converters have a semi-
conductor active switch (BJT or FET) that is closed
periodically with a duty cycle d in a pulse width
modulated (PWM) manner. For a boost converter,
averaging techniques can be used to arrive at the
following state equations (Van Dijk, 1995):

L
diL
dt

¼ �ð1 � dÞuc þ Es

C
duC
dt

¼ ð1 � dÞiL � uC
R

whereL andC are respectively the values of internal
inductance and capacitance; iL is the current through
the internal inductor;R is theresistive load connected
to the converter; Es is the dc input voltage; and the
capacitor voltage, uC, is the converter’s output.

a. Write the converter’s equations in the form

_x ¼ Axþ Bu
y ¼ Cx

assuming d is a constant.

b. Using the A, B, and C matrices of Part a, obtain

the converter’s transfer function
UCðsÞ
EsðsÞ :

68. An IPMC (ionic polymer-metal com-
posite) is a Nafion sheet plated with
gold on both sides. An IPMC bends when an electric
field is applied across its thickness. IPMCs have
been used as robotic actuators in several applica-
tions and as active catheters in biomedical app-
lications. With the aim of improving actuator
settling times, a state-space model has been devel-
oped for a 20 mm � 10 mm � 0:2 mm polymer sam-
ple (Mallavarapu, 2001):

_x1

_x2

" #
¼ �8:34 �2:26

1 0

" #
x1

x2

" #
þ 1

0

" #
u

y ¼ 12:54 2:26½ � x1

x2

" #

where u is the applied input voltage and y is the
deflection at one of the material’s tips when the
sample is tested in a cantilever arrangement.

a. Find the state-transition matrix for the system.

b. From Eq. (4.109) in the text, it follows that if a
system has zero initial conditions the system
output for any input can be directly calculated
from the state-space representation and the
state-transition matrix using

yðtÞ ¼ CxðtÞ ¼
Z

CFðt � tÞBuðtÞdt

Use this equation to find the zero initial condition
unit step response of the IPMC material sample.

c. Use MATLAB to verify that your
step response calculation in
Part b is correct.

DESIGN PROBLEMS
69. Find an equation that relates 2% settling

time to the value of f v for the transla-
tional mechanical system shown in
Figure P4.16. Neglect the mass of all components.
[Section: 4.6]

fv

2 N/m

f (t)

FIGURE P4.16
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70. Consider the translational mechanical system shown
in Figure P4.17. A 1-pound force, f(t), is applied at
t ¼ 0. If f v ¼ 1, find K and M such that the response
is characterized by a 4-second settling time and a
1-second peak time. Also, what is the resulting
percent overshoot? [Section: 4.6]

fv

K

f (t)

x(t)

M

FIGURE P4.17

71. Given the translational mechanical system of
Figure P4.17, where K ¼ 1 and f(t) is a unit step,
find the values of M and f v to yield a response with
17% overshoot and a settling time of 10 seconds.
[Section: 4.6]

72. Find J and K in the rotational system shown in
Figure P4.18 to yield a 30% overshoot and a sett-
ling time of 3 seconds for a step input in torque.
[Section: 4.6]

1

K

T(t)

J

FIGURE P4.18

73. Given the system shown in Figure P4.19, find the
damping, D, to yield a 30% overshoot in output
angular displacement for a step input in torque.
[Section: 4.6]

D

θ

2

T(t) 1

N2 = 5

N1 = 25

N4 = 5

N3 = 10

1
4 N-m/rad

1 kg-m

  (t)

FIGURE P4.19

74. For the system shown in Figure P4.20,
find N1=N2 so that the settling time
for a step torque input is 16 seconds.
[Section: 4.6]

T(t)

1 N-m/rad

1 N-m-s/rad

 1 kg-m2 N1

N2  1 kg-m2

FIGURE P4.20

75. Find M and K, shown in the system of Figure P4.21,
to yield x(t) with 10% overshoot and 15 seconds
settling time for a step input in motor torque, TmðtÞ.
[Section: 4.6]

For the motor:

Ja = 1 kg-m2

Da = 1 N-m-s/rad
Ra = 1 Ω
Kb = 1 V-s/rad
Kt = 1 N-m/A

N2 = 20

N1 = 10

K
 J = 1 kg-m2

Ideal
gear 1:1

fv  =  1 N-s/m

M

x(t)

Motor

Tm(t)

Radius = 2 m

FIGURE P4.21

76. If viðtÞ is a step voltage in the network shown in
Figure P4.22, find the value of the resistor such that a
20% overshoot in voltage will be seen across the
capacitor if C ¼ 10�6 F and L ¼ 1 H. [Section: 4.6]

R

C

L

+
–vi(t)

FIGURE P4.22

77. If viðtÞ is a step voltage in the network
shown in Figure P4.22, find the values
of R and C to yield a 20% overshoot
and a 1 ms settling time for vcðtÞ if
L ¼ 1 H. [Section: 4.6]

78. Given the circuit of Figure P4.22, where C ¼ 10mF,
find R and L to yield 15% overshoot with a settling
time of 7 ms for the capacitor voltage. The input,
v(t), is a unit step. [Section: 4.6]
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79. For the circuit shown in Figure P4.23, find the
values of R2 and C to yield 8% overshoot with
a settling time of 1 ms for the voltage across
the capacitor, with viðtÞ as a step input. [Section: 4.6]

1 H

+
+

––

R2

1 MΩvi(t) vc(t)C

FIGURE P4.23

80. Hydraulic pumps are used as inputs to
hydraulic circuits to supply pressure, just
as voltage sources supply potential to electric circuits.
Applications for hydraulic circuits can be found in
the robotics and aircraft industries, where hydraulic
actuators are used to move component parts. Figure
P4.24 shows the internal parts of the pump. A barrel
containing equally spaced pistons rotates about the
i-axis. A swashplate, set at an angle, causes the
slippers at the ends of the pistons to move the pistons
in and out. When the pistons are moving across the
intake port, they are extending, and when they are
moving across the discharge port, they are retracting
and pushing fluid from the port. The large and small
actuators at the top and bottom, respectively, control
the angle of the swashplate, a. The swashplate angle
affects the piston stroke length. Thus, by controlling
the swashplate angle, the pump discharge flow rate
can be regulated. Assume the state equation for the

hydraulic pump is

_x ¼
ð3:45 � 14000KcÞ �0:255 � 10�9

0:499 � 1011 �3:68

" #
x

þ
�3:45 þ 14000Kc

�0:499 � 1011

" #
a0;

where x ¼ a

Pd

" #

and Pd is the pump discharge pressure (Manr-
ing, 1996). Find the value of controller flow
gain, Kc, so that the damping ratio of the system’s
poles is 0.9.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
81. High-speed rail pantograph. Problem 67c in Chap-

ter 2 asked you to find GðsÞ ¼ ðYhðsÞ �
YcatðsÞÞ=FupðsÞ (O’Connor, 1997).

a. Use the dominant poles from this transfer func-
tion and estimate percent overshoot, damping
ratio, natural frequency, settling time, peak time,
and rise time.

b. Determine if the second-order approximation is
valid.

c. Obtain the step response of
G(s) and compare the results
to Part a.

82. Control of HIV/AIDS. In Chapter 3,
Problem 31, we developed a linearized

Portplate
Pc

Pd

k

ij

r

k

Intake port

θ, ω

α

Discharge port

Section A-A

,

A

A

Barrel

Spring Small actuator 

Slipper

Piston

Swashplate
Large actuator

FIGURE P4.24 Pump diagram (Reprinted with permission of ASME.)
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state-space model of HIV infection. The model
assumed that two different drugs were used to
combat the spread of the HIV virus. Since this
book focuses on single-input, single-output systems,
only one of the two drugs will be considered. We will
assume that only RTIs are used as an input. Thus, in
the equations of Chapter 3, Problem 31, u2 ¼ 0
(Craig, 2004).

a. Show that when using only RTIs in the linear-
ized system of Problem 31 and substituting the
typical parameter values given in the table of
Problem 31c, the resulting state-space represen-
tation for the system is given by

_T
_T
�

_v

2
64

3
75¼

�0:04167 0 �0:0058

0:0217 �0:24 0:0058

0 100 �2:4

2
4

3
5

�
T

T�

v

2
4

3
5þ

5:2

�5:2

0

2
4

3
5u1

y¼ 0 0 1½ �
T

T�

v

2
4

3
5

b. Obtain the transfer function from RTI efficiency

to virus count; namely find
YðsÞ
U1ðsÞ.

c. Assuming RTIs are 100% effective, what will be
the steady-state change of virus count in a given
infected patient? Express your answer in virus
copies per ml of plasma. Approximately how
much time will the medicine take to reach its
maximum possible effectiveness?

83. Hybrid vehicle. Assume that the car motive dynam-
ics for a hybrid electric vehicle (HEV) can be
described by the transfer function

DVðsÞ
DFeðsÞ ¼

1

1908sþ 10

where AV is the change of velocity in m/sec and DFe
is the change in excess motive force in N necessary
to propel the vehicle.

a. Find an analytical expression for Dv(t) for a step
change in excess motive force DFe¼ 2650 N.

b. Simulate the system using
MATLAB. Plot the expression
found in Part a together with
your simulated plot.

Cyber Exploration Laboratory

Experiment 4.1

Objective To evaluate the effect of pole and zero location upon the time
response of first- and second-order systems.

Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. Given the transfer function GðsÞ ¼ a

sþ a
, evaluate settling time and rise time for

the following values of a: 1, 2, 3, 4. Also, plot the poles.

2. Given the transfer function GðsÞ ¼ b

s2 þ asþ b
:

a. Evaluate percent overshoot, settling time, peak time, and rise time for the
following values: a ¼ 4; b ¼ 25. Also, plot the poles.

b. Calculate the values of a and b so that the imaginary part of the poles remains
the same but the real part is increased two times over that of Prelab 2a, and
repeat Prelab 2a.
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c. Calculate the values of a and b so that the imaginary part of the poles remains
the same but the real part is decreased 1

2 time over that of Prelab 2a, and repeat
Prelab 2a.

3. a. For the system of Prelab 2a, calculate the values of a and b so that the real part
of the poles remains the same but the imaginary part is increased two times
over that of Prelab 2a, and repeat Prelab 2a.

b. For the system of Prelab 2a, calculate the values of a and b so that the real part
of the poles remains the same but the imaginary part is increased four times
over that of Prelab 2a, and repeat Prelab 2a.

4. a. For the system of Prelab 2a, calculate the values of a and b so that the damping
ratio remains the same but the natural frequency is increased two times over
that of Prelab 2a, and repeat Prelab 2a.

b. For the system of Prelab 2a, calculate the values of a and b so that the damping
ratio remains the same but the natural frequency is increased four times over
that of Prelab 2a, and repeat Prelab 2a.

5. Briefly describe the effects on the time response as the poles are changed in each
of Prelab 2, 3, and 4.

Lab

1. Using Simulink, set up the systems of Prelab 1 and plot the step response of
each of the four transfer functions on a single graph by using the Simulink LTI
Viewer. Also, record the values of settling time and rise time for each step
response.

2. Using Simulink, set up the systems of Prelab 2. Using the Simulink LTI Viewer,
plot the step response of each of the three transfer functions on a single graph.
Also, record the values of percent overshoot, settling time, peak time, and rise
time for each step response.

3. Using Simulink, set up the systems of Prelab 2a and Prelab 3. Using the Simulink
LTI Viewer, plot the step response of each of the three transfer functions on a
single graph. Also, record the values of percent overshoot, settling time, peak
time, and rise time for each step response.

4. Using Simulink, set up the systems of Prelab 2a and Prelab 4. Using the Simulink
LTI Viewer, plot the step response of each of the three transfer functions on a
single graph. Also, record the values of percent overshoot, settling time, peak
time, and rise time for each step response.

Postlab

1. For the first-order systems, make a table of calculated and experimental values of
settling time, rise time, and pole location.

2. Forthesecond-ordersystemsofPrelab2,makeatableofcalculatedandexperimental
values of percent overshoot, settling time, peak time, rise time, and pole location.

3. For the second-order systems of Prelab 2a and Prelab 3, make a table of
calculated and experimental values of percent overshoot, settling time, peak
time, rise time, and pole location.

4. For the second-order systems of Prelab 2a and Prelab 4, make a table of
calculated and experimental values of percent overshoot, settling time, peak
time, rise time, and pole location.
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5. Discuss the effects of pole location upon the time response for both first- and
second-order systems. Discuss any discrepancies between your calculated and
experimental values.

Experiment 4.2

Objective To evaluate the effect of additional poles and zeros upon the time
response of second-order systems.

Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. a. Given the transfer function GðsÞ ¼ 25

s2 þ 4sþ 25
, evaluate the percent over-

shoot, settling time, peak time, and rise time. Also, plot the poles.

b. Add a pole at �200 to the system of Prelab 1a. Estimate whether the transient
response in Prelab 1a will be appreciably affected.

c. Repeat Prelab 1b with the pole successively placed at �20; � 10, and �2.

2. A zero is added to the system of Prelab 1a at �200 and then moved to
�50; � 20; � 10; � 5, and �2. List the values of zero location in the order
of the greatest to the least effect upon the pure second-order transient
response.

3. Given the transfer function GðsÞ ¼ ð25b=aÞðsþ aÞ
ðsþ bÞðs2 þ 4sþ 25Þ, let a ¼ 3 and b ¼ 3:01,

3.1, 3.3, 3.5, and 4.0. Which values of b will have minimal effect upon the pure
second-order transient response?

4. Given the transfer function GðsÞ ¼ ð2500b=aÞðsþ aÞ
ðsþ bÞðs2 þ 40sþ 2500Þ, let a ¼ 30 and

b ¼ 30:01, 30.1, 30.5, 31, 35, and 40. Which values of b will have minimal effect
upon the pure second-order transient response?

Lab

1. Using Simulink, add a pole to the second-order system of Prelab 1a and plot the
step responses of the system when the higher-order pole is nonexistent, at
�200; � 20; � 10, and �2. Make your plots on a single graph, using the Simulink
LTI Viewer. Normalize all plots to a steady-state value of unity. Record percent
overshoot, settling time, peak time, and rise time for each response.

2. Using Simulink, add a zero to the second-order system of Prelab 1aand plot the step
responses of the system when the zero is nonexistent, at �200; � 50;
�20; � 10; � 5, and �2. Make your plots on a single graph, using the Simulink
LTI Viewer. Normalize all plots to a steady-state value of unity. Record percent
overshoot, settling time, peak time, and rise time for each response.

3. Using Simulink and the transfer function of Prelab 3 with a ¼ 3, plot the
step responses of the system when the value of b is 3, 3.01, 3.1, 3.3, 3.5,
and 4.0. Make your plots on a single graph using the Simulink LTI Viewer.
Record percent overshoot, settling time, peak time, and rise time for each
response.
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4. Using Simulink and the transfer function of Prelab 4 with a ¼ 30, plot the
step responses of the system when the value of b is 30, 30.01, 30.1, 30.5, 31, 35,
and 40. Make your plots on a single graph, using the Simulink LTI Viewer.
Record percent overshoot, settling time, peak time, and rise time for each
response.

Postlab

1. Discuss the effect upon the transient response of the proximity of a higher-order
pole to the dominant second-order pole pair.

2. Discuss the effect upon the transient response of the proximity of a zero to the
dominant second-order pole pair. Explore the relationship between the length of
the vector from the zero to the dominant pole and the zero’s effect upon the pure
second-order step response.

3. Discuss the effect of pole-zero cancellation upon the transient response of a
dominant second-order pole pair. Allude to how close the canceling pole and zero
should be and the relationships of (1) the distance between them and (2) the
distance between the zero and the dominant second-order poles.

Experiment 4.3

Objective To use LabVIEW Control Design and Simulation Module for time
performance analysis of systems.

Minimum Required Software Packages LabVIEW with the Control De-
sign and Simulation Module

Prelab One of the experimental direct drive robotic arms built at the MTT
Artificial Intelligence Laboratory and the CMU Robotics Institute can be repre-
sented as a feedback control system with a desired angular position input for the
robot’s joint position and an angular position output representing the actual robot’s
joint position.

The forward path consists of three transfer functions in cascade; (1) a compensa-
tor, Gc sð Þ, to improve performance; (2) a power amplifier of gain, Ka¼ 1; and (3) the
transfer function of the motor and load, G sð Þ ¼ 2292=s sþ 75:6ð Þ. Assume a unity-
feedback system. Initially the system will be controlled with Gc sð Þ¼ 0.6234, which is
called a proportional controller (McKerrow, 1991).

1. Obtain the closed-loop system transfer function and use MATLAB to make a plot
of the resulting unit step response.

2. Repeat with GcðsÞ ¼ 3:05 þ 0:04s, which is called a PD controller.

3. Compare both responses and draw conclusions regarding their time domain
specifications.

Lab Create a LabVIEW VI that uses a simulation loop to implement both
controllers given in the Prelab. Plot the responses on the same graph for comparison
purposes.

Postlab Compare the responses obtained using your LabVIEW VI with those
obtained in the Prelab.
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Experiment 4.4

Objective To use the LabVIEW Control Design and Simulation Module to
evaluate the effect of pole location upon the time response of second-order systems.

Minimum Required Software Packages LabVIEW with the Control
Design and Simulation Module.

Prelab Solve the Cyber Exploration Laboratory Experiment 4.1 Prelab, Part 2.

Lab Build a LabVIEW VI to implement the functions studied in the Prelab of
Cyber Exploration Laboratory 4.I, Part 2.

Specifically for Prelab Part a, your front panel will have the coefficients
of the second-order transfer function as inputs. The front panel will also have
the following indicators: (1) the transfer function; (2) the state-space repre-
sentation; (3) the pole locations; (4) the step response graph; (5) the time response
of the two states on the same graph; (6) the time response parametric data
including rise time, peak time, settling time, percent overshoot, peak value;
and final value.

For Prelab, Part b, your front panel will also have the following indicators:
(1) the step response graph, and (2) the parametric data listed above for Prelab, Part
a, but specific to Part b.

For Prelab, Part c, your front panel will also have the following indicators:
(1) the step response graph, and (2) the parametric data listed above for Prelab, Part
a, but specific to Part c.

Run the VI to obtain the data from the indicators.

Postlab Use your results to discuss the effect of pole location upon the step
response.
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Reduction of Multiple
Subsystems 5

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Reduce a block diagram of multiple subsystems to a single block representing the
transfer function from input to output (Sections 5.1–5.2)

� Analyze and design transient response for a system consisting of multiple sub-
systems (Section 5.3)

� Convert block diagrams to signal-flow diagrams (Section 5.4)

� Find the transfer function of multiple subsystems using Mason’s rule (Section 5.5)

� Represent state equations as signal-flow graphs (Section 5.6)

� Represent multiple subsystems in state space in cascade, parallel, controller
canonical, and observer canonical forms (Section 5.7)

� Perform transformations between similar systems using transformation matrices;
and diagonalize a system matrix (Section 5.8)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to (a) find the closed-loop transfer function that represents the
system from input to output; (b) find a state-space representation for the closed-
loop system; (c) predict, for a simplified system model, the percent overshoot,
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settling time, and peak time of the closed-loop system for a step input; (d) calculate
the step response for the closed-loop system; and (e) for the simplified model,
design the system gain to meet a transient response requirement.

� Given the block diagrams for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch and heading control systems on the back endpapers, you will be able
to represent each control system in state space.

5.1 Introduction

We have been working with individual subsystems represented by a block with its
input and output. More complicated systems, however, are represented by the
interconnection of many subsystems. Since the response of a single transfer function
can be calculated, we want to represent multiple subsystems as a single transfer
function. We can then apply the analytical techniques of the previous chapters and
obtain transient response information about the entire system.

In this chapter, multiple subsystems are represented in two ways: as block
diagrams and as signal-flow graphs. Although neither representation is limited to a
particular analysis and design technique, block diagrams are usually used for
frequency-domain analysis and design, and signal-flow graphs for state-space
analysis.

Signal-flow graphs represent transfer functions as lines, and signals as small-
circular nodes. Summing is implicit. To show why it is convenient to use signal-flow
graphs for state-space analysis and design, consider Figure 3.10. A graphical
representation of a system’s transfer function is as simple as Figure 3.10(a).
However, a graphical representation of a system in state space requires representa-
tion of each state variable, as in Figure 3.10(b). In that example, a single-block
transfer function requires seven blocks and a summing junction to show the state
variables explicitly. Thus, signal-flow graphs have advantages over block diagrams,
such as Figure 3.10(b): They can be drawn more quickly, they are more compact, and
they emphasize the state variables.

We will develop techniques to reduce each representation to a single transfer
function. Block diagram algebra will be used to reduce block diagrams and Mason’s
rule to reduce signal-flow graphs. Again, it must be emphasized that these methods
are typically used as described. As we shall see, however, either method can be used
for frequency-domain or state-space analysis and design.

5.2 Block Diagrams

As you already know, a subsystem is represented as a block with an input, an output,
and a transfer function. Many systems are composed of multiple subsystems, as in
Figure 5.1. When multiple subsystems are interconnected, a few more schematic
elements must be added to the block diagram. These new elements are summing
junctions and pickoff points. All component parts of a block diagram for a linear,
time-invariant system are shown in Figure 5.2. The characteristic of the summing
junction shown in Figure 5.2(c) is that the output signal, C(s), is the algebraic sum of
the input signals, R1(s), R2(s), and R3(s). The figure shows three inputs, but any
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number can be present. A pickoff point, as shown in Figure 5.2(d), distributes the
input signal, R(s), undiminished, to several output points.

We will now examine some common topologies for interconnecting subsystems
and derive the single transfer function representation for each of them. These
common topologies will form the basis for reducing more complicated systems to a
single block.

Cascade Form
Figure 5.3(a) shows an example of cascaded subsystems. Intermediate signal values
are shown at the output of each subsystem. Each signal is derived from the product
of the input times the transfer function. The equivalent transfer function, Ge(s),
shown in Figure 5.3(b), is the output Laplace transform divided by the input Laplace
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Forward 
reaction 
control 
system Flight 

deck 

Cryogenic oxygen/hydrogen 
tanks and fuel cells (oxygen for  
crew and compartment) 

Deployable radiator panels 

Payload bay doors 

Payload bay  
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radiator 
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Vertical tail 

Elevon rub panels 
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Elevons 
Space shuttle 
main engines 
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oxidizer 
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oxygen tank 

FIGURE 5.1 The space shuttle consists of multiple subsystems. Can you identify those that
are control systems or parts of control systems?

R1(s)

R(s)

Signals System
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(c)

Pickoff point
(d)

+
+

–

(a) (b)

C(s) 

C(s) = R1(s) + R2(s) – R3(s)

R2(s)
R3(s)
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FIGURE 5.2 Components of a
block diagram for a linear,
time-invariant system
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transform from Figure 5.3(a), or

GeðsÞ ¼ G3ðsÞG2ðsÞG1ðsÞ ð5:1Þ

which is the product of the subsystems’ transfer functions.
Equation (5.1) was derived under the assumption that interconnected sub-

systems do not load adjacent subsystems. That is, a subsystem’s output remains the
same whether or not the subsequent subsystem is connected. If there is a change in
the output, the subsequent subsystem loads the previous subsystem, and the
equivalent transfer function is not the product of the individual transfer functions.
The network of Figure 5.4(a) demonstrates this concept. Its transfer function is

G1ðsÞ ¼ V1ðsÞ
ViðsÞ ¼

1

R1C1

sþ 1

R1C1

ð5:2Þ

Similarly, the network of Figure 5.4(b) has the following transfer function:

G2ðsÞ ¼ V2ðsÞ
V1ðsÞ ¼

1

R2C2

sþ 1

R2C2

ð5:3Þ

FIGURE 5.3 a. Cascaded
subsystems; b. equivalent
transfer function
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FIGURE 5.4 Loading in
cascaded systems
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If the networks are placed in cascade, as in Figure 5.4(c), you can verify that the
transfer function found using loop or node equations is

GðsÞ ¼ V2ðsÞ
ViðsÞ ¼

1

R1C1R2C2

s2 þ 1

R1C1
þ 1

R2C2
þ 1

R2C1

� �
sþ 1

R1C1R2C2

ð5:4Þ

But, using Eq. (5.1),

GðsÞ ¼ G2ðsÞG1ðsÞ ¼
1

R1C1R2C2

s2 þ 1

R1C1
þ 1

R2C2

� �
sþ 1

R1C1R2C2

ð5:5Þ

Equations (5.4) and (5.5) are not the same: Eq. (5.4) has one more term for the
coefficient of s in the denominator and is correct.

One way to prevent loading is to use an amplifier between the two networks, as
shown in Figure 5.4(d). The amplifier has a high-impedance input, so that it does not
load the previous network. At the same time it has a low-impedance output, so that it
looks like a pure voltage source to the subsequent network. With the amplifier
included, the equivalent transfer function is the product of the transfer functions and
the gain, K, of the amplifier.

Parallel Form
Figure 5.5 shows an example of parallel subsystems. Again, by writing the output of
each subsystem, we can find the equivalent transfer function. Parallel subsystems
have a common input and an output formed by the algebraic sum of the outputs from
all of the subsystems. The equivalent transfer function, Ge(s), is the output transform
divided by the input transform from Figure 5.5(a), or

GeðsÞ ¼ �G1ðsÞ �G2ðsÞ �G3ðsÞ ð5:6Þ

which is the algebraic sum of the subsystems’ transfer functions; it appears in
Figure 5.5(b).

±

(a)

(b)

R(s)

G1(s)

G2(s)

G3(s)

X1(s) = R(s)G1(s)

X2(s) = R(s)G2(s)

X3(s) = R(s)G3(s)

C(s) = [±G1(s) ± G2(s) ± G3(s)]R(s)

C(s)
±G1(s) ± G2(s) ± G3(s)

±

R(s)

±

FIGURE 5.5 a. Parallel sub-
systems; b. equivalent transfer
function
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Feedback Form
The third topology is the feedback form, which will be seen repeatedly in subsequent
chapters. The feedback system forms the basis for our study of control systems
engineering. In Chapter 1, we defined open-loop and closed-loop systems and
pointed out the advantage of closed-loop, or feedback control, systems over open-
loop systems. As we move ahead, we will focus on the analysis and design of
feedback systems.

Let us derive the transfer function that represents the system from its input to
its output. The typical feedback system, described in detail in Chapter 1, is shown in
Figure 5.6(a); a simplified model is shown in Figure 5.6(b).1 Directing our attention
to the simplified model,

EðsÞ ¼ RðsÞ � CðsÞHðsÞ ð5:7Þ
But since CðsÞ ¼ EðsÞGðsÞ,

EðsÞ ¼ CðsÞ
GðsÞ ð5:8Þ

1 The system is said to have negative feedback if the sign at the summing junction is negative and positive
feedback if the sign is positive.

FIGURE 5.6 a. Feedback
control system; b. simplified
model; c. equivalent transfer
function
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Substituting Eq. (5.8) into Eq. (5.7) and solving for the transfer function, CðsÞ=RðsÞ ¼
GeðsÞ, we obtain the equivalent, or closed-loop, transfer function shown in
Figure 5.6(c),

GeðsÞ ¼ GðsÞ
1 �GðsÞHðsÞ ð5:9Þ

The product, G(s)H(s), in Eq. (5.9) is called the open-loop transfer function, or
loop gain.

So far, we have explored three different configurations for multiple subsys-
tems. For each, we found the equivalent transfer function. Since these three forms
are combined into complex arrangements in physical systems, recognizing these
topologies is a prerequisite to obtaining the equivalent transfer function of a
complex system. In this section, we will reduce complex systems composed of
multiple subsystems to single transfer functions.

Moving Blocks to Create Familiar Forms
Before we begin to reduce block diagrams, it must be explained that the familiar
forms (cascade, parallel, and feedback) are not always apparent in a block diagram.
For example, in the feedback form, if there is a pickoff point after the summing
junction, you cannot use the feedback formula to reduce the feedback system to a
single block. That signal disappears, and there is no place to reestablish the
pickoff point.

This subsection will discuss basic block moves that can be made to order to
establish familiar forms when they almost exist. In particular, it will explain how to
move blocks left and right past summing junctions and pickoff points.

Figure 5.7 shows equivalent block diagrams formed when transfer functions
are moved left or right past a summing junction, and Figure 5.8 shows equivalent
block diagrams formed when transfer functions are moved left or right past a pickoff
point. In the diagrams the symbol � means ‘‘equivalent to.’’ These equivalences,

R(s)

+

+

–

+

+–

(a)

X(s)

G(s)
C(s) R(s)

G(s)
C(s)

G(s)

X(s)

+

+

–

1

(b)

+

+

–

R(s)
G(s)

C(s) R(s)
G(s)

C(s)

G(s)

X(s)

X(s)

FIGURE 5.7 Block diagram
algebra for summing
junctions—equivalent forms
for moving a block a. to the left
past a summing junction; b. to
the right past a summing
junction
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along with the forms studied earlier in this section, can be used to reduce a block
diagram to a single transfer function. In each case of Figures 5.7 and 5.8, the
equivalence can be verified by tracing the signals at the input through to the output
and recognizing that the output signals are identical. For example, in Figure 5.7(a),
signals R(s) and X(s) are multiplied by G(s) before reaching the output. Hence, both
block diagrams are equivalent, with CðsÞ ¼ RðsÞGðsÞ �XðsÞGðsÞ. In Figure 5.7(b),
R(s) is multiplied by G(s) before reaching the output, but X(s) is not. Hence, both
block diagrams in Figure 5.7(b) are equivalent, with CðsÞ ¼ RðsÞGðsÞ �XðsÞ. For
pickoff points, similar reasoning yields similar results for the block diagrams of
Figure 5.8(a) and (b).

Let us now put the whole story together with examples of block diagram
reduction.

Example 5.1

Block Diagram Reduction via Familiar Forms

PROBLEM: Reduce the block diagram shown in Figure 5.9 to a single transfer
function.

FIGURE 5.8 Block diagram
algebra for pickoff points—
equivalent forms for moving a
block a. to the left past a
pickoff point; b. to the right
past a pickoff point (b)
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FIGURE 5.9 Block diagram
for Example 5.1
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SOLUTION: We solve the problem by following the steps in Figure 5.10. First, the
three summing junctions can be collapsed into a single summing junction, as shown
in Figure 5.10(a).

Second, recognize that thethree feedbackfunctions,H1(s),H2(s),andH3(s),are
connectedinparallel.Theyarefedfromacommonsignal source,andtheiroutputsare
summed.TheequivalentfunctionisH1ðsÞ �H2ðsÞ þH3ðsÞ.AlsorecognizethatG2(s)
and G3(s) are connected in cascade. Thus, the equivalent transfer function is the
product, G3(s)G2(s). The results of these steps are shown in Figure 5.10(b).

Finally, the feedback system is reduced and multiplied by G1(s) to yield the
equivalent transfer function shown in Figure 5.10(c).

Example 5.2

Block Diagram Reduction by Moving Blocks

PROBLEM: Reduce the system shown in Figure 5.11 to a single transfer function.

(c)

R(s) G3(s)G2(s)G1(s) C(s)

1 + G3(s)G2(s)[H1(s) – H2(s) + H3(s)]

+

–

(b)
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+ –

(a)

R(s) +
G1(s) G2(s) G3(s)

H1(s)

H2(s)

H3(s)

+ C(s)

–

FIGURE 5.10 Steps in solving
Example 5.1: a. Collapse sum-
ming junctions; b. form equi-
valent cascaded system in the
forward path and equivalent
parallel system in the feedback
path; c. form equivalent feed-
back system and multiply by
cascaded G1(s)
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FIGURE 5.11 Block diagram
for Example 5.2
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SOLUTION: In this example we make use of the equivalent forms shown in
Figures 5.7 and 5.8. First, move G2(s) to the left past the pickoff point to create
parallel subsystems, and reduce the feedback system consisting of G3(s) and H3(s).
This result is shown in Figure 5.12(a).

Second, reduce the parallel pair consisting of 1/G2(s) and unity, and push
G1(s) to the right past the summing junction, creating parallel subsystems in the
feedback. These results are shown in Figure 5.12(b).

(e)

R(s)

[1 + G2(s)H2(s) + G1(s)G2(s)H1(s)][1 + G3(s)H3(s)]

G1(s)G3(s)[1 + G2(s)] C(s)

(d)

R(s) G1(s)G2(s) V4(s)
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1
 + 1
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– 1 + G3(s)H3(s)
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FIGURE 5.12 Steps in the block diagram reduction for Example 5.2
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Third, collapse the summing junctions, add the two feedback elements
together, and combine the last two cascaded blocks. Figure 5.12(c) shows these results.

Fourth, use the feedback formula to obtain Figure 5.12(d).
Finally, multiply the two cascaded blocks and obtain the final result, shown in

Figure 5.12(e).

Students who are using MATLAB should now run ch5p1 in Appendix B to
perform block diagram reduction.

Skill-Assessment Exercise 5.1

PROBLEM: Find the equivalent transfer function, TðsÞ ¼ CðsÞ=RðsÞ, for the system
shown in Figure 5.13.

ANSWER:

TðsÞ ¼ s3 þ 1

2s4 þ s2 þ 2s

The complete solution is at www.wiley.com/college/nise.

In this section, we examined the equivalence of several block diagram
configurations containing signals, systems, summing junctions, and pickoff points.
These configurations were the cascade, parallel, and feedback forms. During block
diagram reduction, we attempt to produce these easily recognized forms and then
reduce the block diagram to a single transfer function. In the next section, we will
examine some applications of block diagram reduction.

5.3 Analysis and Design of Feedback
Systems

An immediate application of the principles of Section 5.2 is the analysis and design of
feedback systems that reduce to second-order systems. Percent overshoot, settling
time, peak time, and rise time can then be found from the equivalent transfer function.

+ +

+–

–
R(s)

s

s s
C(s)

1
s

1
s

FIGURE 5.13 Block diagram for Skill-Assessment Exercise 5.1

TryIt 5.1

Use the following MATLAB
and Control System Toolbox
statements to find the closed-
loop transfer function of the
system in Example 5.2 if all
GiðsÞ ¼ 1=ðsþ 1Þ and all
HiðsÞ ¼ 1=s.

G1=tf(1,[1 1]);
G2=G1;G3=G1;
H1=tf(1,[1 0]);
H2=H1;H3=H1;
System=append...
(G1,G2,G3,H1,H2,H3);
input=1;output=3;
Q= [l -4 0 0 0

2 1 -5 0 0
3 2 1 -5 -6
4 2 0 0 0
5 2 0 0 0
6 3 0 0 0];

T=connect(System,...
Q,input,output);
T=tf(T);T=minreal(T)
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Consider the system shown in Figure 5.14, which can model a
control system such as the antenna azimuth position control system. For
example, the transfer function, K=sðsþ aÞ, can model the amplifiers,
motor, load, and gears. From Eq. (5.9), the closed-loop transfer func-
tion, T(s), for this system is

TðsÞ ¼ K

s2 þ asþK
ð5:10Þ

where K models the amplifier gain, that is, the ratio of the output voltage to the input
voltage. As K varies, the poles move through the three ranges of operation of a
second-order system: overdamped, critically damped, and underdamped. For exam-
ple, for K between 0 and a2=4, the poles of the system are real and are located at

s1;2 ¼ � a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4K

p

2
ð5:11Þ

As K increases, the poles move along the real axis, and the system remains
overdamped until K ¼ a2=4. At that gain, or amplification, both poles are real and
equal, and the system is critically damped.

For gains above a2=4, the system is underdamped, with complex poles located at

s1;2 ¼ � a

2
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K � a2

p

2
ð5:12Þ

Now as K increases, the real part remains constant and the imaginary part increases.
Thus, the peak time decreases and the percent overshoot increases, while the settling
time remains constant.

Let us look at two examples that apply the concepts to feedback control
systems. In the first example, we determine a system’s transient response. In the
second example, we design the gain to meet a transient response requirement.

Example 5.3

Finding Transient Response

PROBLEM: For the system shown in Figure 5.15, find the peak time,
percent overshoot, and settling time.

SOLUTION: The closed-loop transfer function found from Eq. (5.9) is

TðsÞ ¼ 25

s2 þ 5sþ 25
ð5:13Þ

From Eq. (4.18),

vn ¼
ffiffiffiffiffi
25

p
¼ 5 ð5:14Þ

From Eq. (4.21),

2zvn ¼ 5 ð5:15Þ
Substituting Eq. (5.14) into (5.15) and solving for z yields

z ¼ 0:5 ð5:16Þ

K+

– s(s + a)

R(s) C(s)

FIGURE 5.14 Second-order feedback
control system

–

25+

s(s + 5)

R(s) C(s)

FIGURE 5.15 Feedback system for
Example 5.3
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Using the values for z and vn along with Eqs (4.34), (4.38), and (4.42), we find
respectively,

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ 0:726 second ð5:17Þ

%OS ¼ e�zp=
ffiffiffiffiffiffiffiffi
1�z2

p
� 100 ¼ 16:303 ð5:18Þ

Ts ¼ 4

zvn
¼ 1:6 seconds ð5:19Þ

StudentswhoareusingMATLABshouldnowrunch5p2inAppendixB.You
will learn how to perform block diagram reduction followed by an
evaluation of the closed-loop system’s transient response by find-
ing, Tp,%OS, and Ts. Finally, you will learn how to use MATLAB to
generate a closed-loop step response. This exercise uses MATLAB to
do Example 5.3.

MATLAB’s Simulink provides an alternative method of simulating
feedback systems to obtain the time response. Students who are
performing the MATLAB exercises and want to explore the added
capability of MATLAB’s Simulink should now consult Appendix C.
Example C.3 includes a discussion about, and an example of, the use
of Simulink to simulate feedback systems with nonlinearities.

Example 5.4

Gain Design for Transient Response

PROBLEM: Design the value of gain.K, for the feedback control system of Figure 5.16
so that the system will respond with a 10% overshoot.

SOLUTION: The closed-loop transfer function of the system is

TðsÞ ¼ K

s2 þ 5sþK
ð5:20Þ

From Eq. (5.20),

2zvn ¼ 5 ð5:21Þ
and

vn ¼
ffiffiffiffi
K

p
ð5:22Þ

Thus,

z ¼ 5

2
ffiffiffiffi
K

p ð5:23Þ

Since percent overshoot is a function only of z, Eq. (5.23) shows that the percent
overshoot is a function of K.

–
s(s + 5)

K+R(s) C(s)

FIGURE 5.16 Feedback
system for Example 5.4

Virtual Experiment 5.1
Position Control
Gain Design

Put theory into practice
designing the position control
gain for the Quanser Linear
Servo and simulating its closed-
loop response in LabVIEW.
This concept is used, for
instance, to control a rover
exploring the terrainofa planet.

Virtual experiment are found
on WileyPLUS.
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A 10% overshoot implies that z ¼ 0:591. Substituting this value for the
damping ratio into Eq. (5.23) and solving for K yields

K ¼ 17:9 ð5:24Þ
Although we are able to design for percent overshoot in this problem, we

could not have selected settling time as a design criterion because, regardless of the
value of K, the real parts, �2.5, of the poles of Eq. (5.20) remain the same.

Skill-Assessment Exercise 5.2

PROBLEM: For a unity feedback control system with a forward-path transfer

function GðsÞ ¼ 16

sðsþ aÞ, design the value of a to yield a closed-loop step response

that has 5% overshoot.

ANSWER:

a ¼ 5:52

The complete solution is at www.wiley.com/college/nise.

5.4 Signal-Flow Graphs

Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams,
which consist of blocks, signals, summing junctions, and pickoff points, a signal-flow
graph consists only of branches, which represent systems, and nodes, which represent
signals. These elements are shown in Figure 5.17(a) and (b), respectively. A system is
represented by a line with an arrow showing the direction of signal flow through the

TryIt 5.2

Use the following MATLAB and Control
System Toolbox statements to find z, vn,
%OS, Ts, Tp, and Tr for the closed-loop unity
feedback system described in Skill-Assessment
Exercise 5.2. Start with a ¼ 2 and try some
other values. A step response for the closed-
loop system will also be produced.

a=2;
numg=16;
deng=poly([0 -a]);
G=tf(numg,deng);
T=feedback(G,1);

[numt,dent]=...
tfdata(T, ’v ’);
wn=sqrt(dent)3))
z=dent(2)/(2*wn)
Ts=4/(z*wn)
Tp=pi/(wn*...
sqrt(l -z^2))
pos=exp(-z*pi...
/sqrt(l -z^2))*100
Tr=(1.76*z^3 - ...
0.417*z^2 + 1.039*...
z + 1)/wn
step(T)

FIGURE 5.17 Signal-flow
graph components: a. system;
b. signal; c. interconnection of
systems and signals

R1(s)

R2(s)

G1(s)

–G2(s)

R3(s)

G3(s) –G6(s)

G5(s)

G4(s)

V(s)

C1(s)

C2(s)

C3(s)

(c)(b)

V(s)

(a)

G(s)
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1

( f)

R(s)
E(s)

G(s)
C(s)

–H(s)

(e)

R(s)
E(s)

C(s)

(d)

1

1

1

V1(s)G1(s)

V2(s)
R(s) C(s)

G2(s)

V3(s)

G3(s)

(c)

V2(s)
R(s) C(s)

V3(s)

(b)

R(s)
G1(s)

V2(s)

G2(s)

V1(s)

G3(s)
C(s)

(a)

V2(s) V1(s)
C(s)R(s)

V1(s)

FIGURE 5.18 Building signal-
flow graphs: a. cascaded sys-
tem nodes (from Figure 5.3(a));
b. cascaded system signal-flow
graph; c. parallel system nodes
(from Figure 5.5(a)); d. parallel
system signal-flow graph; e.
feedback system nodes (from
Figure 5.6(b)); f. feedback sys-
tem signal-flow graph

system. Adjacent to the line we write the transfer function. A signal is a node with
the signal’s name written adjacent to the node.

Figure 5.17(c) shows the interconnection of the systems and the signals. Each signal
is the sum of signals flowing into it. For example, the signal VðsÞ ¼ R1ðsÞG1ðsÞ�
R2ðsÞG2ðsÞ þ R3ðsÞG3ðsÞ. The signal C2ðsÞ ¼ VðsÞG5ðsÞ ¼ R1ðsÞG1ðsÞG5ðsÞ � R2ðsÞ
G2ðsÞG5ðsÞ þ R3ðsÞG3ðsÞG5ðsÞ. The signal C3ðsÞ ¼ �VðsÞG6ðsÞ ¼ �R1ðsÞG1ðsÞ
G6ðsÞ þ R2ðsÞG2ðsÞG6ðsÞ � R3ðsÞG3ðsÞG6ðsÞ. Notice that in summing negative signals
we associate the negative sign with the system and not with a summing junction, as in
the case of block diagrams.

To show the parallel between block diagrams and signal-flow graphs, we will
take some of the block diagram forms from Section 5.2 and convert them to signal-
flow graphs in Example 5.5. In each case, we will first convert the signals to nodes
and then interconnect the nodes with system branches. In Example 5.6, we will
convert an intricate block diagram to a signal-flow graph.

Example 5.5

Converting Common Block Diagrams to Signal-Flow Graphs

PROBLEM: Convert the cascaded, parallel, and feedback forms of the block diagrams
shown in Figures 5.3(a), 5.5(a), and 5.6(b), respectively, into signal-flow graphs.

SOLUTION: In each case, we start by drawing the signal nodes for that system. Next
we interconnect the signal nodes with system branches. The signal nodes for the
cascaded, parallel, and feedback forms are shown in Figure 5.18(a), (c), and (e),
respectively. The interconnection of the nodes with branches that represent the
subsystems is shown in Figure 5.18(b), (d), and (f) for the cascaded, parallel, and
feedback forms, respectively.

5.4 Signal-Flow Graphs 249
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Example 5.6

Converting a Block Diagram to a Signal-Flow Graph

PROBLEM: Convert the block diagram of Figure 5.11 to a signal-flow graph.

SOLUTION: Begin by drawing the signal nodes, as shown in Figure 5.19(a). Next,
interconnect the nodes, showing the direction of signal flow and identifying each
transfer function. The result is shown in Figure 5.19(b). Notice that the negative
signs at the summing junctions of the block diagram are represented by the
negative transfer functions of the signal-flow graph. Finally, if desired, simplify
the signal-flow graph to the one shown in Figure 5.19(c) by eliminating signals that
have a single flow in and a single flow out, such as V2(s), V6(s), V7(s), and V8(s).

(b)

1 1 1

1

–1

R(s)
G1(s)

V2(s)

V6(s)

H1(s)

V7(s)

G2(s)

V5(s)

G3(s)

V8(s)

H3(s)–1

V4(s)
C(s)

V3(s)V1(s)
–1 H2(s)

(a)

R(s)
V1(s) V2(s) V3(s) V4(s) V5(s)

C(s)

V8(s)V7(s)V6(s)

(c)

1 1

1

R(s)
G1(s)

V3(s)

G2(s)

V5(s)

G3(s)

–H2(s) –H3(s)

–H1(s)

V1(s)
C(s)

V4(s)

FIGURE 5.19 Signal-flow graph development: a. signal nodes; b. signal-flow graph;
c. simplified signal-flow graph

250 Chapter 5 Reduction of Multiple Subsystems



Apago PDF Enhancer

E1C05 11/03/2010 12:17:52 Page 251

Skill-Assessment Exercise 5.3

PROBLEM: Convert the block diagram of Figure 5.13 to a signal-flow graph.

ANSWER: The complete solution is at www.wiley.com/college/nise.

5.5 Mason’s Rule

Earlier in this chapter, we discussed how to reduce block diagrams to single transfer
functions. Now we are ready to discuss a technique for reducing signal-flow graphs to
single transfer functions that relate the output of a system to its input.

The block diagram reduction technique we studied in Section 5.2 requires
successive application of fundamental relationships in order to arrive at the system
transfer function. On the other hand, Mason’s rule for reducing a signal-flow graph
to a single transfer function requires the application of one formula. The formula was
derived by S. J. Mason when he related the signal-flow graph to the simultaneous
equations that can be written from the graph (Mason, 1953).

In general, it can be complicated to implement the formula without making
mistakes. Specifically, the existence of what we will later call nontouching loops
increases the complexity of the formula. However, many systems do not have non-
touching loops. For these systems, you may find Mason’s rule easier to use than block
diagram reduction.

Mason’s formula has several components that must be evaluated. First, we must
be sure that the definitions of the components are well understood. Then we must
exert care in evaluating the components. To that end, we discuss some basic definitions
applicable to signal-flow graphs; then we state Mason’s rule and do an example.

Definitions
Loop gain. The product of branch gains found by traversing a path that starts at a
node and ends at the same node, following the direction of the signal flow, without
passing through any other node more than once. For examples of loop gains, see
Figure 5.20. There are four loop gains:

1. G2ðsÞH1ðsÞ ð5:25aÞ
2. G4ðsÞH2ðsÞ ð5:25bÞ
3. G4ðsÞG5ðsÞH3ðsÞ ð5:25cÞ
4. G4ðsÞG6ðsÞH3ðsÞ ð5:25dÞ

Forward-path gain. The product of gains found
by traversing a path from the input node to the output
node of the signal-flow graph in the direction of signal flow. Examples of forward-path
gains are also shown in Figure 5.20. There are two forward-path gains:

1. G1ðsÞG2ðsÞG3ðsÞG4ðsÞG5ðsÞG7ðsÞ ð5:26aÞ
2. G1ðsÞG2ðsÞG3ðsÞG4ðsÞG6ðsÞG7ðsÞ ð5:26bÞ

Nontouching loops. Loops that do not have any nodes in common. In Figure 5.20,
loopG2(s)H1(s) does not touch loopsG4(s)H2(s),G4(s)G5(s)H3(s), andG4(s)G6(s)H3(s).

R(s)
G1(s) G2(s) G3(s) G4(s)

V5(s) V4(s)

H1(s) H2(s)

V3(s)

G5(s)

V2(s)

G6(s)

G7(s)

V1(s)
C(s)

H3(s)

FIGURE 5.20 Signal-flow graph for demonstrating Mason’s rule
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Nontouching-loop gain. The product of loop gains from nontouching loops
taken two, three, four, or more at a time. In Figure 5.20 the product of loop gain
G2(s)H1(s) and loop gain G4(s)H2(s) is a nontouching-loop gain taken two at a time.
In summary, all three of the nontouching-loop gains taken two at a time are

1. ½G2ðsÞH1ðsÞ�½G4ðsÞH2ðsÞ� ð5:27aÞ
2. ½G2ðsÞH1ðsÞ�½G4ðsÞG5ðsÞH3ðsÞ� ð5:27bÞ
3. ½G2ðsÞH1ðsÞ�½G4ðsÞG6ðsÞH3ðsÞ� ð5:27cÞ
The product of loop gains ½G4ðsÞG5ðsÞH3ðsÞ�½G4ðsÞG6ðsÞH3ðsÞ� is not a nontouching-
loop gain since these two loops have nodes in common. In our example there are no
nontouching-loop gains taken three at a time since three nontouching loops do not
exist in the example.

We are now ready to state Mason’s rule.

Mason’s Rule
The transfer function, CðsÞ=RðsÞ, of a system represented by a signal-flow graph is

GðsÞ ¼ CðsÞ
RðsÞ ¼

P
kTkDk

D
ð5:28Þ

where

k ¼ number of forward paths
Tk ¼ the kth forward-path gain
D ¼ 1 � S loop gains þ S nontouching-loop gains taken two at a time � S

nontouching-loop gains taken three at a time þ S nontouching-loop gains
taken four at a time � . . .

Dk ¼ D� S loop gain terms in D that touch the kth forward path: In other words; Dk

is formed by eliminating from D those loop gains that touch the kth forward
path:

Notice the alternating signs for the components of D. The following example will
help clarify Mason’s rule.

Example 5.7

Transfer Function via Mason’s Rule

PROBLEM: Find the transfer function, C(s)/R(s), for the signal-flow graph in
Figure 5.21.

FIGURE 5.21 Signal-flow graph
for Example 5.7

R(s)
G1(s) G2(s)

V4(s)

H1(s)

G3(s)

V3(s)

G8(s)

V2(s)

G4(s)

V1(s)

G5(s)

H2(s)

C(s)

G6(s)

G7(s)

H4(s)

V5(s)V6(s)
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SOLUTION: First, identify the forward-path gains. In this example there is only
one:

G1ðsÞG2ðsÞG3ðsÞG4ðsÞG5ðsÞ ð5:29Þ

Second, identify the loop gains. There are four, as follows:

1. G2ðsÞH1ðsÞ ð5:30aÞ
2. G4ðsÞH2ðsÞ ð5:30bÞ
3. G7ðsÞH4ðsÞ ð5:30cÞ
4. G2ðsÞG3ðsÞG4ðsÞG5ðsÞG6ðsÞG7ðsÞG8ðsÞ ð5:30dÞ

Third, identify the nontouching loops taken two at a time. From Eqs. (5.30) and
Figure 5.21, we can see that loop 1 does not touch loop 2, loop 1 does not touch
loop 3, and loop 2 does not touch loop 3. Notice that loops 1, 2, and 3 all touch
loop 4. Thus, the combinations of nontouching loops taken two at a time are as
follows:

Loop 1 and loop 2 : G2ðsÞH1ðsÞG4ðsÞH2ðsÞ ð5:31aÞ

Loop 1 and loop 3 : G2ðsÞH1ðsÞG7ðsÞH4ðsÞ ð5:31bÞ
Loop 2 and loop 3 : G4ðsÞH2ðsÞG7ðsÞH4ðsÞ ð5:31cÞ

Finally, the nontouching loops taken three at a time are as follows:

Loops 1; 2; and 3 : G2ðsÞH1ðsÞG4ðsÞH2ðsÞG7ðsÞH4ðsÞ ð5:32Þ
Now, from Eq. (5.28) and its definitions, we form D and Dk. Hence,

D ¼ 1 �½G2ðsÞH1ðsÞ þG4ðsÞH2ðsÞ þG7ðsÞH4ðsÞ
þG2ðsÞG3ðsÞG4ðsÞG5ðsÞG6ðsÞG7ðsÞG8ðsÞ�

þ½G2ðsÞH1ðsÞG4ðsÞH2ðsÞ þG2ðsÞH1ðsÞG7ðsÞH4ðsÞ
þG4ðsÞH2ðsÞG7ðsÞH4ðsÞ�

�½G2ðsÞH1ðsÞG4ðsÞH2ðsÞG7ðsÞH4ðsÞ�
ð5:33Þ

We form Dk by eliminating from D the loop gains that touch the kth forward
path:

D1 ¼ 1 �G7ðsÞH4ðsÞ ð5:34Þ

Expressions (5.29), (5.33), and (5.34) are now substituted into Eq. (5.28),
yielding the transfer function:

GðsÞ ¼ T1D1

D
¼ ½G1ðsÞG2ðsÞG3ðsÞG4ðsÞG5ðsÞ�½1 �G7ðsÞH4ðsÞ�

D
ð5:35Þ

Since there is only one forward path, G(s) consists of only one term, rather than a
sum of terms, each coming from a forward path.
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Skill-Assessment Exercise 5.4

PROBLEM: Use Mason’s rule to find the transfer function of the signal-flow
diagram shown in Figure 5.19(c). Notice that this is the same system used in
Example 5.2 to find the transfer function via block diagram reduction.

ANSWER:

TðsÞ ¼ G1ðsÞG3ðsÞ½1 þG2ðsÞ�
1 þG2ðsÞH2ðsÞ þG1ðsÞG2ðsÞH1ðsÞ½ �½1 þG3ðsÞH3ðsÞ�

The complete solution is at www.wiley.com/college/nise.

5.6 Signal-Flow Graphs of State Equations

In this section, we draw signal-flow graphs from state equations. At first this process
will help us visualize state variables. Later we will draw signal-flow graphs and then
write alternate representations of a system in state space.

Consider the following state and output equations:

_x1 ¼ 2x1 � 5x2 þ 3x3 þ 2r ð5:36aÞ
_x2 ¼ �6x1 � 2x2 þ 2x3 þ 5r ð5:36bÞ
_x3 ¼ x1 � 3x2 � 4x3 þ 7r ð5:36cÞ
y ¼ �4x1 þ 6x2 þ 9x3 ð5:36dÞ

First, identify three nodes to be the three state variables, x1, x2, and x3; also
identify three nodes, placed to the left of each respective state variable, to be the
derivatives of the state variables, as in Figure 5.22(a). Also identify a node as the
input, r, and another node as the output, y.

Next interconnect the state variables and their derivatives with the defining
integration, 1/s, as shown in Figure 5.22(b). Then using Eqs. (5.36), feed to each node
the indicated signals. For example, from Eq. (5.36a), _x1 receives 2x1 � 5x2 þ 3x3 þ 2r,
as shown in Figure 5.22(c). Similarly, _x2 receives �6x1 � 2x2 þ 2x3 þ 5r, as shown in
Figure 5.22(d), and _x3 receives x1 � 3x2 � 4x3 þ 7r, as shown in Figure 5.22(e).
Finally, using Eq. (5.36d), the output, y, receives �4x1 þ 6x2 þ 9x3, as shown in
Figure 5.19(f ), the final phase-variable representation, where the state variables are
the outputs of the integrators.

R(s)

R(s)

Y(s)
sX3(s) sX2(s) sX1(s)X3(s) X2(s) X1(s)

Y(s)

(a)

sX3(s) sX2(s) sX1(s)X3(s) X2(s) X1(s)

(b)

1
s

1
s

1
s

FIGURE 5.22 Stages of development of a signal-flow graph for the system of Eqs. (5.36):
a. Place nodes; b. interconnect state variables and derivatives; (figure continues)
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FIGURE 5.22 (Continued) c. form dx1/dt; d. form dx2/dt; e. form dx3/dt; (figure continues)
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Skill-Assessment Exercise 5.5

PROBLEM: Draw a signal-flow graph for the following state and output equations:

_x ¼
�2 1 0

0 �3 1
�3 �4 �5

2
4

3
5x þ

0
0
1

2
4
3
5r

y ¼ ½ 0 1 0 �x

ANSWER: The complete solution is at www.wiley.com/college/nise.

In the next section, the signal-flow model will help us visualize the process of
determining alternative representations in state space of the same system. We will
see that even though a system can be the same with respect to its input and output
terminals, the state-space representations can be many and varied.

5.7 Alternative Representations in State Space

In Chapter 3, systems were represented in state space in phase-variable form.
However, system modeling in state space can take on many representations other
than the phase-variable form. Although each of these models yields the same
output for a given input, an engineer may prefer a particular one for several
reasons. For example, one set of state variables, with its unique representation,
can model actual physical variables of a system, such as amplifier and filter
outputs.

FIGURE 5.22 (Continued) f. form output (figure end)
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Another motive for choosing a particular set of state variables and state-space
model is ease of solution. As we will see, a particular choice of state variables can
decouple the system of simultaneous differential equations. Here each equation is
written in terms of only one state variable, and the solution is effected by solving n
first-order differential equations individually.

Ease of modeling is another reason for a particular choice of state variables.
Certain choices may facilitate converting the subsystem to the state-variable
representation by using recognizable features of the model. The engineer learns
quickly how to write the state and output equations and draw the signal-flow graph,
both by inspection. These converted subsystems generate the definition of the state
variables.

We will now look at a few representative forms and show how to generate the
state-space representation for each.

Cascade Form
We have seen that systems can be represented in state space with the state
variables chosen to be the phase variables, that is, variables that are successive
derivatives of each other. This is by no means the only choice. Returning to the
system of Figure 3.10(a), the transfer function can be represented alternately as

CðsÞ
RðsÞ ¼

24

ðsþ 2Þðsþ 3Þðsþ 4Þ ð5:37Þ

Figure 5.23 shows a block diagram representation of this system formed by
cascading each term of Eq. (5.37). The output of each first-order system block
has been labeled as a state variable. These state variables are not the phase variables.

We now show how the signal-flow graph can be used to obtain a state-space
representation of this system. In order to write the state equations with our new set
of state variables, it is helpful to draw a signal-flow graph first, using Figure 5.23 as a
guide. The signal flow for each first-order system of Figure 5.23 can be found by
transforming each block into an equivalent differential equation. Each first-order
block is of the form

CiðsÞ
RiðsÞ ¼

1

ðsþ aiÞ ð5:38Þ

Cross-multiplying, we get

ðsþ aiÞCiðsÞ ¼ RiðsÞ ð5:39Þ
After taking the inverse Laplace transform, we have

dciðtÞ
dt

þ aiciðtÞ ¼ riðtÞ ð5:40Þ

Solving for dci(t)/dt yields

dciðtÞ
dt

¼ �aiciðtÞ þ riðtÞ ð5:41Þ

R(s)

X3(s)

C(s)

s + 2
1 1 1

24
s + 3 s + 4X2(s) X1(s)

FIGURE 5.23 Representation of Figure 3.10 system as cascaded first-order systems
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Figure 5.24(a) shows the implementation of Eq. (5.41) as a signal-flow graph. Here
again, a node was assumed for ci(t) at the output of an integrator, and its derivative
was formed at the input.

Cascading the transfer functions shown in Figure 5.24(a), we arrive at the
system representation shown in Figure 5.24(b).2 Now write the state equations for
the new representation of the system. Remember that the derivative of a state
variable will be at the input to each integrator:

_x1 ¼ �4x1 þ x2 ð5:42aÞ
_x2 ¼ �3x2 þ x3 ð5:42bÞ
_x3 ¼ �2x3 þ 24r ð5:42cÞ

The output equation is written by inspection from Figure 5.24(b):

y ¼ cðtÞ ¼ x1 ð5:43Þ
The state-space representation is completed by rewriting Eqs. (5.42) and (5.43) in
vector-matrix form:

_x ¼
�4 1 0

0 �3 1
0 0 �2

2
4

3
5xþ

0
0

24

2
4

3
5r ð5:44aÞ

y ¼ 1 0 0½ �x ð5:44bÞ
Comparing Eqs. (5.44) with Figure 5.24(b), you can form a vivid picture of the
meaning of some of the components of the state equation. For the following
discussion, please refer back to the general form of the state and output equations,
Eqs. (3.18) and (3.19).

For example, the B matrix is the input matrix since it contains the terms that
couple the input, r(t), to the system. In particular, the constant 24 appears in both the
signal-flow graph at the input, as shown in Figure 5.24(b), and the input matrix in
Eqs. (5.44). The C matrix is the output matrix since it contains the constant that
couples the state variable, x1, to the output, c(t). Finally, the A matrix is the system

–2 –3 –4

24 1 1 1

(b)

R(s) C(s)

1
s

1
s

1
s

X3(s) X2(s) X1(s)

–ai

Ri(s)
1

(a)

1
s

sCi(s)
Ci(s)

FIGURE 5.24 a. First-order subsystem; b. Signal-flow graph for Figure 5.23 system

2 Note that node X3(s) and the following node cannot be merged, or else the input to the first integrator
would be changed by the feedback from X2(s), and the signal X3(s) would be lost. A similar argument can
be made for X2(s) and the following node.
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matrix since it contains the terms relative to the internal system itself. In the form of
Eqs. (5.44), the system matrix actually contains the system poles along the diagonal.

Compare Eqs. (5.44) to the phase-variable representation in Eqs. (3.59). In that
representation, the coefficients of the system’s characteristic polynomial appeared
along the last row, whereas in our current representation, the roots of the charac-
teristic equation, the system poles, appear along the diagonal.

Parallel Form
Another form that can be used to represent a system is the parallel form. This form
leads to an A matrix that is purely diagonal, provided that no system pole is a
repeated root of the characteristic equation.

Whereas the previous form was arrived at by cascading the individual first-
order subsystems, the parallel form is derived from a partial-fraction expansion of
the system transfer function. Performing a partial-fraction expansion on our exam-
ple system, we get

CðsÞ
RðsÞ ¼

24

ðsþ 2Þðsþ 3Þðsþ 4Þ ¼
12

ðsþ 2Þ �
24

ðsþ 3Þ þ
12

ðsþ 4Þ ð5:45Þ

Equation (5.45) represents the sum of the individual first-order subsystems. To
arrive at a signal-flow graph, first solve for C(s),

CðsÞ ¼ RðsÞ 12

ðsþ 2Þ � RðsÞ 24

ðsþ 3Þ þ RðsÞ 12

ðsþ 4Þ ð5:46Þ

and recognize that C(s) is the sum of three terms. Each term is a first-
order subsystem with R(s) as the input. Formulating this idea as a
signal-flow graph renders the representation shown in Figure 5.25.

Once again, we use the signal-flow graph as an aid to obtaining
the state equations. By inspection the state variables are the outputs
of each integrator, where the derivatives of the state variables exist at
the integrator inputs. We write the state equations by summing the
signals at the integrator inputs:

_x1 ¼ �2x1 þ 12r ð5:47aÞ
_x2 ¼ �3x2 � 24r ð5:47bÞ
_x3 ¼ �4x3 þ 12r ð5:47cÞ

The output equation is found by summing the signals that give c(t):

y ¼ cðtÞ ¼ x1 þ x2 þ x3 ð5:48Þ
In vector-matrix form, Eqs. (5.47) and (5.48) become

_x ¼
�2 0 0

0 �3 0
0 0 �4

2
4

3
5xþ

12
�24

12

2
4

3
5r ð5:49Þ

and

y ¼ ½ 1 1 1 �x ð5:50Þ

Thus, our third representation of the system of Figure 3.10(a) yields a diagonal
system matrix. What is the advantage of this representation? Each equation is a

–2

–3

–4

R(s)
–24 1

12

12

1

1

C(s)

1
s

1
s

X1(s)

X2(s)

X3(s)

1
s

FIGURE 5.25 Signal-flow representation of
Eq. (5.45)
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first-order differential equation in only one variable. Thus, we would solve these
equations independently. The equations are said to be decoupled.

Students who are using MATLAB should now run ch5p3 in Appendix B.
You will learn how to use MATLAB to convert a transfer function to
state space in a specified form. The exercise solves the previous
example by representing the transfer function in Eq.(5.45) by the
state-space representation in parallel form of Eq.(5.49).

If the denominator of the transfer function has repeated real roots, the parallel
form can still be derived from a partial-fraction expansion. However, the system
matrix will not be diagonal. For example, assume the system

CðsÞ
RðsÞ ¼

ðsþ 3Þ
ðsþ 1Þ2ðsþ 2Þ ð5:51Þ

which can be expanded as partial fractions:

CðsÞ
RðsÞ ¼

2

ðsþ 1Þ2
� 1

ðsþ 1Þ þ
1

ðsþ 2Þ ð5:52Þ

Proceeding as before, the signal-flow graph for Eq. (5.52) is
shown in Figure 5.26. The term �1=ðsþ 1Þ was formed by creating the
signal flow from X2(s) to C(s). Now the state and output equations can
be written by inspection from Figure 5.26 as follows:

_x1 ¼ �x1 þ x2 ð5:53aÞ
_x2 ¼ � x2 þ 2r ð5:53bÞ
_x3 ¼ � 2x3 þ r ð5:53cÞ

y ¼ cðtÞ ¼ x1 � 1

2
x2 þ x3 ð5:53dÞ

or, in vector-matrix form,

_x ¼
�1 1 0

0 �1 0
0 0 �2

2
4

3
5xþ

0
2
1

2
4
3
5r ð5:54aÞ

y ¼ 1 � 1

2
1

� �
x ð5:54bÞ

This system matrix, although not diagonal, has the system poles along the diagonal.
Notice the 1 off the diagonal for the case of the repeated root. The form of the system
matrix is known as the Jordan canonical form.

Controller Canonical Form
Another representation that uses phase variables is called the controller canonical
form, so named for its use in the design of controllers, which is covered in Chapter 12.
This form is obtained from the phase-variable form simply by ordering the phase
variables in the reverse order. For example, consider the transfer function

GðsÞ ¼ CðsÞ
RðsÞ ¼

s2 þ 7sþ 2

s3 þ 9s2 þ 26sþ 24
ð5:55Þ

–1 –1

1

1
2

–

2 1

1 1

–2

R(s) C(s)

X3(s)

1
s

X2(s) X1(s)

1
s

1
s

FIGURE 5.26 Signal-flow representation of
Eq. (5.52)
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The phase-variable form was derived in Example 3.5 as

_x1

_x2

_x3

2
4

3
5¼

0 1 0
0 0 1

�24 �26 �9

2
4

3
5 x1

x2

x3

2
4

3
5þ

0
0
1

2
4
3
5r ð5:56aÞ

y ¼ 2 7 1½ �
x1

x2

x3

2
4

3
5 ð5:56bÞ

where y ¼ cðtÞ. Renumbering the phase variables in reverse order yields

_x3

_x2

_x1

2
4

3
5¼

0 1 0
0 0 1

�24 �26 �9

2
4

3
5 x3

x2

x1

2
4

3
5þ

0
0
1

2
4
3
5r ð5:57aÞ

y ¼ 2 7 1½ �
x3

x2

x1

2
4

3
5 ð5:57bÞ

Finally, rearranging Eqs. (5.57) in ascending numerical order yields the controller
canonical form3 as

_x1

_x2

_x3

2
4

3
5¼

�9 �26 �24
1 0 0
0 1 0

2
4

3
5 x1

x2

x3

2
4

3
5þ

1
0
0

2
4
3
5r ð5:58aÞ

y ¼ 1 7 2½ �
x1

x2

x3

2
4

3
5 ð5:58bÞ

Figure 5.27 shows the steps we have taken on a signal-flow graph. Notice that the
controller canonical form is obtained simply by renumbering the phase variables in
the opposite order. Equations (5.56) can be obtained from Figure 5.27(a), and Eqs.
(5.58) from Figure 5.27(b).

Notice that the phase-variable form and the controller canonical form contain
the coefficients of the characteristic polynomial in the bottom row and in the top row,

R(s) C(s)

1

X3(s) X2(s) X1(s)

1 2

1

7

–9

–26

–24

R(s) C(s)
X1(s) X2(s) X3(s)

1 2

1

7

–9

–26

–24

(a) (b)

s
1
s

1
s

1
s

1
s

1
s

FIGURE 5.27 Signal-flow graphs for obtaining forms for GðsÞ ¼ CðsÞ=RðsÞ ¼ ðs2 þ 7sþ 2Þ=
ðs3 þ 9s2 þ 26sþ 24Þ: a. phase-variable form; b. controller canonical form

TryIt 5.3

Use the following MATLAB
and Control System Toolbox
statements to convert the
transfer function of Eq. (5.55)
to the controller canonical
state-space representation of
Eqs. (5.58).

numg=[l 7 2];
deng=[1 9 26 24];
[Acc,Bcc,Ccc,Dcc]...
=tf2ss(numg,deng)

3 Students who are using MATLAB to convert from transfer functions to state space using the command
tf2ss will notice that MATLAB reports the results in controller canonical form.
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respectively. System matrices that contain the coefficients of the characteristic polyno-
mial are called companionmatrices to the characteristic polynomial. The phase-variable
and controller canonical forms result in a lower and an upper companion system matrix,
respectively. Companion matrices can also have the coefficients of the characteristic
polynomial in the left or right column. In the next subsection, we discuss one of these
representations.

Observer Canonical Form
The observer canonical form, so named for its use in the design of observers (covered in
Chapter12), isarepresentationthatyieldsa leftcompanionsystemmatrix.Asanexample,
the system modeled by Eq. (5.55) will be represented in this form. Begin by dividing all
terms in the numerator and denominator by the highest power of s, s3, and obtain

CðsÞ
RðsÞ ¼

1

s
þ 7

s2
þ 2

s3

1 þ 9

s
þ 26

s2
þ 24

s3

ð5:59Þ

Cross-multiplying yields

1

s
þ 7

s2
þ 2

s3

� �
RðsÞ ¼ 1 þ 9

s
þ 26

s2
þ 24

s3

� �
CðsÞ ð5:60Þ

Combining terms of like powers of integration gives

CðsÞ ¼ 1

s
½RðsÞ � 9CðsÞ� þ 1

s2
½7RðsÞ � 26CðsÞ� þ 1

s3
½2RðsÞ � 24CðsÞ� ð5:61Þ

or

CðsÞ ¼ 1

s
½RðsÞ � 9CðsÞ� þ 1

s
½7RðsÞ � 26CðsÞ� þ 1

s
½2RðsÞ � 24CðsÞ�

� �� �
ð5:62Þ

Equation (5.61) or (5.62) can be used to draw the signal-flow graph. Start with three
integrations, as shown in Figure 5.28(a).

Using Eq. (5.61), the first term tells us that output C(s) is formed, in part, by
integrating ½RðsÞ � 9CðsÞ�. We thus form ½RðsÞ � 9CðsÞ� at the input to the integrator
closest to the output, C(s), as shown in Figure 5.28(b). The second term tells us that the

FIGURE 5.28 Signal-flow
graph for observer canonical
form variables: a. planning;
b. implementation
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X3(s) X2(s) X1(s)
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(a)
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R(s)
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term ½7RðsÞ � 26CðsÞ�must be integrated twice. Now form ½7RðsÞ � 26CðsÞ� at the input
to the second integrator. Finally, the last term of Eq. (5.61) says ½2RðsÞ � 24CðsÞ�must be
integrated three times. Form ½2RðsÞ � 24CðsÞ� at the input to the first integrator.

Identifying the state variables as the outputs of the integrators, we write the
following state equations:

_x1 ¼ �9x1 þ x2 þ r ð5:63aÞ
_x2 ¼ �26x1 þ x3 þ 7r ð5:63bÞ
_x3 ¼ �24x1 þ 2r ð5:63cÞ

The output equation from Figure 5.28(b) is
y ¼ cðtÞ ¼ x1 ð5:64Þ

In vector-matrix form, Eqs. (5.63) and (5.64) become

_x ¼
�9 1 0

�26 0 1
�24 0 0

2
4

3
5xþ

1
7
2

2
4
3
5r ð5:65aÞ

y ¼ ½ 1 0 0 �x ð5:65bÞ
Notice that the form of Eqs. (5.65) is similar to the phase-variable form, except that the
coefficients of the denominator of the transfer function are in the first column, and the
coefficients of the numerator form the input matrix, B. Also notice that the observer
canonical form has anAmatrix that is the transpose of the controller canonical form, aB
vector that is the transpose of the controller canonical form’s C vector, and a C vector
that is the transpose of the controller canonical form’s B vector. We therefore say that
these two forms are duals. Thus, if a system is described by A, B, and C, its dual is
described byAD ¼ AT ; BD ¼ CT ; CD ¼ BT. You can verify the significance of duality
by comparing the signal-flow graphs of a system and its dual, Figures 5.27(b) and 5.28(b),
respectively. The signal-flow graph of the dual can be obtained from that of the original
by reversing all arrows, changing state variables to their derivatives and vice versa, and
interchanging C(s) and R(s), thus reversing the roles of the input and the output.

We conclude this section with an example that demonstrates the application of
the previously discussed forms to a feedback control system.

Example 5.8

State-Space Representation of Feedback Systems

PROBLEM: Represent the feedback control system shown in Fig-
ure 5.29 in state space. Model the forward transfer function in
cascade form.

SOLUTION: First we model the forward transfer function in cascade
form. The gain of 100, the pole at �2, and the pole at �3 are shown
cascaded in Figure 5.30(a). The zero at �5 was obtained using the
method for implementing zeros for a system represented in phase-variable form, as
discussed in Section 3.5.

Next add the feedback and input paths, as shown in Figure 5.30(b). Now, by
inspection, write the state equations:

_x1 ¼ �3x1 þ x2 ð5:66aÞ
_x2 ¼ �2x2 þ 100ðr � cÞ ð5:66bÞ

R(s) + 

– 

E(s) C(s) 

(s + 2)(s + 3) 

100(s + 5) 
 

FIGURE 5.29 Feedback control system for
Example 5.8

TryIt 5.4

Use the following MATLAB
and Control System Toolbox
statements to convert the
transfer function of Eq. (5.55)
to the observer canonical state-
space representation of Eqs.
(5.65).

numg=[l 7 2];
deng=[1 9 26 24];
[Acc,Bcc,Ccc,Dcc]...
=tf2ss(numg,deng);
Aoc=transpose(Acc)
Boc=transpose(Ccc)
Coc=transpose(Bcc)
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But, from Figure 5.30(b),

c ¼ 5x1 þ ðx2 � 3x1 Þ ¼ 2x1 þ x2 ð5:67Þ
Substituting Eq. (5.67) into (5.66b), we find the state equations for the system:

_x1 ¼ �3x1 þ x2 ð5:68aÞ
_x2 ¼ �200x1 � 102x2 þ 100r ð5:68bÞ

The output equation is the same as Eq. (5.67), or

y ¼ cðtÞ ¼ 2x1 þ x2 ð5:69Þ
In vector-matrix form

_x ¼ �3 1
�200 �102

� �
xþ 0

100

� �
r ð5:70aÞ

y ¼ ½ 2 1 �x ð5:70bÞ

Skill-Assessment Exercise 5.6

PROBLEM: Represent the feedback control system shown in Figure 5.29 in state
space. Model the forward transfer function in controller canonical form.

ANSWER:

_x ¼ �105 �506
1 0

� �
xþ 1

0

� �
r

y ¼ ½ 100 500 �x
The complete solution is at www.wiley.com/college/nise.

FIGURE 5.30 Creating a
signal-flow graph for the
Figure 5.29 system: a. forward
transfer function; b. complete
system

R(s)
100 1

1

5
C(s)

–1
(b)

1
s

1
s

–2 –3

1

X1(s)X2(s)E(s)

E(s)
100

–2

1

–3

5

1

1
s

(  )(a)

1
s

C(s)
X2(s) X1(s)

264 Chapter 5 Reduction of Multiple Subsystems

www.wiley.com/college/nise


Apago PDF Enhancer

E1C05 11/03/2010 12:18:0 Page 265

In this section, we used transfer functions and signal-flow graphs to represent
systems in parallel, cascade, controller canonical, and observer canonical forms, in
addition to the phase-variable form. Using the transfer function CðsÞ=RðsÞ ¼
ðsþ 3Þ=½ðsþ 4Þðsþ 6Þ� as an example, Figure 5.31 compares the aforementioned
forms. Notice the duality of the controller and observer canonical forms, as
demonstrated by their respective signal-flow graphs and state equations. In the
next section, we will explore the possibility of transforming between representations
without using transfer functions and signal-flow graphs.

R(s) C(s)
X2(s)

1
s

X1(s)

1

–10

–24

Phase
variable

Form Transfer function Signal-flow diagram State equations

3
1
s1

(s2 + 10s + 24)
(s + 3)
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(s + 4) s + 6

1

–6

2

X2(s)

X1(s)

C(s)R(s)

1

1

–4

1
s

1
s

1
2

–

2
3

C(s)
X1(s)X2(s)
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1 3

1

1
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1 +
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1
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FIGURE 5.31 State-space forms for CðsÞ=RðsÞ ¼ ðsþ 3Þ=½ðsþ 4Þðsþ 6Þ�. Note: y ¼ cðtÞ
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5.8 Similarity Transformations

In Section 5.7, we saw that systems can be represented with different state variables
even though the transfer function relating the output to the input remains the same.
The various forms of the state equations were found by manipulating the transfer
function, drawing a signal-flow graph, and then writing the state equations from the
signal-flow graph. These systems are called similar systems. Although their state-
space representations are different, similar systems have the same transfer function
and hence the same poles and eigenvalues.

We can make transformations between similar systems from one set of
state equations to another without using the transfer function and signal-flow
graphs. The results are presented in this section along with examples. Students
who have not broached this subject in the past or who wish to refresh their
memories are encouraged to study Appendix L at www.wiley.com/college/nise
for the derivation. The result of the derivation states: A system represented in
state space as

x ¼ Axþ Bu ð5:71aÞ

y ¼ CxþDu ð5:71bÞ

can be transformed to a similar system,

z ¼ P�1APzþ P�1Bu ð5:72aÞ

y ¼ CPzþDu ð5:72bÞ

where, for 2-space,

P ¼ Uz1Uz2½ � ¼ p11 p12

p21 p22

� �
ð5:72cÞ

x ¼ p11 p12

p21 p22

� �
z1

z2

� �
¼ Pz ð5:72dÞ

and

z ¼ P�1x ð5:72eÞ

Thus, P is a transformation matrix whose columns are the coordinates of the basis
vectors of the z1z2 space expressed as linear combinations of the x1x2 space. Let us
look at an example.
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Example 5.9

Similarity Transformations on State Equations

PROBLEM: Given the system represented in state space by Eqs. (5.73),

_x ¼
0 1 0
0 0 1

�2 �5 �7

2
4

3
5xþ

0
0
1

2
4
3
5u ð5:73aÞ

y ¼ ½ 1 0 0 �x ð5:73bÞ
transform the system to a new set of state variables, z, where the new state variables
are related to the original state variables, x, as follows:

z1 ¼ 2x1 ð5:74aÞ
z2 ¼ 3x1 þ 2x2 ð5:74bÞ
z3 ¼ x1 þ 4x2 þ 5x3 ð5:74cÞ

SOLUTION: Expressing Eqs. (5.74) in vector-matrix form,

z ¼
2 0 0
3 2 0
1 4 5

2
4

3
5x ¼ P�1x ð5:75Þ

Using Eqs. (5.72) as a guide,

P�1AP ¼
2 0 0
3 2 0
1 4 5

2
4

3
5 0 1 0

0 0 1
�2 �5 �7

2
4

3
5 0:5 0 0

�0:75 0:5 0
0:5 �0:4 0:2

2
4

3
5

¼
�1:5 1 0
�1:25 0:7 0:4
�2:5 0:4 �6:2

2
4

3
5

ð5:76Þ

P�1B ¼
2 0 0
3 2 0
1 4 5

2
4

3
5 0

0
1

2
4
3
5 ¼

0
0
5

2
4
3
5 ð5:77Þ

CP ¼ 1 0 0½ �
0:5 0 0

�0:75 0:5 0
0:5 �0:4 0:2

2
4

3
5 ¼ 0:5 0 0½ � ð5:78Þ

Therefore, the transformed system is

_z ¼
�1:5 1 0
�1:25 0:7 0:4
�2:55 0:4 �6:2

2
4

3
5 zþ

0
0
5

2
4
3
5u ð5:79aÞ

y ¼ ½ 0:5 0 0 �z ð5:79bÞ
Students who are using MATLAB should now run ch5p4 in Appendix B.
You will learn how to perform similarity transformations. This
exercise uses MATLAB to do Example 5.9.
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Thus far we have talked about transforming systems between basis vectors in a
different state space. One major advantage of finding these similar systems is
apparent in the transformation to a system that has a diagonal matrix.

Diagonalizing a System Matrix
In Section 5.7, we saw that the parallel form of a signal-flow graph can yield a
diagonal system matrix. A diagonal system matrix has the advantage that each state
equation is a function of only one state variable. Hence, each differential equation
can be solved independently of the other equations. We say that the equations are
decoupled.

Rather than using partial fraction expansion and signal-flow graphs, we can
decouple a system using matrix transformations. If we find the correct matrix, P, the
transformed system matrix, P�1AP, will be a diagonal matrix. Thus, we are looking
for a transformation to another state space that yields a diagonal matrix in that space.
This new state space also has basis vectors that lie along its state variables. We give a
special name to any vectors that are collinear with the basis vectors of the new
system that yields a diagonal system matrix: they are called eigenvectors. Thus, the
coordinates of the eigenvectors form the columns of the transformation matrix, P, as
we demonstrate in Eq. L.7 in Appendix L at www.wiley.com/college/nise.

First, let us formally define eigenvectors from another perspective and then
show that they have the property just described. Then we will define eigenvalues.
Finally, we will show how to diagonalize a matrix.

Definitions
Eigenvector. The eigenvectors of the matrix A are all vectors, xi 6¼ 0, which under the
transformation A become multiples of themselves; that is,

Axi ¼ lixi ð5:80Þ

where li’s are constants.
Figure 5.32 shows this definition of eigenvectors. If Ax is not collinear with x

after the transformation, as in Figure 5.32(a), x is not an eigenvector. If Ax is
collinear with x after the transformation, as in Figure 5.32(b), x is an eigenvector.

Eigenvalue. The eigenvalues of the matrix A are the values of li that satisfy
Eq. (5.80) for xi 6¼ 0.

To find the eigenvectors, we rearrange Eq. (5.80). Eigenvectors, xi, satisfy

0 ¼ ðliI�AÞxi ð5:81Þ

(b)

Ax
x

x2

x1

x2
Ax

x

(a)

x1

FIGURE 5.32 To be an eigenvector, the transformation Ax must be collinear with x; thus, in
(a), x is not an eigenvector; in (b), it is
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Solving for xi by premultiplying both sides by ðliI�AÞ�1 yields

xi ¼ ðliI�AÞ�10 ¼ adjðliI�AÞ
detðliI�AÞ 0 ð5:82Þ

Since xi 6¼ 0, a nonzero solution exists if

detðliI�AÞ ¼ 0 ð5:83Þ

from which li, the eigenvalues, can be found.
We are now ready to show how to find the eigenvectors, xi. First we find the

eigenvalues, li, using detðliI�AÞ ¼ 0, and then we use Eq. (5.80) to find the
eigenvectors.

Example 5.10

Finding Eigenvectors

PROBLEM: Find the eigenvectors of the matrix

A ¼ �3 1
1 �3

� �
ð5:84Þ

SOLUTION: The eigenvectors, xi, satisfy Eq. (5.81). First, use detðliI�AÞ ¼ 0
to find the eigenvalues, li, for Eq. (5.81):

detðlI�AÞ ¼ l 0
0 l

� �
� �3 1

1 �3

� �����
����

¼ lþ 3 �1
�1 lþ 3

����
����

¼ l2 þ 6lþ 8

ð5:85Þ

from which the eigenvalues are l ¼ �2, and �4.
Using Eq. (5.80) successively with each eigenvalue, we have

Axi ¼ lxi

�3 1
1 �3

� �
x1

x2

� �
¼ �2

x1

x2

� � ð5:86Þ

or

�3x1 þ x2 ¼ �2x1 ð5:87aÞ
x1 � 3x2 ¼ �2x2 ð5:87bÞ

from which x1 ¼ x2. Thus,

x ¼ c
c

� �
ð5:88Þ

Using the other eigenvalue, �4, we have

x ¼ c
�c

� �
ð5:89Þ

Using Eqs. (5.88) and (5.89), one choice of eigenvectors is

x1 ¼ 1
1

� �
and x2 ¼ 1

�1

� �
ð5:90Þ
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We now show that if the eigenvectors of the matrix A are chosen as the basis
vectors of a transformation, P, the resulting system matrix will be diagonal. Let the
transformation matrix P consist of the eigenvectors of A, xi.

P ¼ ½x1; x2; x3; . . . ; xn� ð5:91Þ
Since xi are eigenvectors, Axi ¼ lixi, which can be written equivalently as a set of
equations expressed by

AP ¼ PD ð5:92Þ
where D is a diagonal matrix consisting of li’s, the eigenvalues, along the diagonal,
and P is as defined in Eq. (5.91). Solving Eq. (5.92) for D by premultiplying by P�1,
we get

D ¼ P�1AP ð5:93Þ
which is the system matrix of Eq. (5.72).

In summary, under the transformation P, consisting of the eigenvectors of the
system matrix, the transformed system is diagonal, with the eigenvalues of the
system along the diagonal. The transformed system is identical to that obtained using
partial-fraction expansion of the transfer function with distinct real roots.

In Example 5.10, we found eigenvectors of a second-order system. Let us
continue with this problem and diagonalize the system matrix.

Example 5.11

Diagonalizing a System in State Space

PROBLEM: Given the system of Eqs. (5.94), find the diagonal system that is
similar.

_x ¼ �3 1
1 �3

� �
xþ 1

2

� �
u ð5:94aÞ

y ¼ ½ 2 3 �x ð5:94bÞ

SOLUTION: First find the eigenvalues and the eigenvectors. This step was per-
formed in Example 5.10. Next form the transformation matrix P, whose columns
consist of the eigenvectors.

P ¼ 1 1
1 �1

� �
ð5:95Þ

Finally, form the similar system’s system matrix, input matrix, and output
matrix, respectively.

P�1AP ¼ 1=2 1=2
1=2 �1=2

� � �3 1
1 �3

� �
1 1
1 �1

� �
¼ �2 0

0 �4

� �
ð5:96aÞ

P�1B ¼ 1=2 1=2
1=2 �1=2

� �
1
2

� �
¼ 3=2

�1=2

� �
ð5:96bÞ

CP ¼ 2 3½ � 1 1
1 �1

� �
¼ 5 �1½ � ð5:96cÞ

270 Chapter 5 Reduction of Multiple Subsystems



Apago PDF Enhancer

E1C05 11/03/2010 12:18:3 Page 271

Substituting Eqs. (5.96) into Eqs. (5.72), we get

_z ¼ �2 0
0 �4

� �
zþ 3=2

�1=2

� �
u ð5:97aÞ

y ¼ ½ 5 �1 �z ð5:97bÞ
Notice that the system matrix is diagonal, with the eigenvalues along the diagonal.

Students who are using MATLAB should now run ch5p5 in Appendix B.
This problem, which uses MATLAB to diagonalize a system, is simi-
lar (but not identical) to Example 5.11.

Skill-Assessment Exercise 5.7

PROBLEM: For the system represented in state space as follows:

_x ¼ 1 3
�4 �6

� �
xþ 1

3

� �
u

y ¼ 1 4½ �x
convert the system to one where the new state vector, z, is

z ¼ 3 �2
1 �4

� �
x

ANSWER:

_z ¼ 6:5 �8:5

9:5 �11:5

" #
zþ �3

�11

" #
u

y ¼ 0:8 �1:4½ �z
The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 5.8

PROBLEM: For the original system of Skill-Assessment Exercise 5.7, find the
diagonal system that is similar.

ANSWER:

_z ¼ �2 0

0 �3

" #
zþ 18:39

20

" #
u

y ¼ �2:121 2:6½ �z
The complete solution is at www.wiley.com/college/nise.

TryIt 5.5

Use the following MATLAB
and Control System Toolbox
statements to do Skill-
Assessment Exercise 5.8.

A=[l 3;-4 -6];
B=[1;3];
C=[l 4];
D=0;S=ss(A,B,C,D);
Sd=canon(S, ’modal’)
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In this section, we learned how to move between different state-space repre-
sentations of the same system via matrix transformations rather than transfer
function manipulation and signal-flow graphs. These different representations are
called similar. The characteristics of similar systems are that the transfer functions
relating the output to the input are the same, as are the eigenvalues and poles. A
particularly useful transformation was converting a system with distinct, real
eigenvalues to a diagonal system matrix.

We now summarize the concepts of block diagram and signal-flow represen-
tations of systems, first through case study problems and then in a written summary.
Our case studies include the antenna azimuth position control system and the
Unmanned Free-Swimming Submersible vehicle (UFSS). Block diagram reduction
is important for the analysis and design of these systems as well as the control
systems on board Alvin (Figure 5.33), used to explore the wreckage of the Titanic
13,000 feet under the Atlantic in July 1986 (Ballard, 1987).

Case Studies

Antenna Control: Designing a Closed-Loop Response

This chapter has shown that physical subsystems can be modeled mathematically
with transfer functions and then interconnected to form a feedback system. The
interconnected mathematical models can be reduced to a single transfer function
representing the system from input to output. This transfer function, the closed-
loop transfer function, is then used to determine the system response.

The following case study shows how to reduce the subsystems of the antenna
azimuth position control system to a single, closed-loop transfer function in order
to analyze and design the transient response characteristics.

FIGURE 5.33 Alvin, a manned submersible, explored the wreckage of the Titanic with a
tethered robot, Jason Junior.
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PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, do the following:

a. Find the closed-loop transfer function using block diagram reduction.

b. Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

c. Use the signal-flow graph found in b along with Mason’s rule to find the closed-
loop transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-loop peak time, percent overshoot, and settling time for K ¼ 1000.

e. For the system of d, derive the expression for the closed-loop step response of
the system.

f. For the simplified model of d, find the value of K that yields a 10% overshoot.

SOLUTION: Each subsystem’s transfer function was evaluated in the case study in
Chapter 2. We first assemble them into the closed-loop, feedback control system
block diagram shown in Figure 5.34(a).

a. The steps taken to reduce the block diagram to a single, closed-loop transfer
function relating the output angular displacement to the input angular displace-
ment are shown in Figure 5.34(a–d). In Figure 5.34(b), the input potentiometer
was pushed to the right past the summing junction, creating a unity feedback

(d)

6.63 K
s3 + 101.71s2 + 171s + 6.63 K

θo(s)θi (s)

–

+

(c)

6.63 K
s(s + 1.71)(s + 100)

θo(s)θi (s)

(b)

–

+ K

Preamplifier
and potentiometers

Power
amplifier

Motor, load,
and gears

π
100

s + 100
0.2083

s(s + 1.71)

θo(s)Ea(s)Vp(s)θi (s)

θo(s)1
π

–

+

Input
potentiometer

K

Preamplifier

100
s + 100

Power
amplifier

0.2083

Motor, load,
and gears

1
π

Output
potentiometer

(a)

s(s + 1.71)

Ea(s)Vp(s)θi (s)

FIGURE 5.34 Block diagram
reduction for the antenna
azimuth position control
system: a. original; b. pushing
input potentiometer to the right
past the summing junction;
c. showing equivalent forward
transfer function; d. final
closed-loop transfer function
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system. In Figure 5.34(c), all the blocks of the forward transfer function are
multiplied together, forming the equivalent forward transfer function. Finally,
the feedback formula is applied, yielding the closed-loop transfer function in
Figure 5.34(d).

b. In order to obtain the signal-flow graph of each subsystem, we use the state
equations derived in the case study of Chapter 3. The signal-flow graph for the
power amplifier is drawn from the state equations of Eqs. (3.87) and (3.88), and the
signal-flow graph of the motor and load is drawn from the state equation of
Eq. (3.98). Other subsystems are pure gains. The signal-flow graph for Figure 5.34(a)
is shown in Figure 5.35 and consists of the interconnected subsystems.

The state equations are written from Figure 5.35. First define the state variables as
the outputs of the integrators. Hence, the state vector is

x ¼
x1

x2

ea

2
4

3
5 ð5:98Þ

Using Figure 5.35, we write the state equations by inspection:

_x1 ¼ þx2 ð5:99aÞ
_x2 ¼ �1:71x2 þ 2:083ea ð5:99bÞ
_ea ¼ �3:18Kx1 � 100ea þ 31:8Kui ð5:99cÞ

along with the output equation,

y ¼ uo ¼ 0:1x1 ð5:100Þ
where 1=p ¼ 0:318.

In vector-matrix form,

_x ¼
0 1 0
0 �1:71 2:083

�3:18K 0 �100

2
4

3
5x þ

0
0

31:8K

2
4

3
5ui ð5:101aÞ

y ¼ ½ 0:1 0 0 �x ð5:101bÞ
c. We now apply Mason’s rule to Figure 5.35 to derive the closed-loop transfer

function of the antenna azimuth position control system. First find the forward-
path gains. From Figure 5.35 there is only one forward-path gain:

T1 ¼ 1

p

� �
ðKÞð100Þ 1

s

� �
ð2:083Þ 1

s

� �
1

s

� �
ð0:1Þ ¼ 6:63K

s3
ð5:102Þ

θi
π
1

K

Vp(s)

100 s
1

s
1

s
1

0.1

–100 –1.71

1

X1(s)
θo

2.083

–

 (s)  (s)
Ea(s) X2(s)

π

FIGURE 5.35 Signal-flow graph for the antenna azimuth position control system
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Next identify the closed-loop gains. There are three: the power amplifier loop,
GL1(s), with ea at the output; the motor loop, GL2(s), with x2 at the output; and
the entire system loop, GL3(s), with u0 at the output.

GL1ðsÞ ¼ �100

s
ð5:103aÞ

GL2ðsÞ ¼ �1:71

s
ð5:103bÞ

GL3ðsÞ ¼ ðKÞð100Þ 1

s

� �
ð2:083Þ 1

s

� �
1

s

� �
ð0:1Þ �1

p

� �
¼ �6:63K

s3
ð5:103cÞ

OnlyGL1(s) andGL2(s) are nontouching loops. Thus, the nontouching-loop gain is

GL1ðsÞGL2ðsÞ ¼ 171

s2
ð5:104Þ

Forming D and Dk in Eq. (5.28), we have

D ¼ 1 � ½GL1ðsÞ þGL2ðsÞ þGL3ðsÞ� þ ½GL1ðsÞGL2ðsÞ�

¼ 1 þ 100

s
þ 1:71

s
þ 6:63K

s3
þ 171

s2
ð5:105Þ

and

D1 ¼ 1 ð5:106Þ
Substituting Eqs. (5.102), (5.105), and (5.106) into Eq. (5.28), we obtain the
closed-loop transfer function as

TðsÞ ¼ CðsÞ
RðsÞ ¼

T1D1

D
¼ 6:63K

s3 þ 101:71s2 þ 171sþ 6:63K
ð5:107Þ

d. Replacing the power amplifier with unity gain and letting the preamplifier gain,
K, in Figure 5.34(b) equal 1,000 yield a forward transfer function, G(s), of

GðsÞ ¼ 66:3

sðsþ 1:71Þ ð5:108Þ

Using the feedback formula to evaluate the closed-loop transfer function, we
obtain

TðsÞ ¼ 66:3

s2 þ 1:71sþ 66:3
ð5:109Þ

From the denominator, vn ¼ 8:14; z ¼ 0:105. Using Eqs. (4.34), (4.38), and
(4.42), the peak time ¼ 0:388 second, the percent overshoot ¼ 71:77%, and the
settling time ¼ 4:68 seconds.

e. The Laplace transform of the step response is found by first multiplying‘
Eq. (5.109) by 1/s, a unit-step input, and expanding into partial fractions:

CðsÞ ¼ 66:3

sðs2 þ 1:71sþ 66:3Þ ¼
1

s
� sþ 1:71

s2 þ 1:71sþ 66:3

¼ 1

s
� ðsþ 0:855Þ þ 0:106ð8:097Þ

ðsþ 0:855Þ2 þ ð8:097Þ2
ð5:110Þ
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Taking the inverse Laplace transform, we find

cðtÞ ¼ 1 � e�0:855rðcos 8:097t þ 0:106 sin 8:097tÞ ð5:111Þ
f. For the simplified model we have

GðsÞ ¼ 0:0663K

sðsþ 1:71Þ ð5:112Þ

from which the closed-loop transfer function is calculated to be

TðsÞ ¼ 0:0663K

s2 þ 1:71sþ 0:0663K
ð5:113Þ

From Eq. (4.39) a 10% overshoot yields z ¼ 0:591. Using the denominator of
Eq. (5.113), vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0663K

p
and 2zvn ¼ 1:71. Thus,

z ¼ 1:71

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0663K

p ¼ 0:591 ð5:114Þ

from which K ¼ 31:6.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system shown on the
front endpapers, Configuration 2, do the following:

a. Find the closed-loop transfer function using block diagram reduction.

b. Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

c. Use the signal-flow graph found in (b) along with Mason’s rule to find the
closed-loop transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-loop percent overshoot, settling time, and peak time for K ¼ 5.

e. For the system used for (d), derive the expression for the closed-loop step response.

f. For the simplified model in (d), find the value of preamplifier gain, K, to yield
15% overshoot.

UFSS Vehicle: Pitch-Angle Control Representation

We return to the Unmanned Free-Swimming Submersible (UFSS) vehicle intro-
duced in the case studies in Chapter 4 (Johnson, 1980). We will represent in state
space the pitch-angle control system that is used for depth control.

PROBLEM: Consider the block diagram of the pitch control loop of the UFSS
vehicle shown on the back endpapers. The pitch angle, u, is controlled by a
commanded pitch angle, ue, which along with pitch-angle and pitch-rate feedback
determines the elevator deflection, de, which acts through the vehicle dynamics to
determine the pitch angle. Let K1 ¼ K2 ¼ 1 and do the following:

a. Draw the signal-flow graph for each subsystem, making sure that pitch angle,
pitch rate, and elevator deflection are represented as state variables. Then
interconnect the subsystems.

b. Use the signal-flow graph obtained in a to represent the pitch control loop in
state space.
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SOLUTION:

a. The vehicle dynamics are split into two transfer functions, from which the signal-
flow graph is drawn. Figure 5.36 shows the division along with the elevator
actuator. Each block is drawn in phase-variable form to meet the requirement
that particular system variables be state variables. This result is shown in
Figure 5.37(a). The feedback paths are then added to complete the signal-
flow graph, which is shown in Figure 5.37(b).

b. By inspection, the derivatives of state variables x1 through x4 are written as

_x1 ¼ x2 ð5:115aÞ
_x2 ¼ �0:0169x1 � 0:226x2 þ 0:435x3 � 1:23x3 � 0:125x4 ð5:115bÞ
_x3 ¼ �1:23x3 � 0:125x4 ð5:115cÞ
_x4 ¼ 2x1 þ 2x2 � 2x4 � 2uc ð5:115dÞ

Finally, the output y ¼ x1.

δec 2
s + 2

δe

Elevator
actuator

1 θ

Vehicle dynamics

(s + 1.23)

–0.125(s + 0.435)

s2 + 0.226s + 0.0169

(s)(s)  (s)

FIGURE 5.36 Block diagram of the UFSS vehicle’s elevator and vehicle dynamics, from
which a signal-flow graph can be drawn

–1
θc

2
1
s

1
s 1

1
s

1
s

–2 –1.23 –0.226

–0.0169

–1 2
1
s

1
s 1

1
s

1
s

1

1

1

(a)

(b)

X1(s)

–2 –1.23 –0.226

–0.0169

X1(s)θc

δec

0.435

0.435

–0.125

–0.125

1

(s)
(s) X2(s)X3(s)X4(s)

X4(s) X3(s) X2(s)
(s)

δec
(s)

FIGURE 5.37 Signal-flow
graph representation of the
UFSS vehicle’s pitch control
system: a. without position
and rate feedback; b. with
position and rate feedback.
(Note: Explicitly required
variables are x1 ¼ u; x2 ¼
du=dt, and x4 ¼ de.)
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In vector-matrix form the state and output equations are

_x ¼
0 1 0 0

�0:0169 �0:226 �0:795 �0:125
0 0 �1:23 �0:125
2 2 0 �2

2
664

3
775xþ

0
0
0

�2

2
664

3
775uc ð5:116aÞ

y ¼ ½ 1 0 0 0 �x ð5:116bÞ

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. The UFSS vehicle steers via the heading control system shown in
Figure 5.38 and repeated on the back endpapers. A heading command is the input.
The input and feedback from the submersible’s heading and yaw rate are used to
generate a rudder command that steers the submersible (Johnson, 1980). Let K1 ¼
K2 ¼ 1 and do the following:

a. Draw the signal-flow graph for each subsystem, making sure that heading angle,
yaw rate, and rudder deflection are represented as state variables. Then
interconnect the subsystems.

b. Use the signal-flow graph obtained in a to represent the heading control loop in
state space.

c. Use MATLAB to represent the closed-loop UFSS heading control
system in state space in controller canonical form.

Summary

One objective of this chapter has been for you to learn how to represent multiple
subsystems via block diagrams or signal-flow graphs. Another objective has been to
be able to reduce either the block diagram representation or the signal-flow graph
representation to a single transfer function.

We saw that the block diagram of a linear, time-invariant system consisted of
four elements: signals, systems, summing junctions, and pickoff points. These

Heading
gain

Heading
command

Commanded
rudder

deflection
Rudder
actuator

Vehicle
dynamics

Yaw 
rate

sensor

Heading

Heading
(yaw)
rate

–K1
–

–K2s

2
s + 2

+

–

+ –0.125(s + 0.437)
(s + 1.29)(s + 0.193)

yc(s) drc
(s) dr(s) y(s) y(s)

Rudder
deflection

1
s

FIGURE 5.38 Block diagram of the heading control system for the UFSS vehicle
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elements were assembled into three basic forms: cascade, parallel, and feedback.
Some basic operations were then derived: moving systems across summing junctions
and across pickoff points.

Once we recognized the basic forms and operations, we could reduce a
complicated block diagram to a single transfer function relating input to output.
Then we applied the methods of Chapter 4 for analyzing and designing a second-
order system for transient behavior. We saw that adjusting the gain of a feedback
control system gave us partial control of the transient response.

The signal-flow representation of linear, time-invariant systems consists of two
elements: nodes, which represent signals, and lines with arrows, which represent
subsystems. Summing junctions and pickoff points are implicit in signal-flow graphs.
These graphs are helpful in visualizing the meaning of the state variables. Also, they
can be drawn first as an aid to obtaining the state equations for a system.

Mason’s rule was used to derive the system’s transfer function from the signal-
flow graph. This formula replaced block diagram reduction techniques. Mason’s rule
seems complicated, but its use is simplified if there are no nontouching loops. In
many of these cases, the transfer function can be written by inspection, with less
labor than in the block diagram reduction technique.

Finally, we saw that systems in state space can be represented using different
sets of variables. In the last three chapters, we have covered phase-variable, cascade,
parallel, controller canonical, and observer canonical forms. A particular represen-
tation may be chosen because one set of state variables has a different physical
meaning than another set, or because of the ease with which particular state
equations can be solved.

In the next chapter, we discuss system stability. Without stability we cannot begin
to design a system for the desired transient response. We will find out how to tell whether
a system is stable and what effect parameter values have on a system’s stability.

Review Questions

1. Name the four components of a block diagram for a linear, time-invariant
system.

2. Name three basic forms for interconnecting subsystems.

3. For each of the forms in Question 2, state (respectively) how the equivalent
transfer function is found.

4. Besides knowing the basic forms as discussed in Questions 2 and 3, what other
equivalents must you know in order to perform block diagram reduction?

5. For a simple, second-order feedback control system of the type shown in
Figure 5.14, describe the effect that variations of forward-path gain, K, have
on the transient response.

6. For a simple, second-order feedback control system of the type shown in
Figure 5.14, describe the changes in damping ratio as the gain, K, is
increased over the underdamped region.

7. Name the two components of a signal-flow graph.

8. How are summing junctions shown on a signal-flow graph?

9. If a forward path touched all closed loops, what would be the value of Dk?

10. Name five representations of systems in state space.
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11. Which two forms of the state-space representation are found using the same
method?

12. Which form of the state-space representation leads to a diagonal matrix?

13. When the system matrix is diagonal, what quantities lie along the diagonal?

14. What terms lie along the diagonal for a system represented in Jordan canonical
form?

15. What is the advantage of having a system represented in a form that has a
diagonal system matrix?

16. Give two reasons for wanting to represent a system by alternative forms.

17. For what kind of system would you use the observer canonical form?

18. Describe state-vector transformations from the perspective of different bases.

19. What is the definition of an eigenvector?

20. Based upon your definition of an eigenvector, what is an eigenvalue?

21. What is the significance of using eigenvectors as basis vectors for a system
transformation?

Problems

1. Reduce the block diagram shown in Figure P5.1 to a
single transfer function, TðsÞ ¼ CðsÞ=RðsÞ Use the
following methods:

a. Block diagram reduction [Section: 5.2]

b. MATLAB

s

+

–

R(s) +

2

C(s)
s

s2
1

s + 1
50+

2

– –

FIGURE P5.1

2. Find the closed-loop transfer function, TðsÞ ¼
CðsÞ=RðsÞ for the system shown in Figure P5.2, using
block diagram reduction. [Section: 5.2]

H1

R(s) + +

+

–
G1 G2 G3 C(s)

FIGURE P5.2

3. Find the equivalent transfer function,
TðsÞ ¼ CðsÞ=RðsÞ, for the system shown
in Figure P5.3. [Section: 5.2]
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G1(s)

G4(s)

+
–

–

R(s) +

+

+
–

+
G2(s)

G3(s)

G5(s) G6(s)
C(s)

G7(s)

+
+

FIGURE P5.3

4. Reduce the system shown in Figure P5.4 to a
single transfer function, TðsÞ ¼ CðsÞ=RðsÞ. [Sec-
tion: 5.2]

+

–

R(s) + +
+

–
G2(s)G1(s)

G3(s)

G4(s)

H(s)

C(s)

FIGURE P5.4

5. Find the transfer function, TðsÞ ¼ CðsÞ=RðsÞ, for the
system shown in Figure P5.5. Use the following
methods:

a. Block diagram reduction [Section: 5.2]

b. MATLAB. Use the following
transfer functions:
G1ðsÞ ¼ 1=ðsþ 7Þ, G2ðsÞ ¼ 1=ðs2 þ 2sþ 3Þ,
G3ðsÞ ¼ 1=ðsþ 4Þ, G4ðsÞ ¼ 1=s,
G5ðsÞ ¼ 5=ðsþ 7Þ, G6ðsÞ ¼ 1=ðs2 þ 5sþ 10Þ,
G7ðsÞ ¼ 3=ðsþ 2Þ, G8ðsÞ ¼ 1=ðsþ 6Þ.
Hint: Use the append and connect
commands in MATLAB’s Control System
Toolbox.

+

–

R(s)
+

G1(s)
+

+
+

+

+

+
–

G2(s)

G3(s)

G4(s)

G5(s)

G8(s)

G6(s)

G7(s)
C(s)

FIGURE P5.5

6. Reduce the block diagram shown in Figure P5.6 to a
single block, TðsÞ ¼ CðsÞ=RðsÞ. [Section: 5.2]

+

–

R(s)

C(s)

G1(s) G5(s)

G3(s)

–
G6(s)

G2(s) G4(s) G7(s)

+

+

+

+

G8(s)

FIGURE P5.6

7. Find the unity feedback system that is equivalent to
the system shown in Figure P5.7. [Section: 5.2].

R(s) +
–

–

s

2s

+

+

s

+

+ 1
–

–

+
s+1

C(s)

4

FIGURE P5.7

8. Given the block diagram of a system shown in
Figure P5.8, find the transfer function GðsÞ ¼
u22ðsÞ=u11ðsÞ. [Section: 5.2]
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9. Reduce the block diagram shown in Figure P5.9
to a single transfer function, TðsÞ ¼ CðsÞ=RðsÞ.
[Section: 5.2]

R(s) +
–

G2(s) G5(s) G6(s)

G3(s)

G1(s)

–

+

G4(s)

+

G7(s)

+

+

–
C(s)

FIGURE P5.9

10. Reduce the block diagram shown in
Figure P5.10 to a single block repre-
senting the transfer function, TðsÞ ¼
CðsÞ=RðsÞ. [Section: 5.2]

+

–

– –
R(s) +

– –

G2(s) G3(s)G1(s)

H1(s)

H3(s)

H2(s)

H4(s)

C(s)

FIGURE P5.10

11. For the system shown in Figure P5.11, find the
percent overshoot, settling time, and peak time
for a step input if the system’s response is under-
damped. (Is it? Why?) [Section: 5.3]

R(s) + E(s)

–

225
s(s + 15)

C(s)

FIGURE P5.11

12. For the system shown in Figure P5.12, find
the output, c(t), if the input, r(t), is a unit step.
[Section: 5.3]

R(s) + E(s)

–

5
s(s + 2)

C(s)

FIGURE P5.12

13. For the system shown in Figure P5.13, find the poles
of the closed-loop transfer function, TðsÞ ¼ CðsÞ=
RðsÞ. [Section: 5.3]

R(s)

5

C(s)+

–

–
+

–

2ss
+

1

2

FIGURE P5.13

θ +
–

G1(s) G2(s)

–

G3(s)11

+

G7(s)

θ +12

+

+
G4(s) G5(s) G6(s)

θ 22(s)

θ 21(s)(s)

(s)

FIGURE P5.8
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14. For the system of Figure P5.14, find the value of
K that yields 10% overshoot for a step input.
[Section: 5.3]

R(s) C(s)+

–
s(s+30)

K

FIGURE P5.14

15. For the system shown in Figure P5.15, find K and a
to yield a settling time of 0.15 second and a 30%
overshoot. [Section: 5.3]

R(s) + E(s)

–

K
s(s +    )

C(s)
α

FIGURE P5.15

16. For the system of Figure P5.16, find the values of K1

and K2 to yield a peak time of 1.5 second and a
settling time of 3.2 seconds for the closed-loop
system’s step response. [Section: 5.3]

+ +

––

R(s) C(s)10
s(s+2)

K2s

K1

FIGURE P5.16

17. Find the following for the system shown
in Figure P5.17: [Section: 5.3]

a. The equivalent single block that
represents the transfer function,
TðsÞ ¼ CðsÞ=RðsÞ.

b. The damping ratio, natural frequency, percent
overshoot, settling time, peak time, rise time, and
damped frequency of oscillation.

R(s) +
–

+
s+12

1 C(s)

–
+

10

10 0.2s

s
20

FIGURE P5.17

18. For the system shown in Figure P5.18, find z, vn,
percent overshoot, peak time, rise time, and settling
time. [Section: 5.3]

R(s) 38343
s(s + 200)

E(s) C(s)

–

+

FIGURE P5.18

19. A motor and generator are set up to drive a load as
shown in Figure P5.19. If the generator output
voltage is egðtÞ ¼ Kf if ðtÞ, where if(t) is the genera-
tor’s field current, find the transfer function
GðsÞ ¼ uoðsÞ=EiðsÞ. For the generator, Kf ¼ 2 V.
For the motor, Kt ¼ 1 N-m/A, and Kb ¼ 1 V-s/rad.

1 Ω

if(t)

ei(t) 1 H

Generator

Ja = 0.75 kg-m2eg(t) 10

20 4 kg-m2

4 N-m-s/rad

θ o(t)

1 Ω 1 Ω
Motor

+

–

+

–

FIGURE P5.19

20. Find GðsÞ ¼ E0ðsÞ=TðsÞ for the system
shown in Figure P5.20.

J

Buffer
amplifier
gain = 1

e1(t)
N2

N1

T(t)

10 V

1 Turn pot

+

e0(t)R

C

FIGURE P5.20

21. Find the transfer function GðsÞ ¼ EoðsÞ=TðsÞ for the
system shown in Figure P5.21.
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+
Buffer

amplifier
gain = 1

J1 = 0.25 kg-m2

J2 = 50 kg-m2

K = 5 N-m/rad

D=2 N-m-s/rad

5

20

50

10

50 V

–50 V

10  Turn pot

10    Fμ

eo(t)200KΩ

T(t)

FIGURE P5.21

22. Label signals and draw a signal-flow graph for each
of the block diagrams shown in the following prob-
lems: [Section: 5.4]

a. Problem 1

b. Problem 3

c. Problem 5

23. Draw a signal-flow graph for each of the
following state equations: [Section: 5.6]

a. _x ¼
0 1 0

0 0 1

�2 �4 �6

2
64

3
75xþ

0

0

1

2
64
3
75r

y ¼ 1 1 0½ �x

b. _x ¼
0 1 0

0 �3 1

�3 �4 �5

2
64

3
75xþ

0

1

1

2
64
3
75r

y ¼ 1 2 0½ �x

c. _x ¼
7 1 0

�3 2 �1

�1 0 2

2
64

3
75xþ

1

2

1

2
64
3
75r

y ¼ 1 3 2½ �x

24. Given the system below, draw a signal-flow
graph and represent the system in state space
in the following forms: [Section: 5.7]

a. Phase-variable form
b. Cascade form

GðsÞ ¼ 10

ðsþ 7Þðsþ 8Þðsþ 9Þ

25. Repeat Problem 24 for

GðsÞ ¼ 20

sðs� 2Þðsþ 5Þðsþ 8Þ
[Section: 5.7]

26. Using Mason’s rule, find the transfer function,
TðsÞ ¼ CðsÞ=RðsÞ, for the system represented in
Figure P5.22. [Section: 5.5]

G1(s)
R(s)

G2(s) G3(s) G4(s)
C(s)

–1
–1

–1

–1

FIGURE P5.22

27. Using Mason’s rule, find the transfer function,
TðsÞ ¼ CðsÞ=RðsÞ, for the system represented by
Figure P5.23. [Section: 5.5]

G1(s)
R(s)

G2(s) G4(s) G6(s) G7(s)1
C(s)

H2(s)H1(s)G5(s)G3(s)

H3(s)

FIGURE P5.23

28. Use Mason’s rule to find the transfer function of
Figure 5.13 in the text. [Section: 5.5]

29. Use block diagram reduction to find the transfer
function of Figure 5.21 in the text, and compare
your answer with that obtained by Mason’s rule.
[Section: 5.5]

30. Represent the following systems in state
space in Jordan canonical form. Draw the
signal-flow graphs. [Section: 5.7]

a. GðsÞ ¼ ðsþ 1Þðsþ 2Þ
ðsþ 3Þ2ðsþ 4Þ

b. GðsÞ ¼ ðsþ 2Þ
ðsþ 5Þ2ðsþ 7Þ2

c. GðsÞ ¼ ðsþ 3Þ
ðsþ 2Þ2ðsþ 4Þðsþ 5Þ

31. Represent the systems below in state space
in phase-variable form. Draw the signal-flow
graphs. [Section: 5.7]

a. GðsÞ ¼ sþ 3

s2 þ 2sþ 7

284 Chapter 5 Reduction of Multiple Subsystems



Apago PDF Enhancer

E1C05 11/03/2010 12:18:13 Page 285

b. GðsÞ ¼ s2 þ 2sþ 6

s3 þ 5s2 þ 2sþ 1

c. GðsÞ ¼ s3 þ 2s2 þ 7sþ 1

s4 þ 3s3 þ 5s2 þ 6sþ 4

32. Repeat Problem 31 and represent each
system in controller canonical and ob-
server canonical forms. [Section: 5.7]

33. Represent the feedback control systems
shown in Figure P5.24 in state space.
When possible, represent the open-loop transfer func-
tions separately in cascade and complete the feedback
loop with the signal path from output to input. Draw
your signal-flow graph to be in one-to-one correspon-
dence to the block diagrams (as close as possible).
[Section: 5.7]

R(s) + E(s)

–

16(s + 2) C(s)

(d)

(s + 1)2

R(s) + E(s)

–

1
s(s + 1)

C(s)

(c)

160
+

–

s

R(s) +

–

10
s(s2 + 6s + 24)

C(s)

(b)

R(s) + E(s)

–

50
(s + 9)(s + 8)(s + 2)

C(s)

(a)

FIGURE P5.24

34. You are given the system shown in
Figure P5.25. [Section: 5.7]

a. Represent the system in state space in phase-
variable form.

b. Represent the system in state space in any other
form besides phase-variable.

R(s) + E(s)

–

10
s(s + 1)(s + 2)

C(s)

FIGURE P5.25

35. Repeat Problem 34 for the system shown in
Figure P5.26. [Section: 5.7]

+

–

R(s) C(s)10(s + 2)(s + 3)
(s + 1)(s + 4)(s + 5)(s + 6)

FIGURE P5.26

36. Use MATLAB to solve Problem 35.

37. Represent the system shown in Figure P5.27
in state space wherex1ðtÞ; x3ðtÞ; and x4ðtÞ, as
shown, are among the state variables, c(t) is the output,
and x2ðtÞ is internal to X1ðsÞ=X3ðsÞ. [Section: 5.7]

R(s) + E(s)

–

C(s)X4(s) X3(s) X1(s)1
s

1
s

1
s2+1

s –1

FIGURE P5.27

38. Consider the rotational mechanical
system shown in Figure P5.28.

a. Represent the system as a signal-flow graph.

b. Represent the system in state space if the output
is u2ðtÞ.

1 kg-m2

θ1(t) θ2(t)
2 N-m-s/rad 3 N-m-s/rad

2 N-m/rad 4 N-m/rad

T(t)

1 N-m/rad

2 N-m-s/rad

1 kg-m2

FIGURE P5.28

39. Given a unity feedback system with
the forward-path transfer func-
tion

GðsÞ ¼ 7

sðsþ 9Þðsþ 12Þ
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use MATLAB to represent the closed loop
system in state space in

a. phase-variable form;

b. parallel form.

40. Consider the cascaded subsystems shown
in Figure P5.29. If G1(s) is represented in
state space as

_x1 ¼ A1x1 þ B1r
y1 ¼ C1x1

and G2(s) is represented in state space as

_x2 ¼ A2x2 þ B2y1
y2 ¼ C2x2

show that the entire system can be represented in state
space as

_x1	 	 	 	
_x2

" #
¼
2
4 A1 ..

.. 0
	 	 	 	 	 	 	 	 	 	 	
B2C1 ..

.. A2

3
5 x1	 	 	 	

x2

" #
þ

B1	 	 	 	
0

" #
r

y2 ¼ 0 ..
.. C2

h i x1
	 	 	 	
x2

2
4

3
5

G1(s) G2(s)
Y2(s)Y1(s)R(s)

FIGURE P5.29

41. Consider the parallel subsystems shown in
Figure P5.30. IfG1(s) is represented in state
space as

_x1 ¼ A1x1 þ B1r
y1 ¼ C1x1

and G2(s) is represented in state space as

_x2 ¼ A2x2 þ B2r
y2 ¼ C2x2

show that the entire system can be represented in state
space as

_x1
	 	 	 	
_x2

2
4

3
5 ¼

A1 ..
.. 0

	 	 	 	 	 	 	 	 	 	 	
0 ..

.. A2

2
64

3
75

x1
	 	 	 	
x2

2
4

3
5þ

B1

	 	 	 	
B2

2
4

3
5r

y ¼ C1 ..
.. C2

h i x1
	 	 	 	
x2

2
4

3
5

G2(s)

G1(s)

Y(s)

+

+

Y1(s)

Y2(s)

R(s)

FIGURE P5.30

42. Consider the subsystems shown in Figure
P5.31 and connected to form a feedback
system. IfG(s) is represented in state space as

_x1 ¼ A1x1 þ B1e
y ¼ C1x1

and H2(s) is represented in state space as

_x2 ¼ A2x2 þ B2y
r ¼ C2x2

show that the closed-loop system can be represented
in state space as

_x1
	 	 	 	
_x2

2
4

3
5 ¼

A1 ..
.. �B1C2

	 	 	 	 	 	 		 	 	 	 	 	 	 	
B2C1 ..

.. A2

2
64

3
75

x1
	 	 	 	
x2

2
4

3
5þ

B1

	 	 	 	
0

2
4

3
5r

y ¼ ½ C1 ..
.. 0 �

x1
	 	 	 	
x2

2
4

3
5

G(s)
E(s)+R(s)

–

H(s)
P(s)

Y(s)

FIGURE P5.31

43. Given the system represented in state
space as follows: [Section: 5.8]

_x ¼
�1 �7 6
�8 4 8

4 7 �8

2
4

3
5xþ

�5
�7

5

2
4

3
5r

y ¼ �9 �9 �8½ �x
convert the system to one where the new state
vector, z, is

z ¼
�4 9 �3

0 �4 7
�1 �4 �9

2
4

3
5x
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44. Repeat Problem 43 for the following
system: [Section: 5.8]

_x ¼
�5 1 1

9 �9 �9
�9 �1 8

2
4

3
5xþ

9
�4

0

2
4

3
5r

y ¼ �2 �4 1½ �x
and the following state-vector transformation:

z ¼
5 �4 9
6 �7 6
6 �5 �3

2
4

3
5x

45. Diagonalize the following system:
[Section: 5.8]

_x ¼
�5 �5 4

2 0 �2
0 �2 �1

2
4

3
5xþ

�1
2

�2

2
4

3
5r

y ¼ �1 1 2½ �x
46. Repeat Problem 45 for the following

system: [Section: 5.8]

_x ¼
�10 �3 7

18:25 6:25 �11:75
�7:25 �2:25 5:75

2
4

3
5xþ

1
3
2

2
4
3
5r

y ¼ 1 �2 4½ �x
47. DiagonalizethesysteminProblem46

using MATLAB.

48. During ascent the space shuttle is steered by com-
mands generated by the computer’s guidance calcula-
tions. These commands are in the form of vehicle
attitude, attitude rates, and attitude accelerations ob-
tained through measurements made by the vehicle’s
inertial measuring unit, rate gyro assembly, and accel-
erometer assembly, respectively. The ascent digital
autopilot uses the errors between the actual and com-
manded attitude, rates, and accelerations to gimbal the
space shuttle main engines (called thrust vectoring)
and the solid rocket boosters to effect the desired
vehicle attitude. The space shuttle’s attitude control
system employs the same method in the pitch, roll, and
yaw control systems. A simplified model of the pitch
control system is shown in Figure P5.32.4

a. Find the closed-loop transfer function relating
actual pitch to commanded pitch. Assume all
other inputs are zero.

b. Find the closed-loop transfer function relating
actual pitch rate to commanded pitch rate.
Assume all other inputs are zero.

c. Find the closed-loop transfer function relating
actual pitch acceleration to commanded pitch
acceleration. Assume all other inputs are zero.

K1
+

–

Pitch
error

Commanded
pitch

Commanded
pitch
rate

Pitch
rate
error

G2(s)
+

–
K2

+
+

–

+

Commanded
pitch

acceleration

Pitch
acceleration

error

G1(s)

Controller
Shuttle

dynamics

s

Accelerometer

s2

Rate gyro

Inertial measuring unit

Pitch

1

FIGURE P5.32 Space shuttle pitch control system
(simplified)

49. An AM radio modulator generates the
product of a carrier waveform and a
message waveform, as shown in Figure
P5.33 (Kurland, 1971). Represent the system in state
space if the carrier is a sinusoid of frequencyv ¼ a, and
the message is a sinusoid of frequencyv ¼ b. Note that
this system is nonlinear because of the multiplier.

Carrier
waveform

Message
waveform

Antenna

Multiplier

FIGURE P5.33 AM modulator

50. A model for human eye movement consists of the
closed-loop system shown in Figure P5.34, where an

4 Source of background information for this problem: Rockwell
International.
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object’s position is the input and the eye position is
the output. The brain sends signals to the muscles
that move the eye. These signals consist of the
difference between the object’s position and the
position and rate information from the eye sent
by the muscle spindles. The eye motion is modeled
as an inertia and viscous damping and assumes no
elasticity (spring) (Milhorn, 1966). Assuming that
the delays in the brain and nervous system are
negligible, find the closed-loop transfer function
for the eye position control.

51. A HelpMate transport robot, shown in
Figure P5.35(a), is used to deliver goods
in a hospital setting. The robot can de-
liver food, drugs, laboratory materials, and patients’
records (Evans, 1992). Given the simplified block
diagram of the robot’s bearing angle control system,
as shown in Figure P5.35(b), do the following:

FIGURE P5.35 a. HelpMate robot used for in-hospital
deliveries; b. simplified block diagram for bearing
angle control

a. Find the closed-loop transfer function.

b. Represent the system in state space,
where the input is the desired bearing
angle, the output is the actual bearing angle, and
the actual wheel position and actual bearing
angle are among the state variables.

c. Simulate the closed-loop
system using MATLAB. Obtain
the unit step response for different
values of K that yield responses from
overdamped to underdamped to unstable.

52. Automatically controlled load testers can be used to
test product reliability under real-life conditions.
The tester consists of a load frame and specimen
as shown in Figure P5.36(a). The desired load is

(a)

K 5
s(s + 2) s(s + 3)

1

Desired
bearing
angle Desired

wheel
position

Computer
Motor and
controller Actual

wheel
position

Vehicle

Actual
bearing
angle

(b)

c(s)ψ (s)ψ+

–

+

–

Grip

Crosshead

Load
cell

Specimen

Current
amplifier

C
ol

um
ns

Actuator

V
al

ve

Grip

C
ol

um
ns

ei

et
ec

iv

Amp

(a)

Desired load
Fc(s)

Controller
Current

amplifier
Load, frame, specimen,

load cell Actual load

15 ×106

s3 + 82s2 + 4 × 106s + 2 × 107
0.06

s+720
F(s)

1666.67
+

–

Ec(s)

(b)

Ei(s)

1

FIGURE P5.36 a. Load tester, (# 1992 IEEE) b. approximate
block diagram
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+
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Delay
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FIGURE P5.34 Feedback control system representing human
eye movement
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input via a voltage, ei(t), to a current amplifier. The
output load is measured via a voltage, ei(t), from a
load cell measuring the load on the specimen.
Figure P5.36(b) shows an approximate model
of a load testing system without compensation
(Bailey, 1992).

a. Model the system in state space.

b. Simulate the step response
using MATLAB. Is the re-
sponse predominantly first
or second order? Describe the charac-
teristics of the response that need
correction.

53. Consider the F4-E aircraft of Problem 22,
Chapter 3. If the open-loop transfer func-
tion relating normal acceleration, An(s),
to the input deflection command, dcðsÞ, is approxi-
mated as

AnðsÞ
dcðsÞ ¼ �272ðs2 þ 1:9sþ 84Þ

ðsþ 14Þðs� 1:8Þðsþ 4:9Þ

(Cavallo, 1992), find the state-space representation in

a. Phase-variable form

b. Controller canonical form

c. Observer canonical form

d. Cascade form

e. Parallel form

54. Find the closed-loop transfer function of the
Unmanned Free-Swimming Submersible vehicle’s
pitch control system shown on the back endpapers
(Johnson, 1980).

55. Repeat Problem 54 using MATLAB.

56. Use Simulink to plot the effects
of nonlinearities upon the
closed-loop step response of
the antenna azimuth position control
system shown on the front endpapers, Con-
figuration 1. In particular, consider
individually each of the following
nonlinearities: saturation ð�5 voltsÞ,
backlash (dead-band width 0.15), dead-
zone (�2 to þ2), as well as the linear
response. Assume the preamplifier gain
is 100 and the step input is 2 radians.

57. Problem 12 in Chapter 1 describes a high-speed pro-
portional solenoid valve. A subsystem of the valve is
the solenoid coil shown in Figure P5.37. Current
through the coil, L, generates a magnetic field that
produces a force to operate the valve. Figure P5.37can
be represented as a block diagram (Vaughan, 1996)

+

R

L

vg(t)
i(t)

vL(t)

vR(t)

+
–

–

+

–

FIGURE P5.37 Solenoid coil circuit

a. Derive a block diagram of a feedback system that
represents the coil circuit, where the applied
voltage, vg(t), is the input, the coil voltage,
vL(t), is the error voltage, and the current, i(t),
is the output.

b. For the block diagram found in Part a, find the
Laplace transform of the output current, I(s).

c. Solve the circuit of Figure P5.37 for I(s), and
compare to your result in Part b.

58. Ktesibios’ water clock (see Section 1.2) is probably
the first man-made system in which feedback was
used in a deliberate manner. Its operations are shown
in Figure P5.38(a). The clock indicates time progres-
sively on scale D as water falls from orifice A toward
vessel B. Clock accuracy depends mainly on water
height hf in the water reservoir G, which must be
maintained at a constant level hr by means of the
conical float F that moves up or down to control the
water inflow. Figure P5.38(b) shows a block diagram
describing the system (Lepschy, 1992).

Let qi(t) and qo(t) represent the input and output
water flow, respectively, and hm the height of water
in vessel B. Use Mason’s rule to find the following
transfer functions, assuming a and b are constants:

a.
HmðsÞ
HrðsÞ

b.
Hf ðsÞ
HrðsÞ

c.
QiðsÞ
HrðsÞ

d.
QoðsÞ
HrðsÞ
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e. Using the above transfer functions, show that if
hrðtÞ ¼ constant, then qoðtÞ ¼ constant and hm(t)
increases at a constant speed.

qi

qo

qi
qo

B

C

+ +

–

–

∫ ∫

(a)

(b)

H

G

E A D

F

hm

hf

hr hf hm
α β

FIGURE P5.38 a. Ktesibios’ water clock; b. water clock block
diagram (# 1992 IEEE)

59. Some robotic applications can benefit from actuators
in which load position as well as exerted force are
controlled. Figure P5.39 shows the block diagram of
such an actuator, where u1 and u2 are voltage inputs
to two coils, each of which controls a pneumatic
piston, and y represents the load displacement.

The system’s output is u, the differential pressure
acting on the load. The system also has a disturbance
input fext, which represents external forces that are not
system generated, but are acting on the load. A is a
constant (Ben-Dov, 1995). Use any method to obtain:

a. An expression for the system’s output in terms of
the inputs u1 and u2 (Assume f ext ¼ 0.)

b. An expression for the effect of fext on the output
u (Assume u1 and u2 ¼ 0.)

c. What condition on the inputs u1 and u2 will result
in u ¼ 0?

u1

u2

fext

Gc(s) Gp(s)

AGv(s)

+

Gc(s) Gp(s)
+

+

+

+

–

–

+

AGv(s)

A Gl(s)
y = u

Δ Pc1 

Δ Pc2 

FIGURE P5.39 Actuator block diagram (# 1995 IEEE)

60. Figure P5.40 shows a noninverting operational
amplifier.

vo

v1

v1
vi

vi

Ri Rf

(a)                                                          (b) 

–

+ voA

if

i

RR

R

+

FIGURE P5.40 a. Noninverting amplifier; b. block diagram

Assuming the operational amplifier is ideal,

a. Verify that the system can be described by the
following two equations:

vo ¼ Aðvi � voÞ
v1 ¼ Ri

Ri þ Rf
vo

b. Check that these equations can be described by
the block diagram of Figure P5.40(b)

c. Use Mason’s rule to obtain the closed-loop sys-

tem transfer function
VoðsÞ
ViðsÞ

d. Show that when A ! 1;
VoðsÞ
ViðsÞ ¼ 1 þ Rf

Ri

61. Figure P5.41 shows the diagram of an inverting
operational amplifier.
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vo

v1

+
–vi

Ri Rf

+
–

FIGURE P5.41 Inverting operational amplifier

a. Assuming an ideal operational amplifier, use a
similar procedure to the one outlined in Problem
60 to find the system equations.

b. Draw a corresponding block diagram and obtain

the transfer function
VoðsÞ
ViðsÞ :

c. Show that when A ! 1;
VoðsÞ
ViðsÞ ¼ �Rf

Ri
.

62. Figure P5.42(a) shows an n-channel enhancement-
mode MOSFET source follower circuit. Figure
P5.42(b) shows its small-signal equivalent (where
Ri ¼ R1kR2) (Neamen, 2001).

a. Verify that the equations governing this circuit
are

vin
vi

¼ Ri

Ri þ Rs
; vgs ¼ vin � vo; vo ¼ gmðRskroÞvgs

b. Draw a block diagram showing the relations
between the equations.

c. Use the block diagram in Part b to find
VoðsÞ
ViðsÞ .

vo

Rs

VDD

R2

R1

+–vi

Rs

(a) (b)

+ vo
–vgs

vin

gmVgs roRsRi

Rs

+
–vi

FIGUREP5.42 a.Ann-channel enhancement-mode MOSFET
source follower circuit; b. small-signal equivalent

63. A car active suspension system adds an active hydrau-
lic actuator in parallel with the passive damper and
spring to create a dynamic impedance that responds to
road variations. The block diagram of Figure P5.43
depicts such an actuator with closed-loop control.

Kt

e

r + +
–

+

1 1

s2 + 

x1 = x3 x3

Mus

mr

ζ 1

0
2

s + 

ω

ε
ε

FIGURE P5.43 (# 1997 IEEE)

In the figure, Kt is the spring constant of the tire,
MUS is the wheel mass, r is the road disturbance, x1 is
the vertical car displacement, x3 is the wheel vertical
displacement, v2

0 ¼ Kt
MUS

is the natural frequency of
the unsprung system and e is a filtering parameter to
be judiciously chosen (Lin, 1997). Find the two
transfer functions of interest:

a.
X3ðsÞ
RðsÞ

b.
X1ðsÞ
RðsÞ

64. The basic unit of skeletal and cardiac muscle cells is
a sarcomere, which is what gives such cells a striated
(parallel line) appearance. For example, one bicep
cell has about 105 sarcomeres. In turn, sarcomeres
are composed of protein complexes. Feedback
mechanisms play an important role in sarcomeres
and thus muscle contraction. Namely, Fenn’s law
says that the energy liberated during muscle con-
traction depends on the initial conditions and the
load encountered. The following linearized model
describing sarcomere contraction has been devel-
oped for cardiac muscle:

_A
_T
_U
_SL

2
6664

3
7775¼

�100:2 �20:7 �30:7 200:3

40 �20:22 49:95 526:1

0 10:22 �59:95 �526:1

0 0 0 0

2
6664

3
7775

A

T

U

SL

2
6664

3
7775þ

208

�208

�108:8

�1

2
6664

3
7775uðtÞ

y¼ 0 1570 1570 59400½ �

A

T

U

SL

2
6664

3
7775� 6240uðtÞ

where

A ¼ density of regulatory units with bound calcium
and adjacent weak cross bridges ðmMÞ

T ¼ density of regulatory units with bound calcium
and adjacent strong cross bridges ðMÞ

U ¼ density of regulatory units without bound
calcium and adjacent strong cross bridges ðMÞ

SL ¼ sarcomere length ðmÞ
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The system’s input is uðtÞ ¼ the shortening muscle velocity
in meters/second and the output is yðtÞ ¼ muscle force
output in Newtons (Yaniv, 2006).

Do the following:

a. Use MATLAB to obtain the

transfer function
YðsÞ
UðsÞ.

b. Use MATLAB to obtain a partial-

fraction expansion for
YðsÞ
UðsÞ.

c. Draw a signal-flow diagram of the
system in parallel form.

d. Use the diagram of Part c to express the
system in state-variable form with
decoupled equations.

65. An electric ventricular assist device (EVAD) has
been designed to help patients with diminished but
still functional heart pumping action to work in
parallel with the natural heart. The device consists
of a brushless dc electric motor that actuates on a
pusher plate. The plate movements help the ejec-
tion of blood in systole and sac filling in diastole.
System dynamics during systolic mode have been
found to be:

_x
_v
_Pao

2
4

3
5 ¼

0 1 0
0 �68:3 �7:2
0 3:2 �0:7

2
4

3
5 x

v
Pao

2
4

3
5þ

0
425:4

0

2
4

3
5em

The state variables in this model are x, the pusher
plate position, v, the pusher plate velocity, and Pao,
the aortic blood pressure. The input to the system is
em, the motor voltage (Tasch, 1990).

a. Use MATLAB to find a similarity
transformation to diagonalize
the system.

b. Use MATLAB and the obtained
similarity transformation
of Part a to obtain a diagonalized
expression for the system.

66. In an experiment to measure and identify postural
arm reflexes, subjects hold with their hands a linear
hydraulic manipulator. A load cell is attached to the
actuator handle to measure resulting forces. At the
application of a force, subjects try to maintain a
fixed posture. Figure P5.44 shows a block diagram
for the combined arm-environment system.

Environment
Xh(s)

He(s)

Hh(s)

Hi(s)

Hr(s)

Xa(s) Fint(s)

Hact(s)
A(s)

Fref(s)

Fh(s)

D(s)

Arm

+

+

+

–

–

–

FIGURE P5.44

In the diagram, Hr(s) represents the reflexive length
and velocity feedback dynamics; Hact(s) the activa-
tion dynamics, Hi(s) the intrinsic act dynamics;
Hh(s) the hand dynamics; He(s) the environmental
dynamics; Xa(s) the position of the arm; Xh(s) the
measured position of the hand; Fh(s) the measured
interaction force applied by the hand; Fint(s) the
intrinsic force; Fref(s) the reflexive force; A(s) the
reflexive activation; and D(s) the external force
perturbation (de Vlugt, 2002).

a. Obtain a signal-flow diagram from the block
diagram.

b. Find
FhðsÞ
DðsÞ .

67. Use LabVIEW’s Control Design and
Simulation Module to obtain the
controller and the observer ca-
nonical forms for:

GðsÞ ¼ s2 þ 7sþ 2

s3 þ 9s2 þ 26sþ 24

68. A virtual reality simulator with haptic (sense of
touch) feedback was developed to simulate the
control of a submarine driven through a joystick
input. Operator haptic feedback is provided
through joystick position constraints and simula-
tor movement (Karkoub, 2010). Figure P5.45
shows the block diagram of the haptic feedback
system in which the input uh is the force exerted by
the muscle of the human arm; and the outputs are
ys, the position of the simulator, and yj, the posi-
tion of the joystick.
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Ths

Tes

Tej

Thj

Kej

--

-
+ +

+

-

Fj

1/s 1/s Khs Cs

ys

Kh

Fh yjuh
Cj

Kes

Fs

FIGURE P5.45 Copyright # 2010 Cambridge University
Press. Reprinted with permission.

a. Find the transfer function
YsðsÞ
UhðsÞ :

b. Find the transfer function
YjðsÞ
UhðsÞ :

69. Some medical procedures require the insertion of a
needle under a patient’s skin using CT scan monitoring
guidance for precision. CT scans emit radiation, posing
some cumulative risks for medical personnel. To avoid
thisproblem,aremotecontrolrobothasbeendeveloped
(Piccin, 2009). The robot controls the needle in position
and angle in the constraint space of a CT scan machine
and also provides the physician with force feedback
commensurate with the insertion opposition encoun-
teredbythetypeoftissueinwhichtheneedleis inserted.
The robot has other features that give the operator the

similar sensations and maneuverability as if the needle
was inserted directly. Figure P5.46 shows the block
diagram of the force insertion mechanism, where Fh
is the input force and Xh is the output displacement.
Summing junction inputs are positive unless indicated
with a negative sign. By way of explanation,Z¼ imped-
ance; G¼ transfer function; Ci¼ communication
channel transfer functions; F¼ force; X¼ position.
Subscripts h and m refer to the master manipulator.
Subscripts s and e refer to the slave manipulator.

a. Assuming Zh ¼ 0; C1 ¼ Cs; C2 ¼ 1 þ C6 and
C4 ¼ �Cm use Mason’s Rule to show that the
transfer function from the operators force input
Fh to needle displacement Xh is given by

YðsÞ ¼ XhðsÞ
FhðsÞ ¼

Z �1
m C2ð1 þGsCsÞ

1 þGsCs þ Z �1
m ðcm þ C2ZeGsCsÞ

b. Now with Zh 6¼ 0 show that
XhðsÞ
FhðsÞ ¼ YðsÞ

1 þ YðsÞZh

70. A hybrid solar cell and diesel power distribution
system has been proposed and tested (Lee, 2007).
The system has been shown to have a very good
uninterruptible power supply as well as line voltage
regulation capabilities. Figure P5.47 shows a
signal-flow diagram of the system. The output,
VLoad, is the voltage across the load. The two inputs
are ICf, the reference current, and IDist, the distur-
bance representing current changes in the supply.

a. Refer to Figure P5.47 and find the transfer func-

tion
VLoadðsÞ
ICf ðsÞ :

b. Find the transfer function
VLoadðsÞ
IDistðsÞ :

71. Continuous casting in steel production is essentially
a solidification process by which molten steel is

Fe
Ze

Gs

Cs

Zm
-1

Zh

Xh

Fm

Fh

Vsc

C4 C2 C1

Cm

C6

Xe

Slave
manipulator

-

-
-

-

Master
manipulator

FIGURE P5.46

–1

–1

1 –IDist.

Lfs

–Rf

1

ˆ

ˆ

ˆ

1 1

Lfs + Rf

Cfs
VLoadICf

1
Cf s KP1+ sKP2

Ki1
1

FIGURE P5.47
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solidified into a steel slab after passing through a
mold, as shown in Figure P5.48(a). Final product
dimensions depend mainly on the casting speed Vp

(in m/min), and on the stopper position X(in %) that
controls the flow of molten material into the mold
(Kong,1993).Asimplifiedmodelofacastingsystemis
shown in Figure P5.48(b) (Kong, 1993) and (Graebe,
1995). In the model, Hm¼mold level (in mm); Ht¼
assumedconstantheightofmoltensteelinthetundish;
Dz¼moldthickness¼ depthofnozzleimmergedinto
molten steel; and Wt¼weight of molten steel in the
tundish.

For a specific setting let Am¼ 0.5 and

GxðsÞ ¼ 0:63

sþ 0:926

Also assume that the valve positioning loop may be
modeled by the following second-order transfer
function:

GVðsÞ ¼ XðsÞ
YCðsÞ ¼

100

s2 þ 10sþ 100

and the controller is modeled by the following
transfer function:

GCðsÞ ¼ 1:6ðs2 þ 1:25sþ 0:25Þ
s

The sensitivity of the mold level sensor is b¼ 0.5 and
the initial values of the system variables at t¼ 0� are:
Rð0�Þ ¼ 0;YCð0�Þ ¼ Xð0�Þ ¼ 41:2;DHmð0�Þ ¼ 0;
Hmð0�Þ ¼ �75;DVpð0�Þ ¼ 0; and Vpð0�Þ ¼ 0. Do
the following:

a. Assuming vpðtÞ is constant Dvp ¼ 0
� 	

, find the
closed-looptransferfunctionTðsÞ ¼ DHmðsÞ=RðsÞ.

b. ForrðtÞ ¼ 5uðtÞ;vpðtÞ ¼ 0:97uðtÞ;
andHmð0�Þ ¼�75mm,useSimulink
to simulate the system. Record the time
and mold level (in array format) by con-
nectingthemto Workspace sinks,eachof
whichshouldcarrytherespectivevaria-
blename.Afterthesimulationends,uti-
lize MATLAB plot commands to obtain and
edit the graph of hm(t) from t¼0 to 80
seconds.

72. A simplified second-order transfer function model
for bicycle dynamics is given by

wðsÞ
dðsÞ ¼

aV

bh

sþ V

a

� �

s2 � g

h


 �

The input is d(s), the steering angle, and the output is
w(s), the tilt angle (between the floor and the bicycle
longitudinal plane). In the model parameter a is the
horizontal distance from the center of the back wheel
to the bicycle center of mass; b is the horizontal
distance between the centers of both wheels; h is
the vertical distance from the center of mass to the
floor;V is the rear wheel velocity (assumed constant);
and g is the gravity constant. It is also assumed that
the rider remains at a fixed position with respect to
the bicycle so that the steer axis is vertical and that all
angle deviations are small (A



strom, 2005).

a. Obtain a state-space representation for the bicy-
cle model in phase-variable form.

b. Find system eigenvalues and eigenvectors.

c. Find an appropriate similarity transformation
matrix to diagonalize the system and obtain
the state-space system’s diagonal representation.

73. It is shown in Figure 5.6(c) that when negative
feedback is used, the overall transfer function for
the system of Figure 5.6(b) is

CðsÞ
RðsÞ ¼

GðsÞ
1 þGðsÞHðsÞ

LADLE

SLAB

TUNDISH

Ht

Dz Hm
Hm

11

12

M1

Vp

Vs

M2

X

HYDRAULIC
UNIT

ELECTRONIC
UNIT

NKK

MOLD

SEGMENT 1

SEGMENT 2 SEGMENT 3

REGULATOR
UNIT

SET-
POINTr

(a)

+ +

–

–

FIGURE P5.48 Steel mold process: a. process (# 1993 IEEE);
b. block diagram
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Develop the block diagram of an alternative feed-
back system that will result in the same closed-loop
transfer function, CðsÞ=RðsÞ, with G(s) unchanged
and unmoved. In addition, your new block diagram
must have unity gain in the feedback path. You can
add input transducers and/or controllers in the main
forward path as required.

DESIGN PROBLEMS
74. The motor and load shown in Figure P5.49(a) are

used as part of the unity feedback system shown in
Figure P5.49(b). Find the value of the coefficient of
viscous damping, DL, that must be used in order to
yield a closed-loop transient response having a
20% overshoot.

75. Assume that the motor whose transfer function is
shown in Figure P5.50(a) is used as the forward path
of a closed-loop, unity feedback system.

a. Calculate the percent overshoot and settling time
that could be expected.

b. You want to improve the response found in Part
a. Since the motor and the motor constants
cannot be changed, an amplifier and a tachome-
ter (voltage generator) are inserted into the loop,
as shown in Figure P5.50. Find the values of K1

and K2 to yield a 16% overshoot and a settling
time of 0.2 second.

R(s) + E(s)

–

25
K1

Amp Motor

s(s + 1)

C(s)+

–

K2s

Tachometer

(b)

R(s) + E(s)

–

25
1

s(s + 1)

C(s)

(a)

Motor

FIGURE P5.50 a. Position control; b. position control with
tachometer

76. The system shown in Figure P5.51 will have its
transient response altered by adding a tachometer.
Design K and K2 in the system to yield a damping
ratio of 0.69. The natural frequency of the system
before the addition of the tachometer is 10 rad/s.

R(s) + E(s)

–

1
s(s + 1)

C(s)
K

+

K2s

–

Tachometer

Power amplifier
and motor

Preamplifier

FIGURE P5.51 Position control

77. The mechanical system shown in Figure
P5.52(a) is used as part of the unity feed-
back system shown in Figure P5.52(b).
Find the values of M and D to yield 20% overshoot
and 2 seconds settling time.

R(s) + E(s)

–

1000
Motor

&
load

Gear
train

θM(s) θL(s)

(b)

Kt  = 2 N-m/A

Kb = 2 V-s/rad

Ja = 2 kg-m2

Da = 2 N-m-s/rad

Ra = 2 Ω

1

θM(s)

1

2

θL(s)

JL = 800 kg-m2

(a)

DL

10

FIGURE P5.49 Position control: a. motor and load; b. block
diagram

For the motor:
Ja = 1 kg-m2
Da = 1 N-m-s/rad
Ra = 1 Ω
Kb = 1 V-s/rad
Kt = 1 N-m/A

N2 = 20

N1 = 10

D

 J = 1 kg-m2
Ideal

gear 1:1

fv = 1 N-s/m

M

x(t)

ea(t) Motor

Radius = 2 m

+

–

(a)

FIGURE P5.52 a. Motor and load; (figure continues)
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78. Assume ideal operational amplifiers in the circuit of
Figure P5.53.

a. Show that the leftmost operational amplifier works
as a subtracting amplifier. Namely, v1 ¼ vo � vin.

b. Draw a block diagram of the system, with the
subtracting amplifier represented with a sum-
ming junction, and the circuit of the rightmost
operational amplifier with a transfer function in
the forward path. Keep R as a variable.

c. Obtain the system’s closed-loop transfer function.

d. For a unit step input, obtain the value of R that
will result in a settling time Ts ¼ 1 msec.

e. Using the value of R calculated in Part d, make a
sketch of the resulting unit step response.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
79. High-speed rail pantograph. Problem 21 in Chapter 1

discusses the active control of a pantograph mechanism
for high-speed rail systems. In this problem you found a
functional block diagram relating the output force
(actual) to the input force (desired output). In Problem
67, Chapter 2, you found the transfer function for the
pantograph dynamics, that is, the transfer function
relating the displacement of the spring that models
the head to the applied force, or GðsÞ ¼ ðYhðsÞ�
YcatðsÞÞ=FupðsÞ (O’Connor, 1997). We now create a
pantograph active-control loop by adding the following
components and following your functional block dia-
gram found in Problem 21, Chapter 1: input transducer
ðGiðsÞ ¼ 1=100Þ, controller ðGcðsÞ ¼ KÞ, actuator

ðGaðsÞ ¼ 1=1000Þ, pantograph spring ðKs ¼ 82:3�
103N/mÞ, and sensor ðHoðsÞ ¼ 1=100Þ.
a. Using the functional block diagram from your

solution of Problem 21 in Chapter 1, and the
pantograph dynamics, G(s), found in Problem 67,
Chapter 2, assemble a block diagram of the
active pantograph control system.

b. Find the closed-loop transfer function for the
block diagram found in Part a if K ¼ 1000.

c. Represent the pantograph dynamics
in phase-variable form and find a
state-space representation for the closed-loop
system if K ¼ 1000).

80. Control of HIV/AIDS. Given the HIV
system of Problem 82 in Chapter 4 and
repeated here for convenience (Craig, 2004):

_T
_T
�

_v

2
4

3
5 ¼

�0:04167 0 �0:0058
0:0217 �0:24 0:0058
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2
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5 T
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2
4

3
5

þ
5:2

�5:2
0

2
4

3
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y ¼ 0 0 1½ �
T
T�

v

2
4

3
5

Express the system in the following forms:

a. Phase-variable form

b. Controller canonical form

c. Observer canonical form

Finally,

d. Use MATLAB to obtain the system’s
diagonalized representation.

81. Hybrid vehicle. Figure P5.54 shows the block dia-
gram of a possible cascade control scheme for an
HEV driven by a dc motor (Preitl, 2007).

Let the speed controller GSCðsÞ ¼ 100 þ 40
s , the

torque controller and power amp KAGTCðsÞ ¼
10 þ 6

s, the current sensor sensitivity KCS¼ 0.5, the
speed sensor sensitivity KSS¼ 0.0433. Also following
the development in previous chapters 1

Ra
¼ 1; htotKt ¼

1:8;kb ¼ 2;D ¼ kf ¼ 0:1; 1
Jtot

¼ 1
7:226 ;

r
itot

¼ 0:0615;

and rCwAv0
r
itot

¼ 0:6154.

a. Substitute these values in the block diagram, and
find the transfer function, T(s)¼V(s)/Rv(s),
using block-diagram reduction rules. [Hint: Start

vo

vin v1

10 k

0.1 μF

R

10 k

10 k

–
+ –

+

10 k

FIGURE P5.53

FIGURE P5.52 (Continued) b. motor and load in feedback
system

R(s) X(s)E(s) Ea(s)+

–
500

Motor
&

load
Gear

(b)
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by moving the last r
itot

block to the right past the

pickoff point.]

b. Develop a Simulink model for
the original system in Figure
P5.54. Set the reference sig-
nal input, rv(t)¼4 u(t), as a
step input with a zero initial
value, a step time¼0 sec-
onds, and a final value of 4 volts. Use
X-Y graphs to display (over the period
from 0 to 8 seconds) the response of the

following variables to the step input:
(1) change in car speed (m/s), (2) car
acceleration (m/s2), and (3) motor ar-
mature current (A).

To record the time and the above three
variables (in array format), connect
them to four Workspace sinks, each of
which carry the respective variable
name. After the simulation ends, uti-
lize MATLAB plot commands to obtain and
edit the three graphs of interest.

FIGURE P5.54

R(s) + C(s)
G(s)

H(s)

–

FIGURE P5.55

Cyber Exploration Laboratory

Experiment 5.1

Objectives To verify the equivalency of the basic forms, including cascade,
parallel, and feedback forms. To verify the equivalency of the basic moves, including
moving blocks past summing junctions, and moving blocks past pickoff points.

Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. Find the equivalent transfer function of three cascaded blocks, G1ðsÞ ¼ 1

sþ 1
.

G2ðsÞ ¼ 1

sþ 4
, and G3ðsÞ ¼ sþ 3

sþ 5
.

2. Find the equivalent transfer function of three parallel blocks, G1ðsÞ ¼ 1

sþ 4
.

G2ðsÞ ¼ 1

sþ 4
, and G3ðsÞ ¼ sþ 3

sþ 5
.

3. Find the equivalent transfer function of the negative feedback system of

Figure P5.55 if GðsÞ ¼ sþ 1

sðsþ 2Þ, and HðsÞ ¼ sþ 3

sþ 4
.
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4. For the system of Prelab 3, push H(s) to the left past the summing junction and
draw the equivalent system.

5. For the system of Prelab 3, push H(s) to the right past the pickoff point and draw
the equivalent system.

Lab

1. Using Simulink, set up the cascade system of Prelab 1 and the equivalent single
block. Make separate plots of the step response of the cascaded system and its
equivalent single block. Record the values of settling time and rise time for each
step response.

2. Using Simulink, set up the parallel system of Prelab 2 and the equivalent single block.
Make separate plots of the step response of the parallel system and its equivalent
single block. Record the values of settling time and rise time for each step response.

3. Using Simulink, set up the negative feedback system of Prelab 3 and the
equivalent single block. Make separate plots of the step response of the negative
feedback system and its equivalent single block. Record the values of settling
time and rise time for each step response.

4. Using Simulink, set up the negative feedback systems of Prelabs 3, 4, and 5. Make
separate plots of the step response of each of the systems. Record the values of
settling time and rise time for each step response.

Postlab

1. Using your lab data, verify the equivalent transfer function of blocks in cascade.

2. Using your lab data, verify the equivalent transfer function of blocks in parallel.

3. Using your lab data, verify the equivalent transfer function of negative feedback
systems.

4. Using your lab data, verify the moving of blocks past summing junctions and
pickoff points.

5. Discuss your results. Were the equivalencies verified?

Experiment 5.2

Objective To use the various functions within LabVIEW’s Control Design and
Simulation Module to implement block diagram reduction.

Minimum Required Software Package LabVIEW with the Control Design
Simulation Module

Prelab Given the block diagram from Example 5.2, replace G1, G2, G3, H1, H2, H3

with the following transfer functions and obtain an equivalent transfer function.

G1 ¼ 1

sþ 10
;G2 ¼ 1

sþ 1
;G3 ¼ sþ 1

s2 þ 4sþ 4
;H1 ¼ sþ 1

sþ 2
;H2 ¼ 2;H3 ¼ 1

Lab Use LabVIEW to implement the block diagram from Example 5.2 using the
transfer functions given in the Prelab.

Postlab Verify your calculations from the Prelab with that of the equivalent
transfer function obtained with LabVIEW.
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Experiment 5.3

Objective To use the various functions within LabVIEW’s Control Design and
Simulation Module and the Mathematics/Polynomial palette to implement Mason’s
rule for block diagram reduction.

MinimumRequired Software Package LabVIEW with Control Design and
Simulation Module, Math Script RT Module, and the Mathematics/Polynomial
palette.

Prelab Given the block diagram created in the Prelab of Cyber Exploration
Laboratory 5.2, use Mason’s rule to obtain an equivalent transfer function.

Lab Use LabVIEW’s Control Design and Simulation Module as well as the
Mathematics/Polynomial functions to implement block diagram reduction using
Mason’s rule.

Postlab Verify your calculations from the Prelab with that of the equivalent
transfer function obtained with LabVIEW.
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Stability

6

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Make and interpret a basic Routh table to determine the stability of a system
(Sections 6.1–6.2)

� Make and interpret a Routh table where either the first element of a row is zero or an
entire row is zero (Sections 6.3–6.4)

� Use a Routh table to determine the stability of a system represented in state space
(Section 6.5)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the range of preamplifier gain to keep the system stable.

� Given the block diagrams for the UFSS vehicle’s pitch and heading control systems on
the back endpapers, you will be able to determine the range of gain for stability of
the pitch or heading control system.
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6.1 Introduction

In Chapter 1, we saw that three requirements enter into the design of a control
system: transient response, stability, and steady-state errors. Thus far we have
covered transient response, which we will revisit in Chapter 8. We are now ready
to discuss the next requirement, stability.

Stability is the most important system specification. If a system is unstable,
transient response and steady-state errors are moot points. An unstable system
cannot be designed for a specific transient response or steady-state error require-
ment. What, then, is stability? There are many definitions for stability, depending
upon the kind of system or the point of view. In this section, we limit ourselves to
linear, time-invariant systems.

In Section 1.5, we discussed that we can control the output of a system if the
steady-state response consists of only the forced response. But the total response of a
system is the sum of the forced and natural responses, or

cðtÞ ¼ cforcedðtÞ þ cnaturalðtÞ ð6:1Þ
Using these concepts, we present the following definitions of stability, instability, and
marginal stability:

A linear, time-invariant system is stable if the natural response approaches zero as
time approaches infinity.

A linear, time-invariant system is unstable if the natural response grows without
bound as time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response neither
decays nor grows but remains constant or oscillates as time approaches infinity.

Thus, the definition of stability implies that only the forced response remains as the
natural response approaches zero.

These definitions rely on a description of the natural response. When one is
looking at the total response, it may be difficult to separate the natural response from
the forced response. However, we realize that if the input is bounded and the total
response is not approaching infinity as time approaches infinity, then the natural
response is obviously not approaching infinity. If the input is unbounded, we see an
unbounded total response, and we cannot arrive at any conclusion about the stability
of the system; we cannot tell whether the total response is unbounded because the
forced response is unbounded or because the natural response is unbounded. Thus,
our alternate definition of stability, one that regards the total response and implies
the first definition based upon the natural response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of
stability.

Let us now produce an alternate definition for instability based on the total
response rather than the natural response. We realize that if the input is bounded but
the total response is unbounded, the system is unstable, since we can conclude that
the natural response approaches infinity as time approaches infinity. If the input is
unbounded, we will see an unbounded total response, and we cannot draw any
conclusion about the stability of the system; we cannot tell whether the total
response is unbounded because the forced response is unbounded or because the
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natural response is unbounded. Thus, our alternate definition of instability, one that
regards the total response, is this:

A system is unstable if any bounded input yields an unbounded output.

These definitions help clarify our previous definition of marginal stability,
which really means that the system is stable for some bounded inputs and unstable
for others. For example, we will show that if the natural response is undamped, a
bounded sinusoidal input of the same frequency yields a natural response of growing
oscillations. Hence, the system appears stable for all bounded inputs except this one
sinusoid. Thus, marginally stable systems by the natural response definitions are
included as unstable systems under the BIBO definitions.

Let us summarize our definitions of stability for linear, time-invariant systems.
Using the natural response:

1. A system is stable if the natural response approaches zero as time approaches
infinity.

2. A system is unstable if the natural response approaches infinity as time
approaches infinity.

3. A system is marginally stable if the natural response neither decays nor grows but
remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.

2. A system is unstable if any bounded input yields an unbounded output.

Physically, an unstable system whose natural response grows without bound
can cause damage to the system, to adjacent property, or to human life. Many times
systems are designed with limited stops to prevent total runaway. From the
perspective of the time response plot of a physical system, instability is displayed
by transients that grow without bound and, consequently, a total response that does
not approach a steady-state value or other forced response.1

How do we determine if a system is stable? Let us focus on the natural response
definitions of stability. Recall from our study of system poles that poles in the left
half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural
responses. These natural responses decay to zero as time approaches infinity. Thus, if
the closed-loop system poles are in the left half of the plane and hence have a
negative real part, the system is stable. That is, stable systems have closed-loop
transfer functions with poles only in the left half-plane.

Poles in the right half-plane (rhp) yield either pure exponentially increasing or
exponentially increasing sinusoidal natural responses. These natural responses
approach infinity as time approaches infinity. Thus, if the closed-loop system poles
are in the right half of the s-plane and hence have a positive real part, the system is
unstable. Also, poles of multiplicity greater than 1 on the imaginary axis lead to
the sum of responses of the form Atn cos ðvt þ fÞ, where n ¼ 1; 2; . . . ; which also
approaches infinity as time approaches infinity. Thus, unstable systems have closed-
loop transfer functions with at least one pole in the right half-plane and/or poles of
multiplicity greater than 1 on the imaginary axis.

1 Care must be taken here to distinguish between natural responses growing without bound and a forced
response, such as a ramp or exponential increase, that also grows without bound. A system whose forced
response approaches infinity is stable as long as the natural response approaches zero.
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Finally, a system that has imaginary axis poles of multiplicity 1 yields pure
sinusoidal oscillations as a natural response. These responses neither increase nor
decrease in amplitude. Thus, marginally stable systems have closed-loop transfer
functionswith only imaginary axis poles ofmultiplicity 1 and poles in the left half-plane.

As an example, the unit step response of the stable system of Figure 6.1(a) is
compared to that of the unstable system of Figure 6.1(b). The responses, also shown
in Figure 6.1, show that while the oscillations for the stable system diminish, those for
the unstable system increase without bound. Also notice that the stable system’s
response in this case approaches a steady-state value of unity.

It is not always a simple matter to determine if a feedback control system is
stable. Unfortunately, a typical problem that arises is shown in Figure 6.2. Although
we know the poles of the forward transfer function in Figure 6.2(a), we do not know
the location of the poles of the equivalent closed-loop system of Figure 6.2(b)
without factoring or otherwise solving for the roots.

However, under certain conditions, we can draw some conclusions about
the stability of the system. First, if the closed-loop transfer function has only

FIGURE 6.1 Closed-loop
poles and response:
a. stable system;
b. unstable system
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left–half-plane poles, then the factors of the denominator of the closed-loop system
transfer function consist of products of terms such as ðsþ aiÞ, where ai is real and
positive, or complex with a positive real part. The product of such terms is a
polynomial with all positive coefficients.2 No term of the polynomial can be missing,
since that would imply cancellation between positive and negative coefficients or
imaginary axis roots in the factors, which is not the case. Thus, a sufficient condition
for a system to be unstable is that all signs of the coefficients of the denominator of
the closed-loop transfer function are not the same. If powers of s are missing, the
system is either unstable or, at best, marginally stable. Unfortunately, if all coef-
ficients of the denominator are positive and not missing, we do not have definitive
information about the system’s pole locations.

If the method described in the previous paragraph is not sufficient, then a
computer can be used to determine the stability by calculating the root locations of
the denominator of the closed-loop transfer function. Today some hand-held
calculators can evaluate the roots of a polynomial. There is, however, another
method to test for stability without having to solve for the roots of the denominator.
We discuss this method in the next section.

6.2 Routh-Hurwitz Criterion

In this section, we learn a method that yields stability information without the need
to solve for the closed-loop system poles. Using this method, we can tell how many
closed-loop system poles are in the left half-plane, in the right half-plane, and on the
jv-axis. (Notice that we say how many, not where.) We can find the number of poles
in each section of the s-plane, but we cannot find their coordinates. The method is
called the Routh-Hurwitz criterion for stability (Routh, 1905).

The method requires two steps: (1) Generate a data table called a Routh table
and (2) interpret the Routh table to tell how many closed-loop system poles are in
the left half-plane, the right half-plane, and on the jv-axis. You might wonder why we
study the Routh-Hurwitz criterion when modern calculators and computers can tell
us the exact location of system poles. The power of the method lies in design rather
than analysis. For example, if you have an unknown parameter in the denominator of
a transfer function, it is difficult to determine via a calculator the range of this
parameter to yield stability. You would probably rely on trial and error to answer the

C(s)R(s)

(b)

C(s)R(s)

(a)

–

+ E(s)

s(s + 4)(s + 6)(s + 8)(s + 10)

10(s + 2)

10(s + 2)

s5 + 28s4 + 284s3 + 1232s2 + 1930s + 20

FIGURE 6.2 Common cause
of problems in finding closed-
loop poles: a. original system;
b. equivalent system

2 The coefficients can also be made all negative by multiplying the polynomial by �1. This operation does
not change the root location.
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stability question. We shall see later that the Routh-Hurwitz criterion can yield a
closed-form expression for the range of the unknown parameter.

In this section, we make and interpret a basic Routh table. In the next section,
we consider two special cases that can arise when generating this data table.

Generating a Basic Routh Table
Look at the equivalent closed-loop transfer function shown in Fig-
ure 6.3. Since we are interested in the system poles, we focus our
attention on the denominator. We first create the Routh table shown
in Table 6.1. Begin by labeling the rows with powers of s from the
highest power of the denominator of the closed-loop transfer func-

tion to s0. Next start with the coefficient of the highest power of s in the denominator
and list, horizontally in the first row, every other coefficient. In the second row, list
horizontally, starting with the next highest power of s, every coefficient that was
skipped in the first row.

The remaining entries are filled in as follows. Each entry is a negative determi-
nant of entries in the previous two rows divided by the entry in the first column directly
above the calculated row. The left-hand column of the determinant is always the first
column of the previous two rows, and the right-hand column is the elements of the
columnaboveandtotheright.Thetable iscompletewhenallof therowsarecompleted
down to s0. Table 6.2 is the completed Routh table. Let us look at an example.

Example 6.1

Creating a Routh Table

PROBLEM: Make the Routh table for the system shown in Figure 6.4(a).

SOLUTION: The first step is to find the equivalent closed-loop system because we
want to test the denominator of this function, not the given forward transfer

N(s) C(s)R(s)

a4s4 + a3s3 + a2s2 + a1s + a0

FIGURE 6.3 Equivalent closed-loop transfer
function

TABLE 6.1 Initial layout for Routh table

s4 a4 a2 a0

s3 a3 a1 0

s2

s1

s0

TABLE 6.2 Completed Routh table

s4 a4 a2 a0

s3 a3 a1 0

s2
�
���� a4

a3

a2

a1

����
a3

¼ b1

�
���� a4

a3

a0

0

����
a3

¼ b2

�
���� a4

a3

0
0

����
a3

¼ 0

s1
�
���� a3

b1

a1

b2

����
b1

¼ c1

�
���� a3

b1

0
0

����
b1

¼ 0
�
���� a3

b1

0
0

����
b1

¼ 0

s0
�
����b1

c1

b2

0

����
c1

¼ d1

�
���� b1

c1

0
0

����
c1

¼ 0
�
����b1

c1

0
0

����
c1

¼ 0

FIGURE 6.4 a. Feedback
system for Example 6.1;
b. equivalent closed-
loop system

1000R(s)

(b)

1000 C(s)R(s)

(a)

–

+ E(s)

C(s)(s + 2)(s + 3)(s + 5)

s3 + 10s2 + 31s + 1030
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function, for pole location. Using the feedback formula, we obtain the equivalent
system of Figure 6.4(b). The Routh-Hurwitz criterion will be applied to this
denominator. First label the rows with powers of s from s3 down to s0 in a vertical
column, as shown in Table 6.3. Next form the first row of the table, using the
coefficients of the denominator of the closed-loop transfer function. Start with
the coefficient of the highest power and skip every other power of s. Now form the
second row with the coefficients of the denominator skipped in the previous step.
Subsequent rows are formed with determinants, as shown in Table 6.2.

For convenience, any row of the Routh table can be multiplied by a positive
constant without changing the values of the rows below. This can be proved by
examining the expressions for the entries and verifying that any multiplicative
constant from a previous row cancels out. In the second row of Table 6.3, for
example, the row was multiplied by 1/10. We see later that care must be taken not to
multiply the row by a negative constant.

Interpreting the Basic Routh Table
Now that we know how to generate the Routh table, let us see how to interpret it.
The basic Routh table applies to systems with poles in the left and right half-planes.
Systems with imaginary poles and the kind of Routh table that results will be
discussed in the next section. Simply stated, the Routh-Hurwitz criterion declares
that the number of roots of the polynomial that are in the right half-plane is equal to
the number of sign changes in the first column.

If the closed-loop transfer function has all poles in the left half of the s-plane,
the system is stable. Thus, a system is stable if there are no sign changes in the first
column of the Routh table. For example, Table 6.3 has two sign changes in the
first column. The first sign change occurs from 1 in the s2 row to �72 in the s1 row.
The second occurs from �72 in the s1 row to 103 in the s0 row. Thus, the system of
Figure 6.4 is unstable since two poles exist in the right half-plane.

Skill-Assessment Exercise 6.1

PROBLEM: Make a Routh table and tell how many roots of the following
polynomial are in the right half-plane and in the left half-plane.

PðsÞ ¼ 3s7 þ 9s6 þ 6s5 þ 4s4 þ 7s3 þ 8s2 þ 2sþ 6

ANSWER: Four in the right half-plane (rhp), three in the left half-plane (lhp).

The complete solution is at www.wiley.com/college/nise.

TABLE 6.3 Completed Routh table for Example 6.1

s3 1 31 0

s2 10 1 1030 103 0

s1
�
���� 11

31
103

����
1

¼ �72
�
���� 10

0
0

����
1

¼ 0
�
���� 11

0
0

����
1

¼ 0

s0
�
���� 1
�72

103
0

����
�72

¼ 103
�
���� 1
�72

0
0

����
�72

¼ 0
�
���� 1
�72

0
0

����
�72

¼ 0
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Now that we have described how to generate and interpret a basic Routh table,
let us look at two special cases that can arise.

6.3 Routh-Hurwitz Criterion: Special Cases

Two special cases can occur: (1) The Routh table sometimes will have a zero only in
the first column of a row, or (2) the Routh table sometimes will have an entire row
that consists of zeros. Let us examine the first case.

Zero Only in the First Column
If the first element of a row is zero, division by zero would be required to form the
next row. To avoid this phenomenon, an epsilon, e, is assigned to replace the zero in
the first column. The value e is then allowed to approach zero from either the
positive or the negative side, after which the signs of the entries in the first column
can be determined. Let us look at an example.

Example 6.2

Stability via Epsilon Method

PROBLEM: Determine the stability of the closed-loop transfer function

TðsÞ ¼ 10

s5 þ 2s4 þ 3s3 þ 6s2 þ 5sþ 3
ð6:2Þ

SOLUTION: The solution is shown in Table 6.4. We form the Routh table by using
the denominator of Eq. (6.2). Begin by assembling the Routh table down to the row
where a zero appears only in the first column (the s3 row). Next replace the zero by
a small number, e, and complete the table. To begin the interpretation, we must first
assume a sign, positive or negative, for the quantity e. Table 6.5 shows the first
column of Table 6.4 along with the resulting signs for choices of e positive and
e negative.

TryIt 6.1

Use the following MATLAB
statement to find the poles of
the closed-loop transfer
function in Eq. (6.2).

roots([1 2 3 6 5 3])

TABLE 6.4 Completed Routh table for
Example 6.2

s5 1 3 5

s4 2 6 3

s3 0 e
7

2
0

s2 6e� 7

e
3 0

s1 42e� 49 � 6e2

12e� 14
0 0

s0 3 0 0

TABLE 6.5 Determining signs in first column of a Routh table with
zero as first element in a row

Label First column e ¼ þ e ¼ �
s5 1 + +

s4 2 + +

s3 0 e + �

s2 6e� 7

e
� +

s1 42e� 49 � 6e2

12e� 14
+ +

s0 3 + +
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If e is chosen positive, Table 6.5 will show a sign change from the s3 row to the
s2 row, and there will be another sign change from the s2 row to the s1 row. Hence,
the system is unstable and has two poles in the right half-plane.

Alternatively, we could choose e negative. Table 6.5 would then show a
sign change from the s4 row to the s3 row. Another sign change would occur
from the s3 row to the s2 row. Our result would be exactly the same as that for
a positive choice for e. Thus, the system is unstable, with two poles in the right
half-plane.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch6sp1 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
calculate the values of cells in a Routh table even if the table
contains symbolic objects, such as e. You will see that the
Symbolic Math Toolbox and MATLAB yield an alternate way to gen-
erate the Routh table for Example 6.2.

Another method that can be used when a zero appears only in the first column
of a row is derived from the fact that a polynomial that has the reciprocal roots of the
original polynomial has its roots distributed the same—right half-plane, left half-
plane, or imaginary axis—because taking the reciprocal of the root value does not
move it to another region. Thus, if we can find the polynomial that has the reciprocal
roots of the original, it is possible that the Routh table for the new polynomial will
not have a zero in the first column. This method is usually computationally easier
than the epsilon method just described.

We now show that the polynomial we are looking for, the one with the
reciprocal roots, is simply the original polynomial with its coefficients written in
reverse order (Phillips, 1991). Assume the equation

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð6:3Þ

If s is replaced by 1=d, then d will have roots which are the reciprocal of s. Making this
substitution in Eq. (6.3),

1

d

� �n

þ an�1
1

d

� �n�1

þ � � � þ a1
1

d

� �
þ a0 ¼ 0 ð6:4Þ

Factoring out ð1=dÞn,

1

d

� �n

1 þ an�1
1

d

� ��1

þ � � � þ a1
1

d

� � 1�nð Þ
þ a0

1

d

� ��n
" #

¼ 1

d

� �n

½1 þ an�1dþ � � � þ a1d
ðn�1Þ þ a0d

n� ¼ 0 ð6:5Þ

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients
written in reverse order. Let us redo the previous example to show the computa-
tional advantage of this method.
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Example 6.3

Stability via Reverse Coefficients

PROBLEM: Determine the stability of the closed-loop transfer function

TðsÞ ¼ 10

s5 þ 2s4 þ 3s3 þ 6s2 þ 5sþ 3
ð6:6Þ

SOLUTION: First write a polynomial that has the reciprocal roots of the denomi-
nator of Eq. (6.6). From our discussion, this polynomial is formed by writing the
denominator of Eq. (6.6) in reverse order. Hence,

DðsÞ ¼ 3s5 þ 5s4 þ 6s3 þ 3s2 þ 2sþ 1 ð6:7Þ
We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there are two
sign changes, the system is unstable and has two right-half-plane poles. This is the
same as the result obtained in Example 6.2. Notice that Table 6.6 does not have a
zero in the first column.

Entire Row is Zero
We now look at the second special case. Sometimes while making a Routh table, we
find that an entire row consists of zeros because there is an even polynomial that is a
factor of the original polynomial. This case must be handled differently from the case
of a zero in only the first column of a row. Let us look at an example that
demonstrates how to construct and interpret the Routh table when an entire row
of zeros is present.

Example 6.4

Stability via Routh Table with Row of Zeros

PROBLEM: Determine the number of right-half-plane poles in the closed-loop
transfer function

TðsÞ ¼ 10

s5 þ 7s4 þ 6s3 þ 42s2 þ 8sþ 56
ð6:8Þ

SOLUTION: Start by forming the Routh table for the denominator of Eq. (6.8)
(see Table 6.7). At the second row we multiply through by 1/7 for convenience. We
stop at the third row, since the entire row consists of zeros, and use the following

TABLE 6.6 Routh table for Example 6.3

s5 3 6 2

s4 5 3 1

s3 4.2 1.4

s2 1.33 1

s1 �1.75

s0 1
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procedure. First we return to the row immediately above the row of zeros and
form an auxiliary polynomial, using the entries in that row as coefficients. The
polynomial will start with the power of s in the label column and continue by
skipping every other power of s. Thus, the polynomial formed for this example is

PðsÞ ¼ s4 þ 6s2 þ 8 ð6:9Þ
Next we differentiate the polynomial with respect to s and obtain

dPðsÞ
ds

¼ 4s3 þ 12sþ 0 ð6:10Þ
Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros. Again, for
convenience, the third row is multiplied by 1/4 after replacing the zeros.

The remainder of the table is formed in a straightforward manner by
following the standard form shown in Table 6.2. Table 6.7 shows that all entries
in the first column are positive. Hence, there are no right–half-plane poles.

Let us look further into the case that yields an entire row of
zeros. An entire row of zeros will appear in the Routh table when a
purely even or purely odd polynomial is a factor of the original
polynomial. For example, s4 þ 5s2 þ 7 is an even polynomial; it has
only even powers of s. Even polynomials only have roots that are
symmetrical about the origin.3 This symmetry can occur under three
conditions of root position: (1) The roots are symmetrical and real,
(2) the roots are symmetrical and imaginary, or (3) the roots are
quadrantal. Figure 6.5 shows examples of these cases. Each case or
combination of these cases will generate an even polynomial.

It is this even polynomial that causes the row of zeros to
appear. Thus, the row of zeros tells us of the existence of an even
polynomial whose roots are symmetric about the origin. Some of
these roots could be on the jv-axis. On the other hand, since jv roots
are symmetric about the origin, if we do not have a row of zeros, we
cannot possibly have jv roots.

Another characteristic of the Routh table for the case in
question is that the row previous to the row of zeros contains the even polynomial
that is a factor of the original polynomial. Finally, everything from the row
containing the even polynomial down to the end of the Routh table is a test of
only the even polynomial. Let us put these facts together in an example.

TABLE 6.7 Routh table for Example 6.4

s5 1 6 8

s4 7 1 42 6 56 8

s3 0 4 1 0 12 3 0 0 0

s2 3 8 0

s1
1

3
0 0

s0 8 0 0

C

C

C

C

A A
σ

ωj

s-plane

A:   Real and symmetrical about the origin
B:   Imaginary and symmetrical about the origin
C:   Quadrantal and symmetrical about the origin

B

B

FIGURE 6.5 Root positions to generate even
polynomials: A, B, C, or any combination

3 The polynomial s5 þ 5s3 þ 7s is an example of an odd polynomial; it has only odd powers of s. Odd
polynomials are the product of an even polynomial and an odd power of s. Thus, the constant term of an
odd polynomial is always missing.
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Example 6.5

Pole Distribution via Routh Table with Row of Zeros

PROBLEM: For the transfer function

TðsÞ ¼ 20

s8 þ s7 þ 12s6 þ 22s5 þ 39s4 þ 59s3 þ 48s2 þ 38sþ 20
ð6:11Þ

tell how many poles are in the right half-plane, in the left half-plane, and on the
jv-axis.

SOLUTION: Use the denominator of Eq. (6.11) and form the Routh table in
Table 6.8. For convenience the s6 row is multiplied by 1/10, and the s5 row is
multiplied by 1/20. At the s3 row we obtain a row of zeros. Moving back one row to
s4, we extract the even polynomial, P(s), as

PðsÞ ¼ s4 þ 3s2 þ 2 ð6:12Þ

This polynomial will divide evenly into the denominator of Eq. (6.11) and thus is a
factor. Taking the derivative with respect to s to obtain the coefficients that replace
the row of zeros in the s3 row, we find

dPðsÞ
ds

¼ 4s3 þ 6sþ 0 ð6:13Þ

Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for
convenience. Finally, continue the table to the s0 row, using the standard procedure.

How do we now interpret this Routh table? Since all entries from the even
polynomial at the s4 row down to the s0 row are a test of the even polynomial, we
begin to draw some conclusions about the roots of the even polynomial. No sign
changes exist from the s4 row down to the s0 row. Thus, the even polynomial does
not have right–half-plane poles. Since there are no right–half-plane poles, no left–
half-plane poles are present because of the requirement for symmetry. Hence, the
even polynomial, Eq. (6.12), must have all four of its poles on the jv-axis.4 These
results are summarized in the first column of Table 6.9.

TABLE 6.8 Routh table for Example 6.5

s8 1 12 39 48 20

s7 1 22 59 38 0

s6 � 10 � 1 � 20 � 2 10 1 20 2 0

s5 20 1 60 3 40 2 0 0

s4 1 3 2 0 0

s3 0 4 2 0 6 3 0 0 0 0 0

s2 3

2
3 2 4 0 0 0

s1 1

3
0 0 0 0

s0 4 0 0 0 0

4 A necessary condition for stability is that the jv roots have unit multiplicity. The even polynomial must be
checked for multiple jv roots. For this case, the existence of multiple jv roots would lead to a perfect,
fourth-order square polynomial. Since Eq. (6.12) is not a perfect square, the four jv roots are distinct.
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The remaining roots of the total polynomial are evaluated from the s8 row down
to the s4 row. We notice two sign changes: one from the s7 row to the s6 row and the
other from the s6 row to the s5 row. Thus, the other polynomial must have two roots in
the right half-plane. These results are included in Table 6.9 under ‘‘Other’’. The final
tally is the sum of roots from each component, the even polynomial and the other
polynomial, as shown under ‘‘Total’’ in Table 6.9. Thus, the system has two poles in
the right half-plane, two poles in the left half-plane, and four poles on the jv-axis; it is
unstable because of the right–half-plane poles.

We nowsummarize what wehave learned about polynomials that generate entire
rows ofzeros intheRouthtable. Thesepolynomials have apurelyevenfactor withroots
that are symmetrical about the origin. The even polynomial appears in the Routh
table in the row directly above the row of zeros. Every entry in the table from the even
polynomial’s rowto theendof the chartapplies only to theevenpolynomial. Therefore,
the number of sign changes from the even polynomial to the end of the table equals the
number of right-half-plane roots of the even polynomial. Because of the symmetry of
roots about the origin, the even polynomial must have the same number of left–half-
plane roots as it does right–half-plane roots. Having accounted for the roots in the right
and left half-planes, we know the remaining roots must be on the jv-axis.

Every row in the Routh table from the beginning of the chart to the row
containing the even polynomial applies only to the other factor of the original
polynomial. For this factor, the number of sign changes, from the beginning of the
table down to the even polynomial, equals the number of right–half-plane roots.
The remaining roots are left–half-plane roots. There can be no jv roots contained in
the other polynomial.

Skill-Assessment Exercise 6.2

PROBLEM: Use the Routh-Hurwitz criterion to find how many poles of the
following closed-loop system, T(s), are in the rhp, in the lhp, and on the jv-axis:

TðsÞ ¼ s3 þ 7s2 � 21sþ 10

s6 þ s5 � 6s4 þ 0s3 � s2 � sþ 6

ANSWER: Two rhp, two lhp, and two jv

The complete solution is at www.wiley.com/college/nise.

Let us demonstrate the usefulness of the Routh-Hurwitz criterion with a few
additional examples.

TABLE 6.9 Summary of pole locations for Example 6.5

Polynomial

Location
Even

(fourth-order)
Other

(fourth-order)
Total

(eighth-order)

Right half-plane 0 2 2

Left half-plane 0 2 2

jv 4 0 4
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Virtual Experiment 6.1
Stability

Put theory into practice and
evaluate the stability of the
Quanser Linear Inverted Pendu-
lum in LabVIEW. When in the
upward balanced position, this
system addresses the challenge of
stabilizing a rocket during take-
off. In the downward position it
emulates the construction
gantry crane.

Virtual experiments are found
on WileyPLUS.
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6.4 Routh-Hurwitz Criterion: Additional Examples

The previous two sections have introduced the Routh-Hurwitz criterion. Now we need
to demonstrate the method’s application to a number of analysis and design problems.

Example 6.6

Standard Routh-Hurwitz

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and
on the jv-axis for the system of Figure 6.6.

SOLUTION: First, find the closed-loop transfer function as

TðsÞ ¼ 200

s4 þ 6s3 þ 11s2 þ 6sþ 200
ð6:14Þ

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10. For
clarity, we leave most zero cells blank. At the s1 row there is a negative coefficient;
thus, there are two sign changes. The system is unstable, since it has two right–half-
plane poles and two left–half-plane poles. The system cannot have jv poles since a
row of zeros did not appear in the Routh table.

The next example demonstrates the occurrence of a zero in only the first
column of a row.

Example 6.7

Routh-Hurwitz with Zero in First Column

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and
on the jv-axis for the system of Figure 6.7.

FIGURE 6.6 Feedback
control system for
Example 6.6

200 C(s)R(s) + E(s)

s(s3 + 6s2 + 11s + 6)–

TABLE 6.10 Routh table for Example 6.6

s4 1 11 200

s3 6 1 6 1

s2 10 1 200 20

s1 �19

s0 20

FIGURE 6.7 Feedback control
system for Example 6.7

1 C(s)R(s)

–

+

s(2s4 + 3s3 + 2s2 + 3s + 2)

E(s)
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SOLUTION: The closed-loop transfer function is

TðsÞ ¼ 1

2s5 þ 3s4 þ 2s3 þ 3s2 þ 2sþ 1
ð6:15Þ

Form the Routh table shown as Table 6.11, using the denominator of Eq. (6.15). A
zero appears in the first column of the s3 row. Since the entire row is not zero,
simply replace the zero with a small quantity, e, and continue the table. Permitting e

to be a small, positive quantity, we find that the first term of the s2 row is negative.
Thus, there are two sign changes, and the system is unstable, with two poles in the
right half-plane. The remaining poles are in the left half-plane.

We also can use the alternative approach, where we produce a polynomial
whose roots are the reciprocal of the original. Using the denominator of Eq. (6.15),
we form a polynomial by writing the coefficients in reverse order,

s5 þ 2s4 þ 3s3 þ 2s2 þ 3sþ 2 ð6:16Þ
The Routh table for this polynomial is shown as Table 6.12. Unfortunately, in this
case we also produce a zero only in the first column at the s2 row. However, the
table is easier to work with than Table 6.11. Table 6.12 yields the same results as
Table 6.11: three poles in the left half-plane and two poles in the right half-plane.
The system is unstable.

Students who are using MATLAB should now run ch6p1 in Appendix B.
You will learn how to perform block diagram reduction to find T(s),
followed by an evaluation of the closed-loop system’s poles to
determine stability. This exercise uses MATLAB to do Example 6.7.

TABLE 6.11 Routh table for Example 6.7

s5 2 2 2

s4 3 3 1

s3 0 e
4

3

s2 3e� 4

e
1

s1 12e� 16 � 3e2

9e� 12

s0 1

TABLE 6.12 Alternative Routh table for Example 6.7

s5 1 3 3

s4 2 2 2

s3 2 2

s2 0 e 2

s1 2e� 4

e

s0 2
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In the next example, we see an entire row of zeros appear along with the
possibility of imaginary roots.

Example 6.8

Routh-Hurwitz with Row of Zeros

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and
on the jv-axis for the system of Figure 6.8. Draw conclusions about the stability of
the closed-loop system.

SOLUTION: The closed-loop transfer function for the system of Figure 6.8 is

TðsÞ ¼ 128

s8 þ 3s7 þ 10s6 þ 24s5 þ 48s4 þ 96s3 þ 128s2 þ 192sþ 128
ð6:17Þ

Using the denominator, form the Routh table shown as Table 6.13. A row of zeros
appears in the s5 row. Thus, the closed-loop transfer function denominator must have
an even polynomial as a factor. Return to the s6 row and form the even polynomial:

PðsÞ ¼ s6 þ 8s4 þ 32s2 þ 64 ð6:18Þ

Differentiate this polynomial with respect to s to form the coefficients that will
replace the row of zeros:

dPðsÞ
ds

¼ 6s5 þ 32s3 þ 64sþ 0 ð6:19Þ

Replace the row of zeros at the s5 row by the coefficients of Eq. (6.19) and multiply
through by 1/2 for convenience. Then complete the table.

We note that there are two sign changes from the even polynomial at the
s6 row down to the end of the table. Hence, the even polynomial has two right–half-

FIGURE 6.8
Feedback
control system
for Example 6.8

128R(s)

–

+ C(s)

s(s7 + 3s6 + 10s5 + 24s4 + 48s3 + 96s2 + 128s + 192)

E(s)

TryIt 6.2

Use MATLAB, The Control
System Toolbox, and the fol-
lowing statements to find the
closed-loop transfer function,
T(s), for Figure 6.8 and the
closed-loop poles.

numg=128;
deng=[1 3 10 24 ...
48 96 128 192 0];

G=tf(numg,deng);
T=feedback(G,1)
poles=pole(T)

TABLE 6.13 Routh table for Example 6.8

s8 1 10 48 128 128

s7 3 1 24 8 96 32 192 64

s6 2 1 16 8 64 32 128 64

s5 0 6 3 0 32 16 0 64 32 0 0 0

s4 8

3
1

64

3
8 64 24

s3 �8 � 1 �40 � 5

s2 3 1 24 8

s1 3

s0 8
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plane poles. Because of the symmetry about the origin, the even polynomial must
have an equal number of left–half-plane poles. Therefore, the even polynomial
has two left–half-plane poles. Since the even polynomial is of sixth order, the two
remaining poles must be on the jv-axis.

There are no sign changes from the beginning of the table down to the even
polynomial at the s6 row. Therefore, the rest of the polynomial has no right–half-
plane poles. The results are summarized in Table 6.14. The system has two poles in
the right half-plane, four poles in the left half-plane, and two poles on the jv-axis,
which are of unit multiplicity. The closed-loop system is unstable because of the
right–half-plane poles.

The Routh-Hurwitz criterion gives vivid proof that changes in the gain of a
feedback control system result in differences in transient response because of
changes in closed-loop pole locations. The next example demonstrates this concept.
We will see that for control systems, such as those shown in Figure 6.9, gain variations
can move poles from stable regions of the s-plane onto the jv-axis and then into the
right half-plane.

TABLE 6.14 Summary of pole locations for Example 6.8

Polynomial

Location
Even

(sixth-order)
Other

(second-order)
Total

(eighth-order)

Right half-plane 2 0 2

Left half-plane 2 2 4

jv 2 0 2

Fiber-optic
tether

Syntactic
flotation module

(1200 Ibs)

Thrusters
(1 of 7)Lifting bailLong baseline &

emergency beacon

Emergency
flasher

Video
camera

Video
camera

Flash for
still photography

250-watt
lamps

(1 of 8) Electronic compass

Side-scan sonar
electronics housing

Telemetry housing w/lasers
Manipulator electronics housing

Computer housing w/gyro

Altimeter

Wiring junction box
(1 of 2)

Aluminum
tubular frame

Side-scan
transceiver array

(1 of 2)

Still film
camera

Manipulator with
coring tool

Pan & till
unit

FIGURE 6.9 Jason is an
underwater, remote-controlled
vehicle that has been used to
explore the wreckage of the
Lusitania. The manipulator
and cameras comprise some of
the vehicle’s control systems
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Example 6.9

Stability Design via Routh-Hurwitz

PROBLEM: Find the range of gain, K, for the system of Figure 6.10 that will cause
the system to be stable, unstable, and marginally stable. Assume K > 0.

SOLUTION: First find the closed-loop transfer function as

TðsÞ ¼ K

s3 þ 18s2 þ 77sþK
ð6:20Þ

Next form the Routh table shown as Table 6.15.

Since K is assumed positive, we see that all elements in the first column are
always positive except the s1 row. This entry can be positive, zero, or negative,
depending upon the value of K. If K < 1386, all terms in the first column will be
positive, and since there are no sign changes, the system will have three poles in the
left half-plane and be stable.

If K > 1386, the s1 term in the first column is negative. There are two sign
changes, indicating that the system has two right–half-plane poles and one left–
half-plane pole, which makes the system unstable.

If K ¼ 1386, we have an entire row of zeros, which could signify jv poles.
Returning to the s2 row and replacing K with 1386, we form the even polynomial

PðsÞ ¼ 18s2 þ 1386 ð6:21Þ
Differentiating with respect to s, we have

dPðsÞ
ds

¼ 36sþ 0 ð6:22Þ
Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the Routh-
Hurwitz table shown as Table 6.16 for the case of K ¼ 1386.

FIGURE 6.10 Feedback control
system for Example 6.9

K C(s)E(s)R(s)
s(s + 7)(s + 11)

–

+

TABLE 6.15 Routh table for Example 6.9

s3 1 77

s2 18 K

s1 1386 �K

18
s0 K

TABLE 6.16 Routh table for Example 6.9 with K = 1386

s3 1 77

s2 18 1386

s1 0 36

s0 1386
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Since there are no sign changes from the even polynomial (s2 row) down to
the bottom of the table, the even polynomial has its two roots on the jv-axis of unit
multiplicity. Since there are no sign changes above the even polynomial, the
remaining root is in the left half-plane. Therefore the system is marginally stable.

Students who are using MATLAB should now run ch6p2 in Appendix B.
Youwill learnhow toset upa looptosearchforthe rangeofgainto
yield stability. This exercise uses MATLAB to do Example 6.9.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch6sp2 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
calculate the values of cells in a Routh table even if the table
contains symbolic objects, such as a variable gain, K. You will
see that the Symbolic Math Toolbox and MATLAB yield an alterna-
tive way to solve Example 6.9.

The Routh-Hurwitz criterion is often used in limited applications to factor
polynomials containing even factors. Let us look at an example.

Example 6.10

Factoring via Routh-Hurwitz

PROBLEM: Factor the polynomial

s4 þ 3s3 þ 30s2 þ 30sþ 200 ð6:23Þ
SOLUTION: Form the Routh table of Table 6.17. We find that the s1 row is a row of
zeros. Now form the even polynomial at the s2 row:

PðsÞ ¼ s2 þ 10 ð6:24Þ

This polynomial is differentiated with respect to s in order to complete the Routh
table. However, since this polynomial is a factor of the original polynomial in Eq.
(6.23), dividing Eq. (6.23) by (6.24) yields ðs2 þ 3sþ 20Þ as the other factor. Hence,

s4 þ 3s3 þ 30s2 þ 30sþ 200 ¼ ðs2 þ 10Þðs2 þ 3sþ 20Þ
¼ ðsþ j3:1623Þðs� j3:1623Þ

�ðsþ 1:5 þ j4:213Þðsþ 1:5 � j4:213Þ
ð6:25Þ

TABLE 6.17 Routh table for Example 6.10

s4 1 30 200

s3 3 1 30 10

s2 20 1 200 10

s1 0 2 0 0

s0 10
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Skill-Assessment Exercise 6.3

PROBLEM: For a unity feedback system with the forward transfer function

GðsÞ ¼ Kðsþ 20Þ
sðsþ 2Þðsþ 3Þ

find the range of K to make the system stable.

ANSWER: 0 < K < 2

The complete solution is at www.wiley.com/college/nise.

6.5 Stability in State Space

Up to this point we have examined stability from the s-plane viewpoint. Now we look
at stability from the perspective of state space. In Section 4.10, we mentioned that
the values of the system’s poles are equal to the eigenvalues of the system matrix, A.
We stated that the eigenvalues of the matrix A were solutions of the equation
det ðsI�AÞ ¼ 0, which also yielded the poles of the transfer function. Eigenvalues
appeared again in Section 5.8, where they were formally defined and used to
diagonalize a matrix. Let us now formally show that the eigenvalues and the system
poles have the same values.

Reviewing Section 5.8, the eigenvalues of a matrix, A, are values of l that
permit a nontrivial solution (other than 0) for x in the equation

Ax ¼ lx ð6:26Þ
In order to solve for the values of l that do indeed permit a solution for x, we

rearrange Eq. (6.26) as follows:

lx�Ax ¼ 0 ð6:27Þ
or

ðlI�AÞx ¼ 0 ð6:28Þ
Solving for x yields

x ¼ ðlI�AÞ�10 ð6:29Þ
or

x ¼ adjðlI�AÞ
detðlI�AÞ 0 ð6:30Þ

We see that all solutions will be the null vector except for the occurrence of
zero in the denominator. Since this is the only condition where elements of x will be
0=0, or indeterminate, it is the only case where a nonzero solution is possible.

The values of l are calculated by forcing the denominator to zero:

detðlI�AÞ ¼ 0 ð6:31Þ
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This equation determines the values of l for which a nonzero solution for x in
Eq. (6.26) exists. In Section 5.8, we defined x as eigenvectors and the values of l as the
eigenvalues of the matrix A.

Let us now relate the eigenvalues of the system matrix, A, to the system’s poles.
In Chapter 3 we derived the equation of the system transfer function, Eq. (3.73),
from the state equations. The system transfer function has detðsI�AÞ in the
denominator because of the presence of ðsI�AÞ�1. Thus,

detðsI�AÞ ¼ 0 ð6:32Þ
is the characteristic equation for the system from which the system poles can be
found.

Since Eqs. (6.31) and (6.32) are identical apart from a change in variable name,
we conclude that the eigenvalues of the matrix A are identical to the system’s poles
before cancellation of common poles and zeroes in the transfer function. Thus, we
can determine the stability of a system represented in state space by finding the
eigenvalues of the system matrix, A, and determining their locations on the s-plane.

Example 6.11

Stability in State Space

PROBLEM: Given the system

_x ¼
0 3 1
2 8 1

�10 �5 �2

2
4

3
5xþ

10
0
0

2
4

3
5u ð6:33aÞ

y ¼ ½1 0 0�x ð6:33bÞ
find out how many poles are in the left half-plane, in the right half-plane, and on the
jv-axis.

SOLUTION: First form ðsI�AÞ:

ðsI�AÞ ¼
s 0 0
0 s 0
0 0 s

2
4

3
5�

0 3 1
2 8 1

�10 �5 �2

2
4

3
5 ¼

s �3 �1
�2 s� 8 �1
10 5 sþ 2

2
4

3
5 ð6:34Þ

Now find the detðsI�AÞ:
detðsI�AÞ ¼ s3 � 6s2 � 7s� 52 ð6:35Þ

Using this polynomial, form the Routh table of Table 6.18.

TABLE 6.18 Routh table for Example 6.11

s3 1 �7

s2 � 6 � 3 �52 � 26

s1 � 47

3
� 1 0 0

s0 �26
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Since there is one sign change in the first column, the system has one right–
half-plane pole and two left–half-plane poles. It is therefore unstable. Yet, you may
question the possibility that if a nonminimum-phase zero cancels the unstable pole,
the system will be stable. However, in practice, the nonminimum-phase zero or
unstable pole will shift due to a slight change in the system’s parameters. This
change will cause the system to become unstable.

Students who are using MATLAB should now run ch6p3 in Appendix B.
You will learn how to determine the stability of a system repre-
sented in state space by finding the eigenvalues of the system
matrix. This exercise uses MATLAB to do Example 6.11.

Skill-Assessment Exercise 6.4

PROBLEM: For the following system represented in state space, find out how many
poles are in the left half-plane, in the right half-plane, and on the jv-axis.

_x ¼
2 1 1
1 7 1

�3 4 �5

2
4

3
5xþ

0
0
1

2
4
3
5r

y ¼ 0 1 0½ �x

ANSWER: Two rhp and one lhp.

The complete solution is at www.wiley.com/college/nise.

In this section, we have evaluated the stability of feedback control systems
from the state-space perspective. Since the closed-loop poles and the eigenvalues of
a system are the same, the stability requirement of a system represented in state
space dictates that the eigenvalues cannot be in the right half of the s-plane or be
multiple on the jv-axis.

We can obtain the eigenvalues from the state equations without first convert-
ing to a transfer function to find the poles: The equation detðsI�AÞ ¼ 0 yields the
eigenvalues directly. If detðsI�AÞ, a polynomial in s, cannot be factored easily, we
can apply the Routh-Hurwitz criterion to it to evaluate how many eigenvalues are in
each region of the s-plane.

We now summarize this chapter, first with case studies and then with a written
summary. Our case studies include the antenna azimuth position control system and
the UFSS. Stability is as important to these systems as it is to the system shown in
Figure 6.11.

TryIt 6.3

Use the following MATLAB
statements to find the eigen-
values of the system described
in Skill-Assessment
Exercise 6.4.

A=[2 1 1
1 7 1
�3 4 �5];

Eig=eig(A)
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Case Studies

Antenna Control: Stability Design via Gain

This chapter has covered the elements of stability. We saw that stable systems have
their closed-loop poles in the left half of the s-plane. As the loop gain is changed,
the locations of the poles are also changed, creating the possibility that the poles
can move into the right half of the s-plane, which yields instability. Proper gain
settings are essential for the stability of closed-loop systems. The following case
study demonstrates the proper setting of the loop gain to ensure stability.

PROBLEM: You are given the antenna azimuth position control system shown on
the front endpapers, Configuration 1. Find the range of preamplifier gain required
to keep the closed-loop system stable.

SOLUTION: The closed-loop transfer function was derived in the case studies in
Chapter 5 as

T sð Þ ¼ 6:63K

s3 þ 101:71s2 þ 171sþ 6:63K
ð6:36Þ

Using the denominator, create the Routh table shown as Table 6.19. The third row of
the table shows that a row of zeros occurs if K ¼ 2623. This value of K makes the
system marginally stable. Therefore, there will be no sign changes in the first column
if 0 < K < 2623. We conclude that, for stability, 0 < K < 2623.

FIGURE 6.11 The FANUC
M-410iBTM has 4 axes of
motion. It is seen here moving
and stacking sacks of
chocolate

TABLE 6.19 Routh table for antenna control case study

s3 1 171

s2 101.71 6.63K

s1 17392.41–6.63K 0

s0 6.63K
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CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. Refer to the antenna azimuth position control system shown on the
front endpapers, Configuration 2. Find the range of preamplifier gain required to
keep the closed-loop system stable.

UFSS Vehicle: Stability Design via Gain

For this case study, we return to the UFSS vehicle and study the stability of the pitch
control system, which is used to control depth. Specifically, we find the range of
pitch gain that keeps the pitch control loop stable.

PROBLEM: The pitch control loop for the UFSS vehicle (Johnson, 1980) is shown
on the back endpapers. Let K2 ¼ 1 and find the range of K1 that ensures that the
closed-loop pitch control system is stable.

SOLUTION: The first step is to reduce the pitch control system to a single, closed-
loop transfer function. The equivalent forward transfer function, GeðsÞ, is

GeðsÞ ¼ 0:25K1ðsþ 0:435Þ
s4 þ 3:456s3 þ 3:457s2 þ 0:719sþ 0:0416

ð6:37Þ
With unity feedback the closed-loop transfer function, TðsÞ, is

TðsÞ ¼ 0:25K1ðsþ 0:435Þ
s4 þ 3:456s3 þ 3:457s2 þ ð0:719 þ 0:25K1Þsþ ð0:0416 þ 0:109K1Þ ð6:38Þ

The denominator of Eq. (6.38) is now used to formthe Routh table shown asTable 6.20.

Looking at the first column, the s4 and s3 rows are positive. Thus, all elements of
the first column must be positive for stability. For the first column of the s2 row to be
positive, �1 < K1 < 44:91. For the first column of the s1 row to be positive, the
numerator must be positive, since the denominator is positive from the previous
step. The solution to the quadratic term in the numerator yields roots of K1 ¼
�4:685 and 25.87. Thus, for a positive numerator, �4:685 < K1 < 25:87. Finally, for
the first column of the s0 row to be positive, �0:382 < K1 < 1. Using all three
conditions, stability will be ensured if �0:382 < K1 < 25:87.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on
the back endpapers and introduced in the UFSS case study challenge in Chapter 5,
do the following:

a. Find the range of heading gain that ensures the vehicle’s stability. Let K2 ¼ 1

b. Repeat Part a using MATLAB.

TABLE 6.20 Routh table for UFSS case study

s4 1 3.457 0:0416 þ 0:109K1

s3 3.456 0:719 þ 0:25K1

s2 11:228 � 0:25K1 0:144 þ 0:377K1

s1 �0:0625K2
1 þ 1:324K1 þ 7:575

11:228 � 0:25K1

s0 0:144 þ 0:377K1

Note: Some rows have been multiplied by a positive constant for convenience.
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In our case studies, we calculated the ranges of gain to ensure stability. The student
should be aware that although these ranges yield stability, setting gain within these
limits may not yield the desired transient response or steady-state error character-
istics. In Chapters 9 and 11, we will explore design techniques, other than simple gain
adjustment, that yield more flexibility in obtaining desired characteristics.

Summary

In this chapter, we explored the concepts of system stability from both the classical
and the state-space viewpoints. We found that for linear systems, stability is based on
a natural response that decays to zero as time approaches infinity. On the other hand,
if the natural response increases without bound, the forced response is overpowered
by the natural response, and we lose control. This condition is known as instability. A
third possibility exists: The natural response may neither decay nor grow without
bound but oscillate. In this case, the system is said to be marginally stable.

We also used an alternative definition of stability when the natural response is
not explicitly available. This definition is based on the total response and says that a
system is stable if every bounded input yields a bounded output (BIBO) and
unstable if any bounded input yields an unbounded output.

Mathematically, stability for linear, time-invariant systems can be determined
from the location of the closed-loop poles:

� If the poles are only in the left half-plane, the system is stable.

� If any poles are in the right half-plane, the system is unstable.

� If the poles are on the jv-axis and in the left half-plane, the system is marginally
stable as long as the poles on the jv-axis are of unit multiplicity; it is unstable if
there are any multiple jv poles.

Unfortunately, although the open-loop poles may be known, we found that in higher-
order systems it is difficult to find the closed-loop poles without a computer program.

The Routh-Hurwitz criterion lets us find how many poles are in each of the
sections of the s-plane without giving us the coordinates of the poles. Just knowing
that there are poles in the right half-plane is enough to determine that a system is
unstable. Under certain limited conditions, when an even polynomial is present, the
Routh table can be used to factor the system’s characteristic equation.

Obtaining stability from the state-space representation of a system is based on the
same concept—the location of the roots of the characteristic equation. These roots are
equivalent to the eigenvalues of the system matrix and can be found by solving
detðsI�AÞ ¼ 0. Again, the Routh-Hurwitz criterion can be applied to this polynomial.
The point is that the state-space representation of a system need not be converted to a
transferfunctioninordertoinvestigatestability.Inthenextchapter,wewilllookatsteady-
state errors, the last of three important control system requirements we emphasize.

Review Questions

1. What part of the output response is responsible for determining the stability of a
linear system?

2. What happens to the response named in Question 1 that creates instability?

Review Questions 325



Apago PDF Enhancer

E1C06 11/03/2010 21:23:9 Page 326

3. What would happen to a physical system that becomes unstable?

4. Why are marginally stable systems considered unstable under the BIBO
definition of stability?

5. Where do system poles have to be to ensure that a system is not unstable?

6. What does the Routh-Hurwitz criterion tell us?

7. Under what conditions would the Routh-Hurwitz criterion easily tell us the
actual location of the system’s closed-loop poles?

8. What causes a zero to show up only in the first column of the Routh table?

9. What causes an entire row of zeros to show up in the Routh table?

10. Why do we sometimes multiply a row of a Routh table by a positive constant?

11. Why do we not multiply a row of a Routh table by a negative constant?

12. If a Routh table has two sign changes above the even polynomial and five sign
changes below the even polynomial, how many right–half-plane poles does the
system have?

13. Does the presence of an entire row of zeros always mean that the system has jv
poles?

14. If a seventh-order system has a row of zeros at the s3 row and two sign changes
below the s4 row, how many jv poles does the system have?

15. Is it true that the eigenvalues of the system matrix are the same as the closed-
loop poles?

16. How do we find the eigenvalues?

Problems

1. Tell how many roots of the following polynomial are
in the right half-plane, in the left half-plane, and on
the jv-axis: [Section: 6.2]

PðsÞ ¼ s5 þ 3s4 þ 5s3 þ 4s2 þ sþ 3

2. Tell how many roots of the following polynomial are
in the right half-plane, in the left half-plane, and on
the jv-axis: [Section: 6.3]

PðsÞ ¼ s5 þ 6s3 þ 5s2 þ 8sþ 20

3. Using the Routh table, tell how many
poles of the following function are in
the right half-plane, in the left half-
plane, and on the jv-axis: [Section: 6.3]

TðsÞ ¼ sþ 8

s5 � s4 þ 4s3 � 4s2 þ 3s� 2

4. The closed-loop transfer function of a system is
[Section: 6.3]

TðsÞ ¼ s3 þ 2s2 þ 7sþ 21

s5 � 2s4 þ 3s3 � 6s2 þ 2s� 4

Determinehowmanyclosed-looppoleslieintheright
half-plane, in the left half-plane, and on the jv-axis.

5. How many poles are in the right half-plane, in the
left half-plane, and on the jv-axis for the open-loop
system of Figure P6.1? [Section: 6.3]

C(s)

s4 + 4s3 + 8s2 + 20s +15
s2 + 4s – 3R(s)

FIGURE P6.1

6. How many poles are in the right half-plane, the left
half-plane, and on the jv-axis for the open-loop
system of Figure P6.2? [Section: 6.3]

C(s)

s6 + s5 – 6s4 + s2 + s – 6

–6R(s)

FIGURE P6.2

7. Use MATLAB to find the pole
locations for the system of
Problem 6.
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8. Use MATLAB and the Symbolic
Math Toolbox to generate a
Routh table to solve Problem 3.

9. Determine whether the unity feedback
system of Figure P6.3 is stable if
[Section: 6.2]

GðsÞ ¼ 240

ðsþ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ

R(s) + E(s)
G(s)

C(s)

–

FIGURE P6.3

10. Use MATLAB to find the pole
locations for the system of
Problem 9.

11. Consider the unity feedback system of Figure P6.3
with

GðsÞ ¼ 1

4s2ðs2 þ 1Þ

Using the Routh-Hurwitz criterion, find the region
of the s-plane where the poles of the closed-loop
system are located. [Section: 6.3]

12. In the system of Figure P6.3, let

GðsÞ ¼ Kðsþ 2Þ
sðs� 1Þðsþ 3Þ

Find the range of K for closed-loop stability.
[Section: 6.4]

13. Given the unity feedback system of Figure P6.3 with
[Section: 6.3]

GðsÞ ¼ 84

sðs7 þ 5s6 þ 12s5 þ 25s4 þ 45s3 þ 50s2 þ 82sþ 60Þ

tell how many poles of the closed-loop transfer func-
tion lie in the right half-plane, in the left half-plane,
and on the jv-axis. [Section: 6.3]

14. Using the Routh-Hurwitz criterion and the unity
feedback system of Figure P6.3 with

GðsÞ ¼ 1

2s4 þ 5s3 þ s2 þ 2s

tell whether or not the closed-loop system is stable.
[Section: 6.2]

15. Given the unity feedback system of Figure P6.3 with

GðsÞ ¼ 8

sðs6 � 2s5 � s4 þ 2s3 þ 4s2 � 8s� 4Þ
tell how many closed-loop poles are located in the
right half-plane, in the left half-plane, and on the jv-
axis. [Section: 6.3]

16. Repeat Problem 15 using MATLAB.

17. Consider the following Routh table. Notice that the
s5 row was originally all zeros. Tell how many roots
of the original polynomial were in the right half-
plane, in the left half-plane, and on the jv-axis.
[Section: 6.3]

s7 1 2 �1 �2
s6 1 2 �1 �2

s5 3 4 �1 0

s4 1 �1 �3 0

s3 7 8 0 0

s2 �15 �21 0 0

s1 �9 0 0 0

s0 �21 0 0 0

18. For the system of Figure P6.4, tell how
many closed-loop poles are located in
the right half-plane, in the left half-
plane, and on the jv-axis. Notice that
there is positive feedback. [Section: 6.3]

+

18R(s) + E(s) C(s)

s5 + s4 – 7s3 – 7s2 – 18s

FIGURE P6.4

19. Using the Routh-Hurwitz criterion, tell how many
closed-loop poles of the system shown in Figure P6.5
lie in the left half-plane, in the right half-plane, and
on the jv-axis. [Section: 6.3]

507
s4+3s3+10s2+30s+169

1
s

R(s) + C(s)

–

FIGURE P6.5
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20. Determine if the unity feedback system of Figure
P6.3 with

GðsÞ ¼ Kðs2 þ 1Þ
ðsþ 1Þðsþ 2Þ

can be unstable. [Section: 6.4]

21. For the unity feedback system of Figure P6.3 with

GðsÞ ¼ Kðsþ 6Þ
sðsþ 1Þðsþ 4Þ

determine the range of K to ensure stability.
[Section: 6.4]

22. In the system of Figure P6.3, let

GðsÞ ¼ Kðs� aÞ
sðs� bÞ

Find the range of K for closed-loop stability when:
[Section: 6.4]

a. a < 0; b < 0

b. a < 0; b > 0

c. a > 0; b < 0

d. a > 0; b > 0

23. For the unity feedback system of
Figure P6.3 with

GðsÞ ¼ Kðsþ 3Þðsþ 5Þ
ðs� 2Þðs� 4Þ

determine the range of K for stability. [Section: 6.4]

24. Repeat Problem 23 using MATLAB.

25. Use MATLAB and the Symbolic
Math Toolbox to generate a
Routh table in terms of K to
solve Problem 23.

26. Find the range of K for stability for the unity feed-
back system of Figure P6.3 with [Section: 6.4]

GðsÞ ¼ Kðsþ 4Þðs� 4Þ
ðs2 þ 3Þ

27. For the unity feedback system of Figure P6.3 with

GðsÞ ¼ Kðsþ 1Þ
s4ðsþ 2Þ

find the range of K for stability. [Section: 6.4]

28. Find the range of gain, K, to ensure stability in the
unity feedback system of Figure P6.3 with [Section:
6.4]

GðsÞ ¼ Kðs� 2Þðsþ 4Þðsþ 5Þ
ðs2 þ 12Þ

29. Find the range of gain, K, to ensure stability in the
unity feedback system of Figure P6.3 with [Section:
6.4]

GðsÞ ¼ Kðsþ 2Þ
ðs2 þ 1Þðsþ 4Þðs� 1Þ

30. Using the Routh-Hurwitz criterion, find the value of
K that will yield oscillations for the unity feedback
system of Figure P6.3 with [Section: 6.4]

GðsÞ ¼ K

ðsþ 77Þðsþ 27Þðsþ 38Þ
31. Use the Routh-Hurwitz criterion to find the range

of K for which the system of Figure P6.6 is stable.
[Section: 6.4]

–
K(s2 – 2s + 2)

1

s2 + 2s + 4

R(s) + E(s) C(s)

FIGURE P6.6

32. Repeat Problem 31 for the system of
Figure P6.7. [Section: 6.4]

–

R(s) + E(s) C(s)K(s + 2)
s(s + 1)(s + 3)

s + 6
s + 7

FIGURE P6.7

33. Given the unity feedback system of Figure P6.3 with

GðsÞ ¼ Kðsþ 4Þ
sðsþ 1:2Þðsþ 2Þ

find the following: [Section: 6.4]

a. The range of K that keeps the system stable

b. The value of K that makes the system oscillate

c. The frequency of oscillation when K is set to the
value that makes the system oscillate
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34. Repeat Problem 33 for [Section: 6.4]

GðsÞ ¼ Kðs� 1Þðs� 2Þ
ðsþ 2Þðs2 þ 2sþ 2Þ

35. For the system shown in Figure P6.8, find the
value of gain, K, that will make the system oscil-
late. Also, find the frequency of oscillation.
[Section: 6.4]

K
R(s) +

–

1
s(s+7)(s+3)

+ C(s)

–

s

FIGURE P6.8

36. Given the unity feedback system of
Figure P6.3 with [Section: 6.4]

GðsÞ ¼ Ksðsþ 2Þ
ðs2 � 4sþ 8Þðsþ 3Þ

a. Find the range of K for stability.

b. Find the frequency of oscillation when the system
is marginally stable.

37. Repeat Problem 36 using MATLAB.

38. For the unity feedback system of Figure P6.3 with

GðsÞ ¼ Kðsþ 2Þ
ðs2 þ 1Þðsþ 4Þðs� 1Þ

find the range of K for which there will be only two
closed-loop, right–half-plane poles. [Section: 6.4]

39. For the unity feedback system of Figure P6.3 with
[Section: 6.4]

GðsÞ ¼ K

ðsþ 1Þ3ðsþ 4Þ
a. Find the range of K for stability.

b. Find the frequency of oscillation when the system
is marginally stable.

40. Given the unity feedback system of Figure P6.3 with
[Section: 6.4]

GðsÞ ¼ K

ðsþ 49Þðs2 þ 4sþ 5Þ

a. Find the range of K for stability.

b. Find the frequency of oscillation when the system
is marginally stable.

41. Using the Routh-Hurwitz criterion and the
unity feedback system of Figure P6.3 with
[Section: 6.4]

GðsÞ ¼ K

sðsþ 1Þðsþ 2Þðsþ 5Þ

a. Find the range of K for stability.

b. Find the value of K for marginal stability.

c. Find the actual location of the closed-loop poles
when the system is marginally stable.

42. Find the range of K to keep the system shown in
Figure P6.9 stable. [Section: 6.4]

–
s
K

s – 1

s2 + 2s + 1

R(s) + E(s) C(s)

FIGURE P6.9

43. Find the value of K in the system of
Figure P6.10 that will place the closed-
loop poles as shown. [Section: 6.4]

K+

+
+

j

σ

ω

R(s)
s2

s2

C(s)

–

1
s + 1

s
2

FIGURE P6.10 Closed-loop system with pole plot
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44. The closed-loop transfer function of a system is

TðsÞ ¼ s2 þK1sþK2

s4 þK1s3 þK2s2 þ 5sþ 1

Determine the range ofK1 in order for the system to
be stable. What is the relationship between K1 and
K2 for stability? [Section: 6.4]

45. For the transfer function below, find the constraints
on K1 and K2 such that the function will have only
two jv poles. [Section: 6.4]

TðsÞ ¼ K1sþK2

s4 þK1s3 þ s2 þK2sþ 1

46. The transfer function relating the output engine fan
speed (rpm) to the input main burner fuel flow rate
(lb/h) in a short takeoff and landing (STOL) fighter
aircraft, ignoring the coupling between engine fan
speed and the pitch control command, is (Schier-
man, 1992) [Section: 6.4]

GðsÞ ¼ 1:3s7 þ 90:5s6 þ 1970s5 þ 15; 000s4 þ 3120s3 � 41;300s2 � 5000s� 1840

s8 þ 103s7 þ 1180s6 þ 4040s5 þ 2150s4 � 8960s3 � 10; 600s2 � 1550s� 415

a. Find how many poles are in the right half-plane,
in the left half-plane, and on the jv-axis.

b. Is this open-loop system stable?

47. An interval polynomial is of the form

PðsÞ ¼ a0 þ a1sþ a2s
2 þ a3s

3 þ a4s
4 þ a5s

5 þ � � �
with its coefficients belonging to intervals
xi � ai � yi, where xi, yi are prescribed constants.
Kharitonov’s theorem says that an interval polyno-
mial has all its roots in the left half-plane if each one
of the following four polynomials has its roots in the
left half-plane (Minichelli, 1989):

K1ðsÞ ¼ x0 þ x1sþ y2s
2 þ y3s

3 þ x4s4 þ x5s5 þ y6s
6 þ � � �

K2ðsÞ ¼ x0 þ y1sþ y2s
2 þ x3s3 þ x4s4 þ y5s

5 þ y6s
6 þ � � �

K3ðsÞ ¼ y0 þ x1sþ x2s2 þ y3s
3 þ y4s

4 þ x5s5 þ x6s6 þ � � �
K4ðsÞ ¼ y0 þ y1sþ x2s2 þ x3s3 þ y4s

4 þ y5s
5 þ x6s6 þ � � �

Use Kharitonov’s theorem and the Routh-Hurwitz
criterion to find if the following polynomial has any
zeros in the right–half-plane.

PðsÞ ¼ a0 þ a1sþ a2s2 þ a3s3

2 � a0 � 4; 1 � a1 � 2; 4 � a2 � 6; a3 ¼ 1

48. A linearized model of a torque-controlled crane
hoisting a load with a fixed rope length is

PðsÞ ¼ XTðsÞ
FTðsÞ ¼

1

mT

s2 þ v2
0

s2ðs2 þ av2
0Þ

wherev0 ¼
ffiffiffiffiffi
g
L ;

q
L¼ the rope length,mT ¼ the mass

of the car, a¼ the combined rope and car mass, f T ¼
the force input applied to the car, and xT ¼ the
resulting rope displacement (Marttinen, 1990). If
the system is controlled in a feedback configuration
by placing it in a loop as shown in Figure P6.11, with
K > 0; where will the closed-loop poles be located?

K P(s)
+

–

C(s)R(s)

FIGURE P6.11

49. The read/write head assembly arm of a computer
hard disk drive (HDD) can be modeled as a rigid
rotating body with inertia Ib: Its dynamics can be
described with the transfer function

PðsÞ ¼ XðsÞ
FðsÞ ¼ 1

Ibs2

where X(s) is the displacement of the read/write
head and F(s) is the applied force (Yan, 2003).
Show that if the HDD is controlled in the con-
figuration shown in Figure P6.11, the arm will
oscillate and cannot be positioned with any pre-
cision over a HDD track. Find the oscillation
frequency.

50. A system is represented in state space as

_x ¼
0 1 3
2 2 �4
1 �4 3

2
4

3
5xþ

0
1
0

2
4
3
5u

y ¼ 1 1 0½ �x

Determine how many eigenvalues are in the right
half-plane, in the left half-plane, and on the jv-axis.
[Section: 6.5]
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51. UseMATLABtofindtheeigenval-
ues of the following system:

_x ¼
0 1 0

0 1 �4

�1 1 8

2
64

3
75xþ

0

0

0

2
64
3
75u

y ¼ 0 0 1½ �x

52. The following system in state space
represents the forward path of a unity
feedback system. Use the Routh-
Hurwitz criterion to determine if
the closed-loop system is stable. [Sec-
tion: 6.5]

_x ¼
0 1 0
0 1 3

�3 �4 �5

2
4

3
5xþ

0
0
1

2
4
3
5u

y ¼ 0 1 1½ �x

53. Repeat Problem 52 using
MATLAB.

54. A Butterworth polynomial is of the form

BnðsÞ ¼ 1 þ ð�1Þn s

vc

� �2n

; n > 0:

Use the Routh-Hurwitz criteria to find the zeros of
a Butterworth polynomial for:

a. n ¼ 1;

b. n ¼ 2

DESIGN PROBLEMS
55. A model for an airplane’s pitch loop is

shown in Figure P6.12. Find the range

of gain, K, that will keep the system stable. Can the
system ever be unstable for positive values of K?

56. A common application of control systems is in
regulating the temperature of a chemical process
(Figure P6.13). The flow of a chemical reactant to a
process is controlled by an actuator and valve. The
reactant causes the temperature in the vat to
change. This temperature is sensed and compared
to a desired set-point temperature in a closed loop,
where the flow of reactant is adjusted to yield the
desired temperature. In Chapter 9, we will learn
how a PID controller is used to improve the per-
formance of such process control systems. Figure
P6.13 shows the control system prior to the addition
of the PID controller. The PID controller is
replaced by the shaded box with a gain of unity.
For this system, prior to the design of the PID
controller, find the range of amplifier gain, K, to
keep the system stable.

Desired
temperature

set point +

–

Future PID
controller Amplifier

Actuator
and

valve

Chemical
heat

process Actual
temperature

K 1 0.7

0.1

Temperature
sensor

s + 0.4 s2 + 1.7s + 0.25

s + 0.1

1

FIGURE P6.13 Block diagram of a chemical process control
system

57. A robot arm called ISAC (Intelligent Soft Arm
Control) can be used as part of a system to feed
people with disabilities (see Figure P6.14(a)). The
control system guides the spoon to the food and
then to a position near the person’s mouth. The arm
uses a special pneumatically controlled actuator
called a rubbertuator. Rubbertuators consist of rub-
ber tubes covered with fiber cord. The actuator
contracts in length when pneumatic pressure is
increased and expands in length when pressure is
decreased. This expansion and contraction in length
can drive a pulley or other device. A video camera
provides the sight for the robot and the tracking
loop (Kara, 1992). Assume the simplified block
diagram shown in Figure P6.14(b) for regulating
the spoon at a distance from the mouth. Find the
range of K for stability. (Use of a program with
symbolic capability is recommended.)

+

Gyro

1

s + 10K(s + 1)

(s + 4.85)

Commanded
pitch angle

Controller Aircraft dynamics

Pitch angle

– s2 + 0.6s + 9

FIGURE P6.12 Aircraft pitch loop model
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R(s) +

–

C(s)

Desired
spoon

position

Actual
spoon

position

(a)

(b)

K(s+0.01)(s+6)

s(s+20)(s+100)

Controller

10

s2+10s+29

Rubbertuator
and load

FIGURE P6.14 a. ISAC used for feeding (Courtesy of
Kazuhiko Kawamura, Vanderbilt University.)
b. simplified block diagram

58. Often an aircraft is required to tow
another vehicle, such as a practice
target or glider. To stabilize the
towed vehicle and prevent it from
rolling, pitching, and yawing, an autopilot is built
into the towed vehicle. Assume the block diagram
shown in Figure P6.15 represents the autopilot roll
control system (Cochran, 1992). Find the range of K
to keep the roll angle stable.

  c(s) +

–

  (s)K(s+0.6)(s+6)

(s+0.1)(s+100)

Commanded
roll angle

φ

Actual
roll angle

φ200

s2+12s+100

500
s(s+6)

Compensator Actuator
Roll

dynamics

FIGURE P6.15 Towed vehicle roll control

59. Cutting forces should be kept constant during
machining operations to prevent changes in spindle
speeds or work position. Such changes would dete-
riorate the accuracy of the work’s dimensions. A
control system is proposed to control the cutting
force. The plant is difficult to model, since the

factors that affect cutting force are time varying
and not easily predicted. However, assuming
the simplified force control model shown in Figure
P6.16, use the Routh-Hurwitz criterion to find the
range of K to keep the system stable (Rober, 1997).

60. Transportation systems that use magnetic levitation
can reach very high speeds, since contact friction at
the rails is eliminated (see Figure P6.17(a)). Electro-
magnets can produce the force to elevate the vehi-
cle. Figure P6.17(b) is a simulation model of a
control system that can be used to regulate the
magnetic gap. In the figure, ZvinðsÞ represents a
voltage proportional to the desired amount of levi-
tation, or gap. ZvoutðsÞ represents a voltage propor-
tional to the actual amount of levitation. The plant
models the dynamic response of the vehicle to

R(s) +

–

C(s)

Desired
force

Actual
force

K
(s+30)(s+140)(s + 2.5)

Controller Plant

×63 106

FIGURE P6.16 Cutting force control system (Reprinted with
permission of ASME.)

–

+Zvin(s)Zvin(s) Zvout(s)Zvout(s)
K(s+0.8)(s+103)

s

Controller

(s+62.61)(s–62.61)
7570

Plant

(a)

(b)

FIGURE P6.17 a. A magnetic levitation transportation system
(# Japan Air Lines/Photo Researchers); b. simplified block
diagram (# 1998 IEEE)
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signals from the controller (Bittar, 1998). Use the
Routh-Hurwitz criterion to find the range of gain,
K, to keep the closed loop system stable.

61. A transfer function from indoor radiator power,
_QðsÞ; to room temperature, T(s), in an 11 m2

room is

PðsÞ ¼ TðsÞ
_QðsÞ ¼

1 � 10�6s2 þ 1:314 � 10�9sþ 2:66 � 10�13

s3 þ 0:00163s2 þ 5:272 � 10�7sþ 3:538 � 10�11

where _Q is in watts and T is in �C. (Thomas, 2005).
The room’s temperature will be controlled by
embedding it in a closed loop, such as that of Figure
P6.11. Find the range of K for closed-loop stability.

62. During vertical spindle surface grinding, adjust-
ments are made on a multi-axis computer numerical
control (CNC) machine by measuring the applied
force with a dynamometer and applying appropriate
corrections. This feedback force control results in
higher homogeneity and better tolerances in the
resulting finished product. In a specific experiment
with an extremely high feed rate, the transfer func-
tion from the desired depth of cut (DOC) to applied
force was

FðsÞ
DOCðsÞ ¼

KC

1 þ KC

ms2 þ bsþ k
�KC

Kf

1

Tsþ 1

where k ¼ 2:1�104 N/m; b ¼ 0:78 Ns/m; m ¼ 1:2�
10�4 Kg; KC ¼ 1:5 � 104 N/mm and T ¼ 0:004 s: Kf

is a parameter that is varied to adjust the system.
Find the range of Kf under which the system is
stable (Hekman, 1999).

63. Figure P6.18 depicts the schematic diagram of a
phase shift oscillator.

V1(t)

+

+
–

–

V2(t)

+

–

RRR

CCC

R1 R2

FIGURE P6.18 Phase shift oscillator

The circuit will oscillate if it is designed to have
poles on the jv-axis.

a. Show that the transfer function for the passive
network in the circuit is given by

V2ðsÞ
V1ðsÞ ¼

�1

1 þ 1

sRC

� �
2 þ 1

sRC

� �2

� 3 � 2

sRC

b. Show that the oscillator’s characteristic equation
is given by

1 �K
1

1 þ 1

sRC

� �
2 þ 1

sRC

� �2

� 3 � 2

sRC

¼ 0;

where K ¼ R2

R1

c. Use the Routh-Hurwitz criterion to obtain the
oscillation condition and the oscillation
frequency.

64. In order to obtain a low-cost lithium-ion battery
charger, the feedback loop of Figure P6.3 is used,
where GðsÞ ¼ GcðsÞPðsÞ. The following transfer
functions have been derived for G(s) (Tsang,
2009):

PðsÞ ¼ R1R2C1C2s2 þ R1C1 þ R2C1 þ R2C2ð Þsþ 1

C1 1 þ R2C2ð Þs

GcðsÞ ¼ Kp þKI

s

If R1 ¼ 0:15V;R2 ¼ 0:44V;C1 ¼ 7200 F; and C2 ¼
170 F use the Routh-Hurwitz criteria to find the
range of positive KP and KI for which the system is
closed-loop stable.

65. Figure P6.19 is a simplified and linearized block
diagram of a cascade control system, which is used
to control water level in a steam generator of a
nuclear power plant (Wang, 2009,).

In this system, the level controller, GLC(s), is the
master controller and the feed-water flow controller,
GFC(s) is the slave controller. Using mass balance
equations, the water level would ordinarily be
regarded as a simple integration process of water
flow. In a steam generator, however, steam flow rate
and the cooling effect of feed-water change the
dynamics of that process. Taking the latter into
account and ignoring the much-less pronounced
impact of changes in steam flow rate, a first-order
lag plus time delay is introduced into the transfer
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function, Gfw(s), relating the controlled level, C(s),
to feed-water flow rate, Qw(s) as follows:

GfwðsÞ ¼ CðsÞ
QwðsÞ

¼ K1e�t1S

sðT1sþ 1Þ ¼
2e�2S

sð25sþ 1Þ
	 2

sð25sþ 1Þð2s2 þ 2sþ 1Þ

where K1 ¼ 2 is the process gain, t1 ¼ 2 is the pure
time delay, and T1 ¼ 25 is the steam generator’s
time constant. (The expression e�t1s represents
a time delay. This function can be represented by
what is known as a Pade approximation. This ap-
proximation can take on many increasingly compli-
cated forms, depending upon the degree of accuracy
required. Here we use the Pade approximation,

e�x 	 1

1 þ xþ x2

2!

, and specific numerical values for

the considered steam generator.)
The dynamic characteristics of the control valve

are approximated by the transfer function:

GvðsÞ ¼ QwðsÞ
YðsÞ ¼ Kv

Tvsþ 1
¼ 1

3sþ 1
, where Kv is the

valve gain and Tv is its time constant.
Given that: GFCðsÞ ¼ KPFC þKDFCs ¼ 0:5 þ 2s

and GLCðsÞ ¼ KPLC þKDLC s ¼ 0:5 þK s, use the
Routh-Hurwitz criterion to find the range of the
level controller’s derivative gain, KDLC ¼ K > 0,
that will keep the system stable.

66. Look-ahead information can be used to automati-
cally steer a bicycle in a closed-loop configuration.
A line is drawn in the middle of the lane to be
followed, and an arbitrary point is chosen in the
vehicle’s longitudinal axis. A look-ahead offset is
calculated by measuring the distance between the
look-ahead point and the reference line and is used
by the system to correct the vehicle’s trajectory. A
linearized model of a particular bicycle traveling on
a straight-line path at a fixed longitudinal speed is

_V

_r

_c

_Yg

2
66664

3
77775 ¼

�11:7 6:8 61:6K 7:7K
� 3:5 �24 �66:9K 8:4K

0 1 0 0
1 0 �10 0

2
664

3
775

V

r

c

Yg

2
66664

3
77775

In this model, V¼ bicycle’s lateral velocity, r¼
bicycle’s yaw velocity, c¼ bicycle’s yaw accelera-
tion, and Yg ¼ bicycle’s center of gravity coordinate
on the y-axis. K is a controller parameter to be
chosen by the designer ( €Ozg€uner, 1995). Use the
Routh-Hurwitz citerion to find the range of K for
which the system is closed-loop stable.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
67. High-speed rail pantograph.Problem 21 in Chapter 1

discusses active control of a pantograph mechanism
for high-speed rail systems. In Problem 79(a), Chap-
ter 5, you found the block diagram for the active
pantograph control system. Using your solution for
Problem 79(a) in Chapter 5 and the Routh-Hurwitz
criterion, find the range of controller gain,K, that will
keep the system stable (O’Connor, 1997).

68. Control of HIV/AIDS. The HIV infection linear-
ized model developed in Problem 82, Chapter 4, can
be shown to have the transfer function

PðsÞ ¼ YðsÞ
U1ðsÞ ¼

�520s� 10:3844

s3 þ 2:6817s2 þ 0:11sþ 0:0126

G(s) P(s)
+

–

Virus count change, Y(s)
Desired virus
count change U1(s)

FIGURE P6.20

It is desired to develop a policy for drug delivery to
maintain the virus count at prescribed levels. For
the purpose of obtaining an appropriate u1ðtÞ;
feedback will be used as shown in Figure P6.20
(Craig, 2004).

GFC (s)GLC (s) GV (s)
_

+ Qw (s)
Gfw (s)

+

_

Y (s)X (s)

Controlled
level
 C (s)

Set point 
R(s)

FIGURE P6.19
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As a first approach, consider GðsÞ ¼ K; a constant
to be selected. Use the Routh-Hurwitz criteria to
find the range of K for which the system is closed-
loop stable.

69. Hybrid vehicle. Figure P6.21 shows the HEV system
presented in Chapter 5, where parameter values

have been substituted. It is assumed here that the
speed controller has a proportional gain, Kp, to be
adjusted. Use the Routh-Hurwitz stability method
to find the range of positive Kp for which the system
is closed-loop stable (Graebe, 1995).

Motor 
angular
speed 

 
_

_

0.1

2

Friction 
torque 
Tf (s)

UC(s)
+

1.8

Armature 
current 
Ia(s)

Eb(s)
Back emf 

Vehicle
speed
V(s)

4.875
0.3

Speed 
error 
Ev(s)

0.5

0.0443

s

sK p 40+
s

s 610 +

+ __

Torque
controller
& power
amplifier

Ref.
signal
Rv(s)

Feedback
speed signal

KSS Ω (s)

7.226s
1

TL (s)

+

Feedback
current signal

KCS Ia(s)

Ua(s)
 +

Speed
controller

Current sensor 
sensitivity 

Speed sensor 
sensitivity 

0.6154

Motive
torque

T(s)

_

1

Armature 
resistance

Ra(s)
Ω (s)

FIGURE P6.21

Cyber Exploration Laboratory

Experiment 6.1

Objectives To verify the effect of pole location upon stability. To verify the effect
upon stability of loop gain in a negative feedback system.

Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. Find the equivalent transfer function of the negative feedback system of Figure
P6.22 if

GðsÞ ¼ K

sðsþ 2Þ2
and HðsÞ ¼ 1

2. For the system of Prelab 1, find two values of gain that will yield closed-loop,
overdamped, second-order poles. Repeat for underdamped poles.

3. For the system of Prelab 1, find the value of gain, K, that will make the system
critically damped.

R(s) + C(s)
G(s)

H(s)

–

FIGURE P6.22
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4. For the system of Prelab 1, find the value of gain, K, that will make the system
marginally stable. Also, find the frequency of oscillation at that value of K that
makes the system marginally stable.

5. For each of Prelab 2 through 4, plot on one graph the pole locations for each case
and write the corresponding value of gain, K, at each pole.

Lab

1. Using Simulink, set up the negative feedback system of Prelab 1. Plot the step
response of the system at each value of gain calculated to yield overdamped,
underdamped, critically damped, and marginally stable responses.

2. Plot the step responses for two values of gain, K, above that calculated to yield
marginal stability.

3. At the output of the negative feedback system, cascade the transfer function

G1ðsÞ ¼ 1

s2 þ 4

Set the gain, K, at a value below that calculated for marginal stability and plot the
step response. Repeat for K calculated to yield marginal stability.

Postlab

1. From your plots, discuss the conditions that lead to unstable responses.

2. Discuss the effect of gain upon the nature of the step response of a closed-loop
system.

Experiment 6.2

Objective To use the LabVIEW Control Design and Simulation Module for
stability analysis.

Minimum Required Software Package LabVIEW with the Control Design
and Simulation Module

Prelab Select six transfer functions of various orders and use Routh-Hurwitz to
determine their stability.

Lab Create a LabVIEW VI that receives the order and the coefficients of the
characteristic equation and outputs the location of the poles and information
regarding stability.

Postlab Verify the stability of the systems from your Prelab.
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Steady-State Errors

7

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Find the steady-state error for a unity feedback system (Sections 7.1–7.2)

� Specify a system’s steady-state error performance (Section 7.3)

� Design the gain of a closed-loop system to meet a steady-state error specification
(Section 7.4)

� Find the steady-state error for disturbance inputs (Section 7.5)

� Find the steady-state error for nonunity feedback systems (Section 7.6)

� Find the steady-state error sensitivity to parameter changes (Section 7.7)

� Find the steady-state error for systems represented in state space (Section 7.8)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the preamplifier gain tomeet steady-state error performance
specifications.

� Given a video laser disc recorder, you will be able to find the gain required to permit
the system to record on a warped disc.
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7.1 Introduction

In Chapter 1, we saw that control systems analysis and design focus on three
specifications: (1) transient response, (2) stability, and (3) steady-state errors, taking
into account the robustness of the design along with economic and social considera-
tions. Elements of transient analysis were derived in Chapter 4 for first- and second-
order systems. These concepts are revisited in Chapter 8, where they are extended to
higher-order systems. Stability was covered in Chapter 6, where we saw that forced
responses were overpowered by natural responses that increase without bound if the
system is unstable. Now we are ready to examine steady-state errors. We define the
errors and derive methods of controlling them. As we progress, we find that control
system design entails trade-offs between desired transient response, steady-state
error, and the requirement that the system be stable.

Definition and Test Inputs
Steady-state error is the difference between the input and the output for a prescribed
test input as t ! 1. Test inputs used for steady-state error analysis and design are
summarized in Table 7.1.

In order to explain how these test signals are used, let us assume a position
control system, where the output position follows the input commanded position.
Step inputs represent constant position and thus are useful in determining the ability
of the control system to position itself with respect to a stationary target, such as a
satellite in geostationary orbit (see Figure 7.1). An antenna position control is an
example of a system that can be tested for accuracy using step inputs.

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

Waveform Name
Physical

interpretation
Time

function
Laplace
transform

r(t)

t

Step Constant position 1 1

s

r(t)

t

Ramp Constant velocity t
1

s2

r(t)

t

Parabola Constant acceleration
1

2
t2

1

s3
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Ramp inputs represent constant-velocity inputs to a position control system by
their linearly increasing amplitude. These waveforms can be used to test a system’s
ability to follow a linearly increasing input or, equivalently, to track a constant-
velocity target. For example, a position control system that tracks a satellite that
moves across the sky at a constant angular velocity, as shown in Figure 7.1, would be
tested with a ramp input to evaluate the steady-state error between the satellite’s
angular position and that of the control system.

Finally, parabolas, whose second derivatives are constant, represent constant-
acceleration inputs to position control systems and can be used to represent
accelerating targets, such as the missile in Figure 7.1, to determine the steady-state
error performance.

Application to Stable Systems
Since we are concerned with the difference between the input and the output of a
feedback control system after the steady state has been reached, our discussion is
limited to stable systems, where the natural response approaches zero as t ! 1.
Unstable systems represent loss of control in the steady state and are not acceptable
for use at all. The expressions we derive to calculate the steady-state error can be
applied erroneously to an unstable system. Thus, the engineer must check the system
for stability while performing steady-state error analysis and design. However, in
order to focus on the topic, we assume that all the systems in examples and problems
in this chapter are stable. For practice, you may want to test some of the systems for
stability.

Evaluating Steady-State Errors
Let us examine the concept of steady-state errors. In Figure 7.2(a) a step input and
two possible outputs are shown. Output 1 has zero steady-state error, and output 2
has a finite steady-state error, e2ð1Þ. A similar example is shown in Figure 7.2(b),
where a ramp input is compared with output 1, which has zero steady-state error, and
output 2, which has a finite steady-state error, e2ð1Þ, as measured vertically between
the input and output 2 after the transients have died down. For the ramp input

Tracking system

Satellite orbiting at
constant velocity

Accelerating
missile

Satellite in geostationary orbit

FIGURE 7.1 Test inputs for
steady-state error analysis and
design vary with target type
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another possibility exists. If the output’s slope is different from that of the input, then
output 3, shown in Figure 7.2(b), results. Here the steady-state error is infinite as
measured vertically between the input and output 3 after the transients have died
down, and t approaches infinity.

Let us now look at the error from the perspective of the most general block
diagram. Since the error is the difference between the input and the output of a system,
we assume a closed-loop transfer function,T(s), and form the error,E(s), by taking the
difference between the input and the output, as shown in Figure 7.3(a). Here we are
interested in the steady-state, or final, value of e(t). For unity feedback systems, E(s)
appears as shown in Figure 7.3(b). In this chapter, we study and derive expressions for
the steady-state error for unity feedback systems first and then expand to nonunity
feedback systems. Before we begin our study of steady-state errors for unity feedback
systems, let us look at the sources of the errors with which we deal.

FIGURE 7.2 Steady-state error:
a. step input; b. ramp input

Output 1

Output 2

Input

c(
t)

e2(∞)

Output 1

e2(∞)

Output 3

(a)

(b)

c(
t)

Time

Time

Output 2

Input

FIGURE 7.3 Closed-loop control
system error: a. general
representation; b. representation
for unity feedback systems

R(s)
T(s)

C(s) E(s)
+

– R(s)
G(s)

E(s) C(s)+

–

(b)(a)
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Sources of Steady-State Error
Many steady-state errors in control systems arise from nonlinear sources, such as
backlash in gears or a motor that will not move unless the input voltage exceeds a
threshold. Nonlinear behavior as a source of steady-state errors, although a viable
topic for study is beyond the scope of a text on linear control systems. The steady-
state errors we study here are errors that arise from the configuration of the system
itself and the type of applied input.

For example, look at the system of Figure 7.4(a), where R(s) is the input, C(s) is
the output, and EðsÞ ¼ RðsÞ � CðsÞ is the error. Consider a step input. In the steady
state, if c(t) equals r(t), e(t) will be zero. But with a pure gain, K, the error, e(t),
cannot be zero if c(t) is to be finite and nonzero. Thus, by virtue of the configuration
of the system (a pure gain of K in the forward path), an error must exist. If we call
csteady-state the steady-state value of the output and esteady-state the steady-state value of
the error, then csteady-state ¼ Kesteady-state, or

esteady-state ¼ 1

K
csteady-state ð7:1Þ

Thus, the larger the value of K, the smaller the value of esteady-state would have to be to
yield a similar value of csteady-state. The conclusion we can draw is that with a pure gain
in the forward path, there will always be a steady-state error for a step input. This
error diminishes as the value of K increases.

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(b),
there will be zero error in the steady state for a step input. The reasoning is as
follows: As c(t) increases, e(t) will decrease, since eðtÞ ¼ rðtÞ � cðtÞ. This decrease will
continue until there is zero error, but there will still be a value for c(t) since an
integrator can have a constant output without any input. For example, a motor can
be represented simply as an integrator. A voltage applied to the motor will cause
rotation. When the applied voltage is removed, the motor will stop and remain at its
present output position. Since it does not return to its initial position, we have an
angular displacement output without an input to the motor. Therefore, a system
similar to Figure 7.4(b), which uses a motor in the forward path, can have zero
steady-state error for a step input.

We have examined two cases qualitatively to show how a system can be expected
to exhibit various steady-state error characteristics, depending upon the system
configuration. We now formalize the concepts and derive the relationships between
the steady-state errors and the system configuration generating these errors.

7.2 Steady-State Error for Unity
Feedback Systems

Steady-state error can be calculated from a system’s closed-loop transfer function,
T(s), or the open-loop transfer function, G(s), for unity feedback systems. We begin
by deriving the system’s steady-state error in terms of the closed-loop transfer

+

–

R(s) E(s) C(s)
K

+

–

R(s) E(s) C(s)K
s

(a) (b)

FIGURE 7.4 System with
a. finite steady-state error for a
step input; b. zero steady-state
error for step input
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function, T(s), in order to introduce the subject and the definitions. Next we obtain
insight into the factors affecting steady-state error by using the open-loop transfer
function, G(s), in unity feedback systems for our calculations. Later in the chapter
we generalize this discussion to nonunity feedback systems.

Steady-State Error in Terms of T(s)
Consider Figure 7.3(a). To find E(s), the error between the input, R(s), and the
output, C(s), we write

EðsÞ ¼ RðsÞ � CðsÞ ð7:2Þ
But

CðsÞ ¼ RðsÞTðsÞ ð7:3Þ
Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for E(s) yields

EðsÞ ¼ RðsÞ½1 � TðsÞ� ð7:4Þ

Although Eq. (7.4) allows us to solve for e(t) at any time, t, we are interested in the
final value of the error, eð1Þ. Applying the final value theorem,1 which allows us to
use the final value of e(t) without taking the inverse Laplace transform of E(s), and
then letting t approach infinity, we obtain

eð1Þ ¼ lim
t!1 eðtÞ ¼ lim

s!0
sEðsÞ ð7:5Þ2

Substituting Eq. (7.4) into Eq. (7.5) yields

eð1Þ ¼ lim
s!1 sRðsÞ½1 � TðsÞ� ð7:6Þ

Let us look at an example.

1 The final value theorem is derived from the Laplace transform of the derivative. Thus,

L½ _f ðtÞ� ¼
Z 1

0�
_f ðtÞestdt ¼ sFðsÞ � f ð0�Þ

As s ! 0;

Z 1

0�
_f ðtÞdt ¼ f ð1Þ � f ð0�Þ ¼ lim

s!0
sFðsÞ � f ð0�Þ

or

f ð1Þ ¼ lim
s!0

sFðsÞ

For finite steady-state errors, the final value theorem is valid only if F(s) has poles only in the left half-
plane and, at most, one pole at the origin. However, correct results that yield steady-state errors that are
infinite can be obtained if F(s) has more than one pole at the origin (see D’Azzo andHoupis, 1988). If F(s)
has poles in the right half-plane or poles on the imaginary axis other than at the origin, the final value
theorem is invalid.
2 Valid only if (1)E(s) has poles only in the left half-plane and at the origin, and (2) the closed-loop transfer
function, T(s), is stable. Notice that by using Eq. (7.5), numerical results can be obtained for unstable
systems. These results, however, are meaningless.
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Example 7.1

Steady-State Error in Terms of T(s)

PROBLEM: Find the steady-state error for the system of Figure 7.3(a) if TðsÞ ¼
5=ðs2 þ 7sþ 10Þ and the input is a unit step.

SOLUTION: From the problem statement, RðsÞ ¼ 1=s and TðsÞ ¼ 5=ðs2 þ 7sþ 10Þ.
Substituting into Eq. (7.4) yields

EðsÞ ¼ s2 þ 7sþ 5

sðs2 þ 7sþ 10Þ ð7:7Þ

Since T(s) is stable and, subsequently, E(s) does not have right–half-plane poles or
jv poles other than at the origin, we can apply the final value theorem. Substituting
Eq. (7.7) into Eq. (7.5) gives eð1Þ ¼ 1=2.

Steady-State Error in Terms of G(s)
Many times we have the system configured as a unity feedback system with a
forward transfer function, G(s). Although we can find the closed-loop transfer
function, T(s), and then proceed as in the previous subsection, we find more insight
for analysis and design by expressing the steady-state error in terms of G(s) rather
than T(s).

Consider the feedback control system shown in Figure 7.3(b). Since the
feedback, H(s), equals 1, the system has unity feedback. The implication is that
E(s) is actually the error between the input, R(s), and the output, C(s). Thus, if we
solve for E(s), we will have an expression for the error. We will then apply the final
value theorem, Item 11 in Table 2.2, to evaluate the steady-state error.

Writing E(s) from Figure 7.3(b), we obtain

EðsÞ ¼ RðsÞ � CðsÞ ð7:8Þ
But

CðsÞ ¼ EðsÞGðsÞ ð7:9Þ
Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for E(s) yields

EðsÞ ¼ RðsÞ
1 þGðsÞ ð7:10Þ

We now apply the final value theorem, Eq. (7.5). At this point in a numerical
calculation, we must check to see whether the closed-loop system is stable, using, for
example, the Routh-Hurwitz criterion. For now, though, assume that the closed-loop
system is stable and substitute Eq. (7.10) into Eq. (7.5), obtaining

eð1Þ ¼ lim
s!0

sRðsÞ
1 þGðsÞ ð7:11Þ

Equation (7.11) allows us to calculate the steady-state error, eð1Þ, given the
input, R(s), and the system, G(s). We now substitute several inputs for R(s) and then
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draw conclusions about the relationships that exist between the open-loop system,
G(s), and the nature of the steady-state error, eð1Þ.

The three test signals we use to establish specifications for a control system’s
steady-state error characteristics are shown in Table 7.1. Let us take each input and
evaluate its effect on the steady-state error by using Eq. (7.11).

Step Input. Using Eq. (7.11) with RðsÞ ¼ 1=s, we find

eð1Þ ¼ estepð1Þ ¼ lim
s!0

s 1=sð Þ
1 þGðsÞ ¼

1

1 þ lim
s!0

GðsÞ ð7:12Þ

The term

lim
s!0

GðsÞ

is the dc gain of the forward transfer function, since s, the frequency variable, is
approaching zero. In order to have zero steady-state error,

lim
s!0

GðsÞ ¼ 1 ð7:13Þ

Hence, to satisfy Eq. (7.13), G(s) must take on the following form:

GðsÞ � ðsþ z1Þðsþ z2Þ � � �
snðsþ p1Þðsþ p2Þ � � �

ð7:14Þ

and for the limit to be infinite, the denominator must be equal to zero as s goes to
zero. Thus, n � 1; that is, at least one pole must be at the origin. Since division by s in
the frequency domain is integration in the time domain (see Table 2.2, Item 10), we
are also saying that at least one pure integration must be present in the forward path.
The steady-state response for this case of zero steady-state error is similar to that
shown in Figure 7.2(a), output 1.

If there are no integrations, then n ¼ 0. Using Eq. (7.14), we have

lim
s!0

GðsÞ ¼ z1z2 � � �
p1p2 � � �

ð7:15Þ

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), output 2, is an
example of this case of finite steady-state error.

In summary, for a step input to a unity feedback system, the steady-state error
will be zero if there is at least one pure integration in the forward path. If there are no
integrations, then there will be a nonzero finite error. This result is comparable to our
qualitative discussion in Section 7.1, where we found that a pure gain yields a
constant steady-state error for a step input, but an integrator yields zero error for the
same type of input. We now repeat the development for a ramp input.

Ramp Input. Using Eq. (7.11) with, RðsÞ ¼ 1=s2, we obtain

eð1Þ ¼ erampð1Þ ¼ lim
s!0

s 1=s2
� �

1 þGðsÞ ¼ lim
s!0

1

sþ sGðsÞ ¼
1

lim
s!0

sGðsÞ ð7:16Þ
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To have zero steady-state error for a ramp input, we must have

lim
s!0

sGðsÞ ¼ 1 ð7:17Þ

To satisfy Eq. (7.17), G(s) must take the same form as Eq. (7.14), except that n � 2. In
other words, there must be at least two integrations in the forward path. An example of
zero steady-state error for a ramp input is shown in Figure 7.2(b), output 1.

If only one integration exists in the forward path, then, assuming Eq. (7.14),

lim
s!0

sG sð Þ ¼ z1z2 � � �
p1p2 � � �

ð7:18Þ

which is finite rather than infinite. Using Eq. (7.16), we find that this configuration
leads to a constant error, as shown in Figure 7.2(b), output 2.

If there are no integrations in the forward path, then

lim
s!0

sGðsÞ ¼ 0 ð7:19Þ

and the steady-state error would be infinite and lead to diverging ramps, as shown in
Figure 7.2(b), output 3. Finally, we repeat the development for a parabolic input.

Parabolic Input. Using Eq. (7.11) with RðsÞ ¼ 1=s3, we obtain

eð1Þ ¼ eparabolað1Þ ¼ lim
s!0

s 1=s3
� �

1 þGðsÞ ¼ lim
s!0

1

s2 þ s2GðsÞ ¼
1

lim
s!0

s2GðsÞ ð7:20Þ

In order to have zero steady-state error for a parabolic input, we must have

lim
s!0

s2GðsÞ ¼ 1 ð7:21Þ

To satisfy Eq. (7.21), G(s) must take on the same form as Eq. (7.14), except that
n � 3. In other words, there must be at least three integrations in the forward path.

If there are only two integrations in the forward path, then

lim
s!0

s2G sð Þ ¼ z1z2 � � �
p1p2 � � �

ð7:22Þ

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads to
a constant error.

If there is only one or less integration in the forward path, then

lim
s!0

s2GðsÞ ¼ 0 ð7:23Þ

and the steady-state error is infinite. Two examples demonstrate these concepts.

Example 7.2

Steady-State Errors for Systems with No Integrations

PROBLEM: Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t2u(t) to the
system shown in Figure 7.5. The function u(t) is the unit step.
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SOLUTION: First we verify that the closed-loop system is indeed
stable. For this example we leave out the details. Next, for the input
5u(t), whose Laplace transform is 5=s, the steady-state error will be
five times as large as that given by Eq. (7.12), or

e 1ð Þ ¼ estepð1Þ ¼ 5

1 þ lim
s!0

GðsÞ ¼
5

1 þ 20
¼ 5

21
ð7:24Þ

which implies a response similar to output 2 of Figure 7.2(a).
For the input 5tu(t), whose Laplace transform is 5=s2, the steady-state error

will be five times as large as that given by Eq. (7.16), or

eð1Þ ¼ erampð1Þ ¼ 5

lim
s!0

sGðsÞ ¼
5

0
¼ 1 ð7:25Þ

which implies a response similar to output 3 of Figure 7.2(b).
For the input 5t2u(t), whose Laplace transform is 10=s3, the steady-state error

will be 10 times as large as that given by Eq. (7.20), or

eð1Þ ¼ eparabolað1Þ ¼ 10

lim
s!0

s2GðsÞ ¼
10

0
¼ 1 ð7:26Þ

Example 7.3

Steady-State Errors for Systems with One Integration

PROBLEM: Find the steady-state errors for inputs of 5u(t),
5tu(t), and 5t2u(t) to the system shown in Figure 7.6. The
function u(t) is the unit step.

SOLUTION: First verify that the closed-loop system is in-
deed stable. For this example we leave out the details. Next
note that since there is an integration in the forward path, the
steady-state errors for some of the input waveforms will be

less than those found in Example 7.2. For the input 5u(t), whose Laplace transform is
5=s, the steady-state error will be five times as large as that given by Eq. (7.12), or

eð1Þ ¼ estepð1Þ ¼ 5

1 þ lim
s!0

GðsÞ ¼
5

1 ¼ 0 ð7:27Þ

which implies a response similar to output 1 of Figure 7.2(a). Notice that the
integration in the forward path yields zero error for a step input, rather than the
finite error found in Example 7.2.

For the input 5tu(t), whose Laplace transform is 5=s2, the steady-state error
will be five times as large as that given by Eq. (7.16), or

eð1Þ ¼ erampð1Þ ¼ 5

lim
s!0

sGðsÞ ¼
5

100
¼ 1

20
ð7:28Þ

+

–

R(s) C(s)120(s + 2)

(s + 3)(s + 4)

E(s)

FIGURE 7.5 Feedback control system for
Example 7.2

+

–

R(s) C(s)100(s + 2)(s + 6)

s(s + 3)(s + 4)

E(s)

FIGURE 7.6 Feedback control system for Example 7.3
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which implies a response similar to output 2 of Figure 7.2(b). Notice that the
integration in the forward path yields a finite error for a ramp input, rather than
the infinite error found in Example 7.2.

For the input, 5t2u(t), whose Laplace transform is 10=s3, the steady-state error
will be 10 times as large as that given by Eq. (7.20), or

eð1Þ ¼ eparabolað1Þ ¼ 10

lim
s!0

s2GðsÞ ¼
10

0
¼ 1 ð7:29Þ

Notice that the integration in the forward path does not yield any improvement in
steady-state error over that found in Example 7.2 for a parabolic input.

Skill-Assessment Exercise 7.1

PROBLEM: A unity feedback system has the following forward transfer function:

G sð Þ ¼ 10ðsþ 20Þðsþ 30Þ
sðsþ 25Þðsþ 35Þ

a. Find the steady-state error for the following inputs: 15u(t), 15tu(t), and 15t2u(t).

b. Repeat for

G sð Þ ¼ 10ðsþ 20Þðsþ 30Þ
s2ðsþ 25Þðsþ 35Þðsþ 50Þ

ANSWERS:

a. The closed-loop system is stable. For 15u(t), estepð1Þ ¼ 0; for 15tu(t),
erampð1Þ ¼ 2:1875; for 15(t2)u(t), eparabolað1Þ ¼ 1:

b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is at www.wiley.com/college/nise.

7.3 Static Error Constants and
System Type

We continue our focus on unity negative feedback systems and define parameters
that we can use as steady-state error performance specifications, just as we defined
damping ratio, natural frequency, settling time, percent overshoot, and so on as
performance specifications for the transient response. These steady-state error
performance specifications are called static error constants. Let us see how they
are defined, how to calculate them, and, in the next section, how to use them for
design.
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Static Error Constants
In the previous section we derived the following relationships for steady-state error.
For a step input, u(t),

eð1Þ ¼ estepð1Þ ¼ 1

1 þ lim
s!0

GðsÞ ð7:30Þ

For a ramp input, tu(t),

eð1Þ ¼ erampð1Þ ¼ 1

lim
s!0

sGðsÞ ð7:31Þ

For a parabolic input,
1

2
t2uðtÞ.

eð1Þ ¼ eparabolað1Þ ¼ 1

lim
s!0

s2GðsÞ ð7:32Þ

The three terms in the denominator that are taken to the limit determine the
steady-state error. We call these limits static error constants. Individually, their names
are
position constant, Kp, where

Kp ¼ lim
s!0

GðsÞ ð7:33Þ

velocity constant, Kv, where

Kv ¼ lim
s!0

sGðsÞ ð7:34Þ

acceleration constant, Ka, where

Ka ¼ lim
s!0

s2GðsÞ ð7:35Þ

As we have seen, these quantities, depending upon the form of G(s), can
assume values of zero, finite constant, or infinity. Since the static error constant
appears in the denominator of the steady-state error. Eqs. (7.30) through (7.32), the
value of the steady-state error decreases as the static error constant increases.

In Section 7.2, we evaluated the steady-state error by using the final value
theorem. An alternate method makes use of the static error constants. A few
examples follow.

Example 7.4

Steady-State Error via Static Error Constants

PROBLEM: For each system of Figure 7.7, evaluate the static error constants and
find the expected error for the standard step, ramp, and parabolic inputs.
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SOLUTION: First verify that all closed-loop systems shown are indeed stable. For
this example we leave out the details. Next, for Figure 7.7(a),

Kp ¼ lim
s!0

G sð Þ ¼ 500 � 2 � 5

8 � 10 � 12
¼ 5:208 ð7:36Þ

Kv ¼ lim
s!0

sGðsÞ ¼ 0 ð7:37Þ

Ka ¼ lim
s!0

s2GðsÞ ¼ 0 ð7:38Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0:161 ð7:39Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 1 ð7:40Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1 ð7:41Þ

Now, for Figure 7.7(b),

Kp ¼ lim
s!0

GðsÞ ¼ 1 ð7:42Þ

Kv ¼ lim
s!0

sG sð Þ ¼ 500 � 2 � 5 � 6

8 � 10 � 12
¼ 31:25 ð7:43Þ

+

–

R(s) C(s)500(s + 2)(s + 5)

(s + 8)(s + 10)(s + 12)

(a)

+

–

R(s) C(s)500(s + 2)(s + 5)(s + 6)

s(s + 8)(s + 10)(s + 12)

(b)

+

–

R(s) C(s)500(s + 2)(s + 4)(s + 5)(s + 6)(s + 7)

s2(s + 8)(s + 10)(s + 12)

(c)

E(s)

E(s)

E(s)

FIGURE 7.7 Feedback control systems for Example 7.4
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and

Ka ¼ lim
s!0

s2GðsÞ ¼ 0 ð7:44Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0 ð7:45Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 1

31:25
¼ 0:032 ð7:46Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1 ð7:47Þ

Finally, for Figure 7.7(c),

Kp ¼ lim
s!0

GðsÞ ¼ 1 ð7:48Þ

Kv ¼ lim
s!0

sGðsÞ ¼ 1 ð7:49Þ

and

Ka ¼ lim
s!0

s2G sð Þ ¼ 500 � 2 � 4 � 5 � 6 � 7

8 � 10 � 12
¼ 875 ð7:50Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0 ð7:51Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 0 ð7:52Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1

875
¼ 1:14 � 10�3 ð7:53Þ

Students who are using MATLAB should now run ch7p1 in Appendix B.
You will learn how to test the system for stability, evaluate
static error constants, and calculate steady-state error using
MATLAB. This exercise applies MATLAB to solve Example 7.4 with
System (b).

System Type
Let us continue to focus on a unity negative feedback system. The values of the static
error constants, again, depend upon the form of G(s), especially the number of pure
integrations in the forward path. Since steady-state errors are dependent upon the
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number of integrations in the forward path, we give a name to this
system attribute. Given the system in Figure 7.8, we define system
type to be the value of n in the denominator or, equivalently, the
number of pure integrations in the forward path. Therefore, a
system with n ¼ 0 is a Type 0 system. If n ¼ 1 or n ¼ 2, the
corresponding system is a Type 1 or Type 2 system, respectively.

Table 7.2 ties together the concepts of steady-state error,
static error constants, and system type. The table shows the static error constants and
the steady-state errors as functions of input waveform and system type.

Skill-Assessment Exercise 7.2

PROBLEM: A unity feedback system has the following forward transfer function:

G sð Þ ¼ 1000ðsþ 8Þ
ðsþ 7Þðsþ 9Þ

a. Evaluate system type, Kp, Kv, and Ka.

b. Use your answers to a. to find the steady-state errors for the standard step,
ramp, and parabolic inputs.

ANSWERS:

a. The closed-loop system is stable. System type¼Type 0. Kp ¼ 127, Kv ¼ 0,
and Ka ¼ 0.

b. estepð1Þ ¼ 7:8 � 10�3; erampð1Þ ¼ 1; and eparabolað1Þ ¼ 1
The complete solution is at www.wiley.com/college/nise.

In this section, we defined steady-state errors, static error constants, and system
type. Now the specifications for a control system’s steady-state errors will be
formulated, followed by some examples.

7.4 Steady-State Error Specifications

Static error constants can be used to specify the steady-state error characteristics of
control systems, such as that shown in Figure 7.9. Just as damping ratio, z, settling
time, Ts, peak time, Tp, and percent overshoot, %OS, are used as specifications for a

+

–

R(s) C(s)K(s + z1)(s + z2) ...

sn(s + p1)(s + p2) ...

E(s)

FIGURE 7.8 Feedback control system for
defining system type

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type 2

Input
Steady-state
error formula

Static error
constant Error

Static error
constant Error

Static error
constant Error

Step, u(t)
1

1 þKp
Kp ¼ Constant

1

1 þKp
Kp ¼ 1 0 Kp ¼ 1 0

Ramp, tu(t)
1

Kv
Kv ¼ 0 1 Kv ¼ Constant

1

Kv
Kv ¼ 1 0

Parabola,
1

2
t2u tð Þ 1

Ka
Ka ¼ 0 1 Ka ¼ 0 1 Ka ¼ Constant

1

Ka

TryIt 7.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find Kp,
estepð1Þ, and the closed-loop
poles to check for stability for
the system of Skill-Assessment
Exercise 7.2.

numg=1000*[1 8];
deng=poly([-7 -9]);
G=tf(numg,deng);
Kp=dcgain(G)
estep=1/(1+Kp)
T=feedback(G,1);
poles=pole(T)
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control system’s transient response, so the position constant, Kp, velocity constant,
Kv, and acceleration constant, Ka, can be used as specifications for a control system’s
steady-state errors. We will soon see that a wealth of information is contained within
the specification of a static error constant.

For example, if a control system has the specification Kv ¼ 1000, we can draw
several conclusions:

1. The system is stable.

2. The system is of Type 1, since only Type 1 systems haveKv’s that are finite constants.
Recall that Kv ¼ 0 for Type 0 systems, whereas Kv ¼ 1 for Type 2 systems.

3. A ramp input is the test signal. Since Kv is specified as a finite constant, and the
steady-state error for a ramp input is inversely proportional to Kv, we know the
test input is a ramp.

4. The steady-state error between the input ramp and the output ramp is 1=Kv per
unit of input slope.

Let us look at two examples that demonstrate analysis and design using static
error constants.

Example 7.5

Interpreting the Steady-State Error Specification

PROBLEM: What information is contained in the specification Kp ¼ 1000?

SOLUTION: The system is stable. The system is Type 0, since only a Type 0 system
has a finite Kp. Type 1 and Type 2 systems have Kp ¼ 1. The input test signal is a
step, since Kp is specified. Finally, the error per unit step is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ 1000
¼ 1

1001
ð7:54Þ

FIGURE 7.9 A robot used in the
manufacturing of semiconductor
random-access memories
(RAMs) similar to those in
personal computers. Steady-state
error is an important design
consideration for assembly-line
robots.
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Example 7.6

Gain Design to Meet a Steady-State Error Specification

PROBLEM: Given the control system in Figure 7.10, find the
value of K so that there is 10% error in the steady state.

SOLUTION: Since the system is Type 1, the error stated in the
problem must apply to a ramp input; only a ramp yields a finite
error in a Type 1 system. Thus,

eð1Þ ¼ 1

Kv
¼ 0:1 ð7:55Þ

Therefore,

Kv ¼ 10 ¼ lim
s!0

sG sð Þ ¼ K � 5

6 � 7 � 8
ð7:56Þ

which yields

K ¼ 672 ð7:57Þ
Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it
may not yield a desirable transient response. In Chapter 9 we will design feedback
control systems to meet all three specifications.

Students who are using MATLAB should now run ch7 p2 in Appendix B.
You will learn how to find the gain to meet a steady-state error
specification using MATLAB. This exercise solves Example 7.6
using MATLAB.

Skill-Assessment Exercise 7.3

PROBLEM: A unity feedback system has the following forward
transfer function:

GðsÞ ¼ Kðsþ 12Þ
ðsþ 14Þðsþ 18Þ

Find the value of K to yield a 10% error in the steady state.

ANSWER: K ¼ 189

The complete solution is at www.wiley.com/college/nise.

+

–

R(s) C(s)K(s + 5)

s(s + 6)(s + 7)(s + 8)

E(s)

FIGURE 7.10 Feedback control system for
Example 7.6

TryIt 7.2

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 7.3
and check the resulting
system for stability.

numg=[l 12];
deng=poly([-14 -18]);
G=tf(numg,deng);
Kpdk=dcgain(G);
estep=0.1;
K=(l/estep-1)/Kpdk
T=feedback(G,1);
poles=pole(T)
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This example and exercise complete our discussion of unity feedback systems. In
the remaining sections, we will deal with the steady-state errors for disturbances and
the steady-state errors for feedback control systems in which the feedback is not unity.

7.5 Steady-State Error for Disturbances

Feedback control systems are used to compensate for disturbances or unwanted
inputs that enter a system. The advantage of using feedback is that regardless of
these disturbances, the system can be designed to follow the input with small or zero

error, as we now demonstrate. Figure 7.11 shows a feedback
control system with a disturbance, D(s), injected between the
controller and the plant. We now re-derive the expression for
steady-state error with the disturbance included.

The transform of the output is given by

CðsÞ ¼ EðsÞG1ðsÞG2ðsÞ þDðsÞG2ðsÞ ð7:58Þ
But

CðsÞ ¼ RðsÞ � EðsÞ ð7:59Þ
Substituting Eq. (7.59) into Eq. (7.58) and solving for E(s), we obtain

E sð Þ ¼ 1

1 þG1ðsÞG2ðsÞR sð Þ � G2ðsÞ
1 þG1ðsÞG2ðsÞD sð Þ ð7:60Þ

where we can think of 1=½1 þG1ðsÞG2ðsÞ� as a transfer function relating E(s) to R(s)
and �G2ðsÞ=½1 þG1ðsÞG2ðsÞ� as a transfer function relating E(s) to D(s).

To find the steady-state value of the error, we apply the final value theorem3 to
Eq. (7.60) and obtain

eð1Þ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

s

1 þG1ðsÞG2ðsÞRðsÞ � lim
s!0

sG2ðsÞ
1 þG1ðsÞG2ðsÞDðsÞ

¼ eRð1Þ þ eDð1Þ
ð7:61Þ

where

eRð1Þ ¼ lim
s!0

s

1 þG1ðsÞG2ðsÞR sð Þ

and

eD 1ð Þ ¼ � lim
s!0

sG2ðsÞ
1 þG1ðsÞG2ðsÞD sð Þ

The first term, eRð1Þ, is the steady-state error due to R(s), which we have already
obtained. The second term, eDð1Þ, is the steady-state error due to the disturbance.
Let us explore the conditions on eDð1Þ that must exist to reduce the error due to the
disturbance.

At this point, we must make some assumptions about D(s), the controller, and
the plant. First we assume a step disturbance, DðsÞ ¼ 1=s. Substituting this value into

+

–

R(s) C(s)
G1(s)

E(s)

Controller

+
+

Plant

D(s)

G2(s)

FIGURE 7.11 Feedback control system showing
disturbance

3 Remember that the final value theorem can be applied only if the system is stable, with the roots of
½1 þG1ðsÞG2ðsÞ� in the left–half–plane.
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the second term of Eq. (7.61), eDð1Þ, the steady-state error component due to a step
disturbance is found to be

eD 1ð Þ ¼ � 1

lim
s!0

1

G2ðsÞ þ lim
s!0

G1ðsÞ ð7:62Þ

This equation shows that the steady-state error produced by a step disturbance can
be reduced by increasing the dc gain of G1(s) or decreasing the dc gain of G2(s).

This concept is shown in Figure 7.12, where the system of Figure 7.11 has
been rearranged so that the disturbance, D(s), is depicted as the input and the
error, E(s), as the output, with R(s) set equal to zero. If we want to minimize the
steady-state value of E(s), shown as the output in Figure 7.12, we must either
increase the dc gain of G1(s) so that a lower value of E(s) will be fed back to
match the steady-state value of D(s), or decrease the dc value of G2(s), which
then yields a smaller value of eð1Þ as predicted by the feedback formula.

Let us look at an example and calculate the numerical value of the
steady-state error that results from a disturbance.

Example 7.7

Steady-State Error Due to Step Disturbance

PROBLEM: Find the steady-state error component due to a step disturbance for
the system of Figure 7.13.

SOLUTION: The system is stable. Using Figure 7.12 and Eq. (7.62), we find

eDð1Þ ¼ � 1

lim
s!0

1

G2ðsÞ þ lim
s!0

G1 sð Þ
¼ � 1

0 þ 1000
¼ � 1

1000
ð7:63Þ

The result shows that the steady-state error produced by the step disturbance is
inversely proportional to the dc gain of G1(s). The dc gain of G2(s) is infinite in this
example.

Skill-Assessment Exercise 7.4

PROBLEM: Evaluate the steady-state error component due to a step disturbance
for the system of Figure 7.14.

+

–

R(s) C(s)
1000

Controller

E(s)
+

D(s)

+ 1

s(s + 25)

G1(s)
Plant
G2(s)

FIGURE 7.13 Feedback control system for Example 7.7

+

–

D(s)
G2(s)

Controller

Plant

G1(s)

–E(s)

FIGURE 7.12 Figure 7.11 system
rearranged to show disturbance as
input and error as output, with
RðsÞ ¼ 0

Virtual Experiment 7.1
Steady-State Error

Put theory into practice finding
the steady-state error of the
Quanser Rotary Servo when
subject to an input or a
disturbance by simulating it
in LabVIEW. This analysis
becomes important when
developing controllers for
bottle labelling machines
or robot joint control.

Virtual experiments are found
on WileyPLUS.
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ANSWER: eDð1Þ ¼ �9:98 � 10�4

The complete solution is at www.wiley.com/college/nise.

7.6 Steady-State Error for Nonunity Feedback Systems

Control systems often do not have unity feedback because of the compensation used to
improve performance or because of the physical model for the system. The feedback
path can be a pure gain other than unity or have some dynamic representation.

A general feedback system, showing the input transducer, G1(s), controller and
plant,G2(s), and feedback,H1(s), is shown in Figure 7.15(a). Pushing the input transducer

–
1000

s + 2
s + 4

C(s)E(s)+R(s) +
+

D(s)

FIGURE 7.14 System for Skill-Assessment Exercise 7.4

FIGURE 7.15 Forming an
equivalent unity feedback
system from a general nonunity
feedback system

R(s)

–

+ Ea(s)
G(s)

–

+

–1

(b) (c)

R(s)

–

+ Ea(s)

(d )

R(s)

–

+

(e)

E(s)

1 + G(s)H(s) – G(s)

C(s)

H(s)

R(s) Ea(s)
G(s)

C(s)

H(s)

G(s) C(s)
G(s)

H(s) – 1

C(s)

–

– –

–

+ Ea1(s)
G2(s)

(a)

C(s)

H1(s)

R(s)
G1(s)
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to the right past the summing junction yields the general nonunity feedback system
shown in Figure 7.15(b), where GðsÞ ¼ G1ðsÞG2ðsÞ and HðsÞ ¼ H1ðsÞ=G1ðsÞ. No-
tice that unlike a unity feedback system, where HðsÞ ¼ 1, the error is not the difference
between the input and the output. For this case we call the signal at the output of the
summing junction the actuating signal, Ea(s). If r(t) and c(t) have the same units, we can
find the steady-state error, eð1Þ ¼ rð1Þ � cð1Þ. The first step is to show explicitly
EðsÞ ¼ RðsÞ � CðsÞ on the block diagram.

Take the nonunity feedback control system shown in Figure 7.15(b) and form a
unity feedback system by adding and subtracting unity feedback paths, as shown in
Figure 7.15(c). This step requires that input and output units be the same. Next
combine H(s) with the negative unity feedback, as shown in Figure 7.15(d). Finally,
combine the feedback system consisting of G(s) and ½HðsÞ � 1�, leaving an equiv-
alent forward path and a unity feedback, as shown in Figure 7.15(e). Notice that the
final figure shows EðsÞ ¼ RðsÞ � CðsÞ explicitly.

The following example summarizes the concepts of steady-state error, system
type, and static error constants for nonunity feedback systems.

Example 7.8

Steady-State Error for Nonunity Feedback Systems

PROBLEM: For the system shown in Figure 7.16, find the system type,
the appropriate error constant associated with the system type, and
the steady-state error for a unit step input. Assume input and output
units are the same.

SOLUTION: After determining that the system is indeed stable, one
may impulsively declare the system to be Type 1. This may not be the
case, since there is a nonunity feedback element, and the plant’s
actuating signal is not the difference between the input and the output.
The first step in solving the problem is to convert the system of Figure 7.16 into an
equivalent unity feedback system. Using the equivalent forward transfer function of
Figure 7.15(e) along with

G sð Þ ¼ 100

sðsþ 10Þ ð7:64Þ

and

H sð Þ ¼ 1

ðsþ 5Þ ð7:65Þ

we find

Ge sð Þ ¼ GðsÞ
1 þGðsÞHðsÞ �GðsÞ ¼

100ðsþ 5Þ
s3 þ 15s2 � 50s� 400

ð7:66Þ

Thus, the system is Type 0, since there are no pure integrations in Eq. (7.66). The
appropriate static error constant is then Kp, whose value is

Kp ¼ lim
s!0

Ge sð Þ ¼ 100 � 5

�400
¼ � 5

4
ð7:67Þ

R(s) C(s)

–

+ Ea(s)

1
(s + 5)

100
s(s + 10)

FIGURE 7.16 Nonunity feedback control
system for Example 7.8

TryIt 7.3

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find
Ge(s) in Example 7.8.

G=zpk([],[0 -10],100);
H=zpk([],- 5,1);
Ge=feedback...
(G,(H-1));

0Ge(s)0

Ge=tf(Ge)
T=feedback (Ge,1);
0Poles of T(s)0

pole(T)
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The steady-state error, eð1Þ, is

e 1ð Þ ¼ 1

1 þKp
¼ 1

1 � ð5=4Þ ¼ �4 ð7:68Þ

The negative value for steady-state error implies that the output step is larger
than the input step.

To continue our discussion of steady-state error for systems with
nonunity feedback, let us look at the general system of Figure 7.17,
which has both a disturbance and nonunity feedback. We will derive a
general equation for the steady-state error and then determine the
parameters of the system in order to drive the error to zero for step
inputs and step disturbances.4

The steady-state error for this system, eð1Þ ¼ rð1Þ � cð1Þ, is

eð1Þ ¼ lim
s!0

sE sð Þ ¼ lim
s!0

s

(
1 � G1ðsÞG2ðsÞ

1 þG1ðsÞG2ðsÞHðsÞ
� �

R sð Þ

� G2ðsÞ
1 þG1ðsÞG2ðsÞHðsÞD sð Þ
� �) ð7:69Þ

Now limiting the discussion to step inputs and step disturbances, where
RðsÞ ¼ DðsÞ ¼ 1=s, Eq. (7.69) becomes

e 1ð Þ ¼ lim
s!0

sE sð Þ ¼
(

1 �
lim
s!0

½G1ðsÞG2ðsÞ�
lim
s!0

½1 þG1ðsÞG2ðsÞHðsÞ�

" #

�
lim
s!0

G2ðsÞ
lim
s!0

½1 þG1ðsÞG2ðsÞHðsÞ�

" #) ð7:70Þ

For zero error,

lim
s!0

½G1ðsÞG2ðsÞ�
lim
s!0

½1 þG1ðsÞG2ðsÞHðsÞ� ¼ 1 and
lim
s!0

G2ðsÞ
lim
s!0

½1 þG1ðsÞG2ðsÞHðsÞ� ¼ 0 ð7:71Þ

The two equations in Eq. (7.71) can always be satisfied if (1) the system is stable, (2)
G1(s) is a Type 1 system, (3) G2(s) is a Type 0 system, and (4) H(s) is a Type 0 system
with a dc gain of unity.

To conclude this section, we discuss finding the steady-state value of the actuating
signal, Ea1(s), in Figure 7.15(a). For this task there is no restriction that the input and
output units be the same, since we are finding the steady-state difference between
signals at the summing junction, which do have the same units.5 The steady-state

R(s) C(s)

–
G1(s)

+ +
+

D(s)

G2(s)

H(s)

FIGURE 7.17 Nonunity feedback control system
with disturbance

4 Details of the derivation are included as a problem at the end of this chapter.
5 For clarity, steady-state error is the steady-state difference between the input and the output. Steady-
state actuating signal is the steady-state difference at the output of the summing junction. In questions
asking for steady-state error in problems, examples, and skill-assessment exercises, it will be assumed that
input and output units are the same.
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actuating signal for Figure 7.15(a) is

ea1 1ð Þ ¼ lim
s!0

sRðsÞG1ðsÞ
1 þG2ðsÞH1ðsÞ ð7:72Þ

The derivation is left to the student in the problem set at the end of this chapter.

Example 7.9

Steady-State Actuating Signal for Nonunity Feedback Systems

PROBLEM: Find the steady-state actuating signal for the system of Figure 7.16 for a
unit step input. Repeat for a unit ramp input.

SOLUTION: Use Eq. (7.72) with RðsÞ ¼ 1=s, a unit step input, G1ðsÞ ¼ 1;
G2ðsÞ ¼ 100=½sðsþ 10Þ�, and H1ðsÞ ¼ 1=ðsþ 5Þ. Also, realize that ea1ð1Þ ¼ eað1Þ,
since G1ðsÞ ¼ 1. Thus,

ea 1ð Þ ¼ lim
s!0

s
1

s

� �

1 þ 100

sðsþ 10Þ
� �

1

ðsþ 5Þ
� � ¼ 0 ð7:73Þ

Now use Eq. (7.72) with RðsÞ ¼ 1=s2, a unit ramp input, and obtain

eað1Þ ¼ lim
s!0

s
1

s2

� �

1 þ 100

sðsþ 10Þ
� �

1

ðsþ 5Þ
� � ¼ 1

2
ð7:74Þ

Skill-Assessment Exercise 7.5

PROBLEM:

a. Find the steady-state error, eð1Þ ¼ rð1Þ � cð1Þ, for a unit step input given
the nonunity feedback system of Figure 7.18. Repeat for a unit ramp input.
Assume input and output units are the same.

b. Find the steady-state actuating signal, eað1Þ, for a unit step input
given the nonunity feedback system of Figure 7.18. Repeat for a
unit ramp input.

ANSWERS:

a. estepð1Þ ¼ 3:846 � 10�2; erampð1Þ ¼ 1
b. For a unit step input, eað1Þ ¼ 3:846 � 10�2; for a unit ramp input,

eað1Þ ¼ 1
The complete solution is at www.wiley.com/college/nise.

In this section, we have applied steady-state error analysis to nonunity feed-
back systems. When nonunity feedback is present, the plant’s actuating signal is not

–

+ Ea(s) C(s)

s + 1
1

R(s)

s + 4
100

FIGURE 7.18 Nonunity feedback system
for Skill-Assessment Exercise 7.5
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the actual error or difference between the input and the output. With nonunity
feedback we may choose to (1) find the steady-state error for systems where the
input and output units are the same or (2) find the steady-state actuating signal.

We also derived a general expression for the steady-state error of a nonunity
feedback system with a disturbance. We used this equation to determine the attributes
of the subsystems so that there was zero error for step inputs and step disturbances.

Before concluding this chapter, we will discuss a topic that is not only significant for
steady-state errors but generally useful throughout the control systems design process.

7.7 Sensitivity

During the design process, the engineer may want to consider the extent to which
changes in system parameters affect the behavior of a system. Ideally, parameter
changes due to heat or other causes should not appreciably affect a system’s perform-
ance. The degree to which changes in system parameters affect system transfer
functions, and hence performance, is called sensitivity. A system with zero sensitivity
(that is, changes in the system parameters have no effect on the transfer function) is
ideal. The greater the sensitivity, the less desirable the effect of a parameter change.

For example, assume the function F ¼ K=ðK þ aÞ. If K ¼ 10 and a ¼ 100, then
F ¼ 0:091. If parametera triples to 300, thenF ¼ 0:032. We see that a fractional change
in parameteraof ð300 � 100Þ=100 ¼ 2 (a 200% change), yields a change in the function
F of ð0:032 � 0:091Þ=0:091 ¼ �0:65 ð�65% changeÞ. Thus, the function F has reduced
sensitivity to changes in parametera. As we proceed, we will see that another advantage
of feedback is that in general it affords reduced sensitivity to parameter changes.

Based upon the previous discussion, let us formalize a definition of sensitivity:
Sensitivity is the ratio of the fractional change in the function to the fractional change
in the parameter as the fractional change of the parameter approaches zero. That is,

SF:P ¼ lim
DP!0

Fractional change in the function; F

Fractional change in the parameter; P

¼ lim
DP!0

DF=F

DP=P

¼ lim
DP!0

PDF

FDP

which reduces to

SF:P ¼ P

F

dF

dP
ð7:75Þ

Let us now apply the definition, first to a closed-loop transfer function and then
to the steady-state error.

Example 7.10

Sensitivity of a Closed-Loop Transfer Function

PROBLEM: Given the system of Figure 7.19, calculate the sensitivity of
the closed-loop transfer function to changes in the parameter a. How
would you reduce the sensitivity?

R(s)

–

+ E(s) K
s(s + a)

C(s)

FIGURE 7.19 Feedback control
system for Examples 7.10 and 7.11
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SOLUTION: The closed-loop transfer function is

T sð Þ ¼ K

s2 þ asþK
ð7:76Þ

Using Eq. (7.75), the sensitivity is given by

ST:a ¼ a

T

dT

da
¼ a

K

s2 þ asþK

� � �Ks

ðs2 þ asþKÞ2

 !
¼ �as

s2 þ asþK
ð7:77Þ

which is, in part, a function of the value of s. For any value of s, however, an increase
in K reduces the sensitivity of the closed-loop transfer function to changes in the
parameter a.

Example 7.11

Sensitivity of Steady-State Error with Ramp Input

PROBLEM: For the system of Figure 7.19, find the sensitivity of the steady-state
error to changes in parameter K and parameter a with ramp inputs.

SOLUTION: The steady-state error for the system is

eð1Þ ¼ 1

Kv
¼ a

K
ð7:78Þ

The sensitivity of eð1Þ to changes in parameter a is

Se:a ¼ a

e

de

da
¼ a

a=K

1

K

� �
¼ 1 ð7:79Þ

The sensitivity of eð1Þ to changes in parameter K is

Se:K ¼ K

e

de

dK
¼ K

a=K

�a

K2

� �
¼ �1 ð7:80Þ

Thus, changes in either parameter a or parameter K are directly reflected in eð1Þ,
and there is no reduction or increase in sensitivity. The negative sign in Eq. (7.80)
indicates a decrease in eð1Þ for an increase in K. Both of these results could have
been obtained directly from Eq. (7.78) since eð1Þ is directly proportional to
parameter a and inversely proportional to parameter K.

Example 7.12

Sensitivity of Steady-State Error with Step Input

PROBLEM: Find the sensitivity of the steady-state error to changes in parameter K
and parameter a for the system shown in Figure 7.20 with a step input.
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SOLUTION: The steady-state error for this Type 0 system is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ K
ab

¼ ab

abþK
ð7:81Þ

The sensitivity of eð1Þ to changes in parameter a is

Se:a ¼ a

e

de

da
¼ a

ab

abþK

� � abþKð Þb� ab2

abþKð Þ2 ¼ K

abþK
ð7:82Þ

The sensitivity of eð1Þ to changes in parameter K is

Se:K ¼ K

e

de

dK
¼ K

ab

abþK

� � �ab

ðabþKÞ2 ¼ �K

abþK
ð7:83Þ

Equations (7.82) and (7.83) show that the sensitivity to changes in parameter K and
parameter a is less than unity for positive a and b. Thus, feedback in this case yields
reduced sensitivity to variations in both parameters.

Skill-Assessment Exercise 7.6

PROBLEM: Find the sensitivity of the steady-state error to changes in
K for the system of Figure 7.21.

ANSWER: Se:k ¼ �7K

10 þ 7K

The complete solution is at www.wiley.com/college/nise.

In this section, we defined sensitivity and showed that in some cases feedback
reduces the sensitivity of a system’s steady-state error to changes in system parameters.
The concept of sensitivity can be applied to other measures of control system perform-
ance, as well; it is not limited to the sensitivity of the steady-state error performance.

7.8 Steady-State Error for Systems in State Space

Up to this point, we have evaluated the steady-state error for systems modeled as
transfer functions. In this section, we will discuss how to evaluate the steady-state
error for systems represented in state space. Two methods for calculating the steady-
state error will be covered: (1) analysis via final value theorem and (2) analysis via
input substitution. We will consider these methods individually.

Analysis via Final Value Theorem
A single-input, single-output system represented in state space can be analyzed for
steady-state error using the final value theorem and the closed-loop transfer

s2 + 2s + 10

K(s + 7)

–

+ E(s) C(s)R(s)

FIGURE 7.21 System for Skill-Assessment
Exercise 7.6

TryIt 7.4

Use MATLAB, the Symbolic
Math Toolbox, and the fol-
lowing statements to find Se:a
in Example 7.12.

syms K a b s
G=K/((s+a)*(s+b));
Kp=subs(G,s,o);
e=1/(1+Kp);
Sea=(a/e)*diff(e,a);
Sea=simple(Sea);
0Sea 0

pretty(Sea)

R(s)

–

+ K
(s + a)(s + b)

E(s) C(s)

FIGURE 7.20 Feedback control system for
Example 7.12
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function, Eq. (3.73), derived in terms of the state-space representation. Consider the
closed-loop system represented in state space:

_x ¼ Axþ Br ð7:84aÞ

y ¼ Cx ð7:84bÞ
The Laplace transform of the error is

EðsÞ ¼ RðsÞ � YðsÞ ð7:85Þ
But

YðsÞ ¼ RðsÞTðsÞ ð7:86Þ
where T(s) is the closed-loop transfer function. Substituting Eq. (7.86) into (7.85), we
obtain

EðsÞ ¼ RðsÞ½1 � TðsÞ� ð7:87Þ
Using Eq. (3.73) for T(s), we find

EðsÞ ¼ RðsÞ½1 � CðsI�AÞ�1B� ð7:88Þ
Applying the final value theorem, we have

lim
s!0

sEðsÞ ¼ lim
s!0

sRðsÞ½1 � CðsI�AÞ�1B� ð7:89Þ

Let us apply the result to an example.

Example 7.13

Steady-State Error Using the Final Value Theorem

PROBLEM: Evaluate the steady-state error for the system described by Eqs. (7.90)
for unit step and unit ramp inputs. Use the final value theorem.

A ¼
�5 1 0

0 �2 1
20 �10 1

2
4

3
5; B ¼

0
0
1

2
4
3
5; C ¼ ½�1 1 0 � ð7:90Þ

SOLUTION: Substituting Eqs. (7.90) into (7.89), we obtain

eð1Þ ¼ lim
s!0

sR sð Þ 1 � sþ 4

s3 þ 6s2 þ 13sþ 20

� �

¼ lim
s!0

sR sð Þ s3 þ 6s2 þ 12sþ 16

s3 þ 6s2 þ 13sþ 20

� � ð7:91Þ

For a unit step, RðsÞ ¼ 1=s, and eð1Þ ¼ 4=5. For a unit ramp, RðsÞ ¼ 1=s2, and
eð1Þ ¼ 1. Notice that the system behaves like a Type 0 system.

TryIt 7.5

Use MATLAB, the Symbolic
Math Toolbox, and the fol-
lowing statements to find the
steady-state error for a step
input to the system of
Example 7.13.

syms s
A=[-5 1 0

0 -2 1
20 -10 1];

B=[0;0;1];
C=[-l 1 0];
I=[l 0 0

0 1 0
0 0 1];

E=(l/s)*[l-C*...
[(s*I-A)^-l]*B];
%New command:
%subs(X,old,new):
%Replace old in ...
%X(old) with new.
error=subs(s*E,s,0)
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Analysis via Input Substitution
Another method for steady-state analysis avoids taking the inverse of ðsI�AÞ and
can be expanded to multiple-input, multiple-output systems; it substitutes the input
along with an assumed solution into the state equations (Hostetter, 1989). We will
derive the results for unit step and unit ramp inputs.

Step Inputs. Given the state Eqs. (7.84), if the input is a unit step where r ¼ 1, a
steady-state solution, xss, for x, is

xss ¼

V1

V2

..

.

Vn

2
66664

3
77775 ¼ V ð7:92Þ

where Vi is constant. Also,

_xss ¼ 0 ð7:93Þ
Substituting r ¼ 1, a unit step, along with Eqs. (7.92) and (7.93), into Eqs.
(7.84) yields

0 ¼ AVþ B ð7:94aÞ

yss ¼ CV ð7:94bÞ
where yss is the steady-state output. Solving for V yields

V ¼ �A�1B ð7:95Þ
But the steady-state error is the difference between the steady-state input and the
steady-state output. The final result for the steady-state error for a unit step input
into a system represented in state space is

eð1Þ ¼ 1 � yss ¼ 1 � CV ¼ 1 þ CA�1B ð7:96Þ

Ramp Inputs. For unit ramp inputs, r ¼ t, a steady-state solution for x is

xss ¼

V1t þW1

V2t þW2

..

.

Vnt þWn

2
66664

3
77775 ¼ Vt þW ð7:97Þ

where Vi and Wi are constants. Hence,

_xss ¼

V1

V2

..

.

Vn

2
66664

3
77775 ¼ V ð7:98Þ
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Substituting r ¼ t along with Eqs. (7.97) and (7.98) into Eqs. (7.84) yields

V ¼ AðVt þ WÞ þ Bt ð7:99aÞ

yss ¼ CðVt þWÞ ð7:99bÞ
In order to balance Eq. (7.99a), we equate the matrix coefficients of t, AV ¼ �B, or

V ¼ �A�1B ð7:100Þ

Equating constant terms in Eq. (7.99a), we have AW ¼ V, or

W ¼ A�1V ð7:101Þ

Substituting Eqs. (7.100) and (7.101) into (7.99b) yields

yss ¼ C½�A�1Bt þA�1ð�A�1BÞ� ¼ �C½A�1Bt þ ðA�1Þ2B� ð7:102Þ

The steady-state error is therefore

eð1Þ ¼ lim
t!1ðt � yssÞ ¼ lim

t!1½ð1 þ CA�1BÞt þ CðA�1Þ2B� ð7:103Þ

Notice that in order to use this method, A�1 must exist. That is, detA 6¼ 0.
We now demonstrate the use of Eqs. (7.96) and (7.103) to find the steady-state

error for step and ramp inputs.

Example 7.14

Steady-State Error Using Input Substitution

PROBLEM: Evaluate the steady-state error for the system described by the three
equations in Eq. (7.90) for unit step and unit ramp inputs. Use input substitution.

SOLUTION: For a unit step input, the steady-state error given by Eq. (7.96) is

eð1Þ ¼ 1 þ CA�1B ¼ 1 � 0:2 ¼ 0:8 ð7:104Þ

where C, A, and B are as follows:

A ¼
�5 1 0

0 �2 1

20 �10 1

2
64

3
75; B ¼

0

0

1

2
64
3
75; C ¼ ½�1 1 0 � ð7:105Þ

For a ramp input, using Eq. (7.103), we have

eð1Þ ¼ ½ lim
t!1½ð1 þ CA�1BÞ�t þ CðA�1Þ2B� ¼ lim

t!1ð0:8t þ 0:08Þ ¼ 1 ð7:106Þ
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Skill-Assessment Exercise 7.7

PROBLEM: Find the steady-state error for a step input given the system repre-
sented in state space below. Calculate the steady-state error using both the final
value theorem and input substitution methods.

A ¼ 0 1
�3 �6

� �
; B ¼ 0

1

� �
; C ¼ ½ 1 1 �

ANSWER:

estepð1Þ ¼ 2

3

The complete solution is at www.wiley.com/college/nise.

In this chapter, we covered the evaluation of steady-state error for systems
represented by transfer functions as well as systems represented in state space. For
systems represented in state space, two methods were presented: (1) final value
theorem and (2) input substitution.

Case Studies

Antenna Control: Steady-State Error Design via Gain
This chapter showed how to find steady-state errors for step, ramp, and parabolic
inputs to a closed-loop feedback control system. We also learned how to evaluate
the gain to meet a steady-state error requirement. This ongoing case study uses our
antenna azimuth position control system to summarize the concepts.

PROBLEM: For the antenna azimuth position control system shown on the front
endpapers, Configuration 1,

a. Find the steady-state error in terms of gain, K, for step, ramp, and parabolic
inputs.

b. Find the value of gain, K, to yield a 10% error in the steady state.

SOLUTION:

a. The simplified block diagram for the system is shown on the front endpapers.
The steady-state error is given by

eð1Þ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

sRðsÞ
1 þGðsÞ ð7:107Þ

From the block diagram, after pushing the potentiometer to the right past the
summing junction, the equivalent forward transfer function is

GðsÞ ¼ 6:63K

sðsþ 1:71Þðsþ 100Þ ð7:108Þ
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To find the steady-state error for a step input, use RðsÞ ¼ 1=s along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is eð1Þ ¼ 0.

To find the steady-state error for a ramp input, use RðsÞ � 1=s2 along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is eð1Þ ¼ 25:79=K.

To find the steady-state error for a parabolic input, use RðsÞ ¼ 1=s3 along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is eð1Þ ¼ 1.

b. Since the system is Type 1, a 10% error in the steady-state must refer to a ramp
input. This is the only input that yields a finite, nonzero error. Hence, for a unit
ramp input,

eð1Þ ¼ 0:1 ¼ 1

Kv
¼ ð1:71Þð100Þ

6:63K
¼ 25:79

K
ð7:109Þ

from which K ¼ 257:9. You should verify that the value of K is within the range of
gains that ensures system stability. In the antenna control case study in the last
chapter, the range of gain for stability was found to be 0 < K < 2623:29. Hence, the
system is stable for a gain of 257.9.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system shown on the
front endpapers, Configuration 2, do the following:

a. Find the steady-state errors in terms of gain, K, for step, ramp, and parabolic
inputs.

b. Find the value of gain, K, to yield a 20% error in the steady state.

Video Laser Disc Recorder: Steady-State Error
Design via Gain

As a second case study, let us look at a video laser disc focusing system for recording.

PROBLEM: In order to record on a video laser disc, a 0.5mm laser spot must be
focused on the recording medium to burn pits that represent the program material.
The small laser spot requires that the focusing lens be positioned to an accuracy of
	0:1mm. A model of the feedback control system for the focusing lens is shown in
Figure 7.22.

The detector detects the distance between the focusing lens and the video disc by
measuring the degree of focus as shown in Figure 7.23(a). Laser light reflected from
the disc, D, is split by beam splitters B1 and B2 and focused behind aperture A. The
remainder is reflected by the mirror and focuses in front of aperture A. The amount
of light of each beam that passes through the aperture depends on how far the
beam’s focal point is from the aperture. Each side of the split photodiode, P,
measures the intensity of each beam. Thus, as the disc’s distance from the recording

Desired
lens

position

Actual
lens

position

Motor &
lensFilterDetector

Power
amplifier

+
_

0.12
(s + 40,000)

K1(s + 800)
K2

K3

s2

FIGURE 7.22 Video laser disc recording: control system for focusing write beam
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objective lens changes, so does the focal point of each beam. As a result, the rela-
tive voltage detected by each part of the split photodiode changes. When the beam
is out of focus, one side of the photodiode outputs a larger voltage. When the beam
is in focus, the voltage outputs from both sides of the photodiode are equal.

A simplified model for the detector is a straight line relating the differential voltage
output from the two elements to the distance of the laser disc from nominal focus. A
linearized plot of the detector input-output relationship is shown in Figure 7.23(b)
(Isailovi�c, 1985). Assume that a warp on the disc yields a worst-case disturbance in the
focus of 10t2mm. Find the value of K1K2K3 in order to meet the focusing accuracy
required by the system.

(a)

L2, recording
objective lens

B1, polarizing
beam splitter

L1, condensing
lens

D-Disc

Q–X/Y plate

B2, 50-50
beam splitter

Mirror

A, pinhole
aperture

P, split
photodiode

0.6

–0.6

–5 5

(b)

Distance from
nominal focus

(   m)μ

Differential
voltage

FIGURE 7.23 Video disc laser recording: a. focus detector optics; b. linearized transfer
function for focus detector
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SOLUTION: Since the system is Type 2, it can respond to parabolic inputs with finite
error. We can assume that the disturbance has the same effect as an input of
10t2mm. The Laplace transform of 10t2 is 20=s3, or 20 units greater than the unit
acceleration used to derive the general equation of the error for a parabolic input.
Thus, eð1Þ ¼ 20=Ka. But Ka ¼ lim

s!0
s2GðsÞ.

From Figure 7.22, Ka ¼ 0:0024K1K2K3. Also, from the problem statement, the
error must be no greater than 0.1mm. Hence, eð1Þ ¼ 8333:33=K1K2K3 ¼ 0:1. Thus,
K1K2K3 � 83333:3, and the system is stable.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives: Given the video laser disc recording system whose block diagram is
shown in Figure 7.24, do the following:

a. If the focusing lens needs to be positioned to an accuracy of 	0:005mm, find the
value of K1K2K3 if the warp on the disc yields a worst-case disturbance in the
focus of 15t2mm.

b. Use the Routh-Hurwitz criterion to show that the system is stable when the
conditions of a. are met.

c. Use MATLAB to show that the system is stable when the condi-
tions of a. are met.

Summary

This chapter covered the analysis and design of feedback control systems for steady-
state errors. The steady-state errors studied resulted strictly from the system
configuration. On the basis of a system configuration and a group of selected
test signals, namely steps, ramps, and parabolas, we can analyze or design for the
system’s steady-state error performance. The greater the number of pure integra-
tions a system has in the forward path, the higher the degree of accuracy, assuming
the system is stable.

The steady-state errors depend upon the type of test input. Applying the final
value theorem to stable systems, the steady-state error for unit step inputs is

eð1Þ ¼ 1

1 þ lim
s!0

GðsÞ ð7:110Þ

The steady-state error for ramp inputs of unit velocity is

eð1Þ ¼ 1

lim
s!0

sGðsÞ ð7:111Þ

Desired
lens

position

Actual
lens

position

Motor &
lensFilterDetector

Power
amplifier

+

_
0.2

(s + 20,000)
K1(s + 600)

K2
K3

s2

FIGURE 7.24 Video laser disc recording focusing system
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and for parabolic inputs of unit acceleration, it is

eð1Þ ¼ 1

lim
s!0

s2GðsÞ ð7:112Þ

The terms taken to the limit in Eqs. (7.110) through (7.112) are called static
error constants. Beginning with Eq. (7.110), the terms in the denominator taken to
the limit are called the position constant, velocity constant, and acceleration constant,
respectively. The static error constants are the steady-state error specifications for
control systems. By specifying a static error constant, one is stating the number of
pure integrations in the forward path, the test signal used, and the expected steady-
state error.

Another definition covered in this chapter was that of system type. The system
type is the number of pure integrations in the forward path, assuming a unity
feedback system. Increasing the system type decreases the steady-state error as long
as the system remains stable.

Since the steady-state error is, for the most part, inversely proportional to the
static error constant, the larger the static error constant, the smaller the steady-state
error. Increasing system gain increases the static error constant. Thus, in general,
increasing system gain decreases the steady-state error as long as the system remains
stable.

Nonunity feedback systems were handled by deriving an equivalent unity
feedback system whose steady-state error characteristics followed all previous
development. The method was restricted to systems where input and output units
are the same.

We also saw how feedback decreases a system’s steady-state error caused by
disturbances. With feedback, the effect of a disturbance can be reduced by system
gain adjustments.

Finally, for systems represented in state space, we calculated the steady-state
error using the final value theorem and input substitution methods.

In the next chapter, we will examine the root locus, a powerful tool for the
analysis and design of control systems.

Review Questions

1. Name two sources of steady-state errors.

2. A position control, tracking with a constant difference in velocity, would yield
how much position error in the steady state?

3. Name the test inputs used to evaluate steady-state error.

4. How many integrations in the forward path are required in order for there to be
zero steady-state error for each of the test inputs listed in Question 3?

5. Increasing system gain has what effect upon the steady-state error?

6. For a step input, the steady-state error is approximately the reciprocal of the
static error constant if what condition holds true?

7. What is the exact relationship between the static error constants and the steady-
state errors for ramp and parabolic inputs?

8. What information is contained in the specification Kp ¼ 10;000?

9. Define system type.
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10. The forward transfer function of a control system has three poles at
�1;�2; and �3. What is the system type?

11. What effect does feedback have upon disturbances?

12. For a step input disturbance at the input to the plant, describe the effect of
controller and plant gain upon minimizing the effect of the disturbance.

13. Is the forward-path actuating signal the system error if the system has nonunity
feedback?

14. How are nonunity feedback systems analyzed and designed for steady-state
errors?

15. Define, in words, sensitivity and describe the goal of feedback-control-system
engineering as it applies to sensitivity.

16. Name two methods for calculating the steady-state error for systems represented
in state space.

Problems

1. For the unity feedback system shown in
Figure P7.1, where

GðsÞ ¼ 450ðsþ 8Þðsþ 12Þðsþ 15Þ
sðsþ 38Þðs2 þ 2sþ 28Þ

find the steady-state errors for the following test inputs:
25uðtÞ; 37tuðtÞ; 47t2uðtÞ. [Section: 7.2]

E(s)
G(s)

C(s)R(s) +

–

FIGURE P7.1

2. Figure P7.2 shows the ramp input r(t) and the output
c(t) of a system. Assuming the output’s steady state
can be approximated by a ramp, find [Section: 7.1]

a. the steady-state error;

b. the steady-state error if the input becomes
rðtÞ ¼ tuðtÞ.

t(sec)

5

Mag

3

2

r(t)

c(t)

FIGURE P7.2

3. For the unity feedback system shown in Figure P7.1,
where

GðsÞ ¼ 60ðsþ 3Þðsþ 4Þðsþ 8Þ
s2ðsþ 6Þðsþ 17Þ

find the steady-state error if the input is 80t2uðtÞ.
[Section: 7.2]

4. For the system shown in Figure P7.3, what steady-
state error can be expected for the following test
inputs: 15uðtÞ; 15tuðtÞ; 15t2uðtÞ. [Section: 7.2]

C(s)R(s) +

–

+

–

+
+

–

1 2

3

4s

s s + 3

FIGURE P7.3

5. For the unity feedback system shown in Figure P7.1,
where

GðsÞ ¼ 500

ðsþ 24Þðs2 þ 8sþ 14Þ
find the steady-state error for inputs of 30u(t), 70tu(t),
and 81t2uðtÞ. [Section: 7.3]

6. An input of 25t3uðtÞ is applied to the input of a Type
3 unity feedback system, as shown in Figure P7.1,
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where

GðsÞ ¼ 210ðsþ 4Þðsþ 6Þðsþ 11Þðsþ 13Þ
s3ðsþ 7Þðsþ 14Þðsþ 19Þ

Find the steady-state error in position. [Section: 7.3]

7. The steady-state error in velocity of a
system is defined to be

dr

dt
� dc

dt

� �����
t!1

where r is the system input, and c is the system
output. Find the steady-state error in velocity for an
input of t3u(t) to a unity feedback system with a
forward transfer function of [Section: 7.2]

GðsÞ ¼ 100ðsþ 1Þðsþ 2Þ
s2ðsþ 3Þðsþ 10Þ

8. What is the steady-state error for a step input of 15
units applied to the unity feedback system of Figure
P7.1, where [Section: 7.3]

GðsÞ ¼ 1020ðsþ 13Þðsþ 26Þðsþ 33Þ
ðsþ 65Þðsþ 75Þðsþ 91Þ

9. A system has Kp ¼ 4. What steady-state error can be
expected for inputsof 70u(t) and70tu(t)? [Section7.3]

10. For the unity feedback system shown in Figure P7.1,
where [Section: 7.3]

GðsÞ ¼ 5000

sðsþ 75Þ
a. What is the expected percent overshoot for a unit

step input?

b. What is the settling time for a unit step input?

c. What is the steady-state error for an input of 5u(t)?

d. Whatisthesteady-stateerrorforaninputof5tu(t)?

e. What is the steady-state error for an input
of 5t2uðtÞ?

11. Given the unity feedback system shown in Figure
P7.1, where

GðsÞ ¼ 100500ðsþ 5Þðsþ 14Þðsþ 23Þ
sðsþ 27Þðsþ aÞðsþ 33Þ

find the value ofa toyieldaKv ¼ 25000. [Section: 7.4]

12. For the unity feedback system of Figure
P7.1, where

GðsÞ ¼ Kðsþ 2Þðsþ 4Þðsþ 6Þ
s2ðsþ 5Þðsþ 7Þ

find the value of K to yield a static error constant of
10,000. [Section: 7.4]

13. For the system shown in Figure P7.4, [Section: 7.3]

a. Find Kp, Kv, and Ka.

b. Find the steady-state error for an input of 50u(t),
50tu(t), and 50t2uðtÞ.

c. State the system type.

5

(s + 3)

C(s)R(s) +

– –
s(s + 1)(s + 2)

FIGURE P7.4

14. A Type 3 unity feedback system has rðtÞ ¼ 10t3

applied to its input. Find the steady-state position
error for this input if the forward transfer function is
[Section: 7.3]

GðsÞ ¼ 1030ðs2 þ 8sþ 23Þðs2 þ 21sþ 18Þ
s3ðsþ 6Þðsþ 13Þ

15. Find the system type for the system of Figure P7.5.
[Section: 7.3]

– –

+ C(s)

10

R(s)

s(s + 5)

100(s + 2)
s

1000

FIGURE P7.5

16. What are the restrictions on the feedforward trans-
fer function G2(s) in the system of Figure P7.6 to
obtain zero steady-state error for step inputs if:
[Section: 7.3]

a. G1(s) is a Type 0 transfer function;

b. G1(s) is a Type 1 transfer function;

c. G1(s) is a Type 2 transfer function?

G2(s)

G1(s)
)3(

20
+ss

R(s) C(s)E(s)+ + +

–

FIGURE P7.6
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17. The steady-state error is defined to be the difference in
position between input and output as time approaches
infinity. Let us define a steady-state velocity error,
which is the difference in velocity between input
and output. Derive an expression for the error in
velocity, _eð1Þ ¼ _rð1Þ � _cð1Þ, and complete Table
P7.1 for the error in velocity. [Sections: 7.2, 7.3]

TABLE P7.1

Type

Ramp

Parabola

In
pu

t

Step

0 1 2

18. For the system shown in Figure P7.7,
[Section: 7.4]

a. What value of K will yield a
steady-state error in position of 0.01 for an input
of ð1=10Þt?

b. What is the Kv for the value of K found in Part a?

c. What is the minimum possible steady-state posi-
tion error for the input given in Part a?

C(s)E(s) K(s + 7)
s(s + 5)(s + 8)(s + 12)

R(s) +

–

FIGURE P7.7

19. Given the unity feedback system of Figure P7.1, where

GðsÞ ¼ Kðsþ aÞ
sðsþ 2Þðsþ 13Þ

find the value of Ka so that a ramp input of slope 40
will yield an error of 0.006 in the steady state when
compared to the output. [Section: 7.4]

20. Given the system of Figure P7.8, design the value of
K so that for an input of 100tu(t), there will be a 0.01
error in the steady state. [Section: 7.4]

R(s) C(s)K
s(s + 1)

10s
K

+

– –

FIGURE P7.8

21. Find the value of K for the unity feedback system
shown in Figure P7.1, where

GðsÞ ¼ Kðsþ 3Þ
s2ðsþ 7Þ

if the input is 10t2uðtÞ, and the desired steady-state
error is 0.061 for this input. [Section: 7.4]

22. The unity feedback system of Figure P7.1, where

GðsÞ ¼ Kðs2 þ 3sþ 30Þ
snðsþ 5Þ

is to have 1/6000 error between an input of 10tu(t)
and the output in the steady state. [Section: 7.4]

a. Find K and n to meet the specification.

b. What are Kp, Kv, and Ka?

23. For the unity feedback system of Figure P7.1, where
[Section: 7.3]

GðsÞ ¼ Kðs2 þ 6sþ 6Þ
ðsþ 5Þ2ðsþ 3Þ

a. Find the system type.

b. What error can be expected for an input of
12u(t)?

c. What error can be expected for an input of
12tu(t)?

24. For the unity feedback system of Figure P7.1, where

GðsÞ ¼ Kðsþ 13Þðsþ 19Þ
sðsþ 6Þðsþ 9Þðsþ 22Þ

find the value of K to yield a steady-state error of 0.4
for a ramp input of 27tu(t). [Section: 7.4]

25. Given the unity feedback system of Figure P7.1,
where

GðsÞ ¼ Kðsþ 6Þ
ðsþ 2Þðs2 þ 10sþ 29Þ

find the value of K to yield a steady-state error of
8%. [Section: 7.4]

26. For the unity feedback system of Figure P7.1, where

GðsÞ ¼ K

sðsþ 4Þðsþ 8Þðsþ 10Þ
find the minimum possible steady-state position
error if a unit ramp is applied. What places the
constraint upon the error?
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27. The unity feedback system of Figure P7.1,
where

GðsÞ ¼ Kðsþ aÞ
ðsþ bÞ2

is to be designed to meet the following specifica-
tions: steady-state error for a unit step input ¼ 0.1;
damping ratio ¼ 0.5; natural frequency ¼ ffiffiffiffiffi

10
p

. Find
K, a, and b. [Section: 7.4]

28. A second-order, unity feedback system is to follow a
ramp input with the following specifications:
the steady-state output position shall differ from
the input position by 0.01 of the input velocity; the
natural frequency of the closed-loop system shall be
10 rad/s. Find the following:

a. The system type

b. The exact expression for the forward-path trans-
fer function

c. The closed-loop system’s damping ratio

29. The unity feedback system of Figure P7.1, where

GðsÞ ¼ Kðsþ aÞ
sðsþ bÞ

is to be designed to meet the following require-
ments: The steady-state position error for a unit
ramp input equals 1/10; the closed-loop poles will be
located at �1 	 j1. Find K, a, and b in order to meet
the specifications. [Section: 7.4]

30. Given the unity feedback control system of Figure
P7.1, where

GðsÞ ¼ K

snðsþ aÞ
find the values of n, K, and a in order to meet
specifications of 12% overshoot and Kv ¼ 110.
[Section: 7.4]

31. Given the unity feedback control system of Figure
P7.1, where

GðsÞ ¼ K

sðsþ aÞ
find the following: [Section: 7.4]

a. K and a to yield Kv ¼ 1000 and a 20% overshoot

b. K and a to yield a 1% error in the steady state
and a 10% overshoot

32. Given the system in Figure P7.9, find the following:
[Section: 7.3]

a. The closed-loop transfer function

b. The system type

c. The steady-state error for an input of 5u(t)

d. The steady-state error for an input of 5tu(t)

e. Discuss the validity of your answers to Parts c
and d.

R(s) +

_ s2 (s + 1)
1+

_ s2 (s + 3)
1 C(s)

s
1

FIGURE P7.9

33. Repeat Problem 32 for the system shown in Figure
P7.10. [Section: 7.3]

R(s) +

_
2 s(s + 1)(s + 3)(s + 4)

10 C(s)

2s

+

_

FIGURE P7.10

34. For the system shown in Figure
P7.11, use MATLAB to find the
following: [Section: 7.3]

a. The system type

b. Kp, Kv, and Ka

c. The steady-state error for inputs of
100u(t), 100tu(t), and 100t2u(t)

+

(s + 12)(s + 32)(s + 68)

6(s + 9)(s + 17) C(s)

13

+

_s(s + 6)(s + 12)(s + 14)

(s + 9)

s + 7
1

__

FIGURE P7.11

35. The system of Figure P7.12 is to have
the following specifications: Kv ¼
10; z ¼ 0:5. Find the values of K1 and
Kf required for the specifications of the
system to be met. [Section: 7.4]
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K f s

10
s(s + 1)

θ+

–
K1

–

θ +i(s)  0(s)

FIGURE P7.12

36. The transfer function from elevator deflection to
altitude change in a Tower Trainer 60 Unmanned
Aerial Vehicle is

PðsÞ ¼ hðsÞ
dðsÞe

¼ �34:16s3 � 144:4s2 þ 7047sþ 557:2

s5 þ 13:18s4 þ 95:93s3 þ 14:61s2 þ 31:94s

An autopilot is built around the aircraft as shown in
Figure P7.13, with FðsÞ ¼ HðsÞ ¼ 1 and

GðsÞ ¼ 0:00842ðsþ 7:895Þðs2 þ 0:108sþ 0:3393Þ
ðsþ 0:07895Þðs2 þ 4sþ 8Þ

(Barkana, 2005). The steady-state error for a ramp
input in this system is ess ¼ 25. Find the slope of the
ramp input.

F(s) G(s) P(s)
R(s) C(s)+

–

H(s)

FIGURE P7.13

37. A block diagram representing the Ktesibios’ water
clock discussed in Section 1.2 is shown in Chapter 5,
Problem 58, Figure P5.38(b) (Lepschy, 1992).

a. Find the system’s type.

b. For hrðtÞ ¼ uðtÞ, find the steady-state value of
eðtÞ ¼ hrðtÞ � hf ðtÞ.

38. Find the total steady-state error due to a unit step
input and a unit step disturbance in the system of
Figure P7.14. [Section: 7.5]

1

s + 5

100

s + 2

C(s)

D(s)

R(s) +

–

+
+

FIGURE P7.14

39. Design the values of K1 and K2 in the system of
Figure P7.15 to meet the following specifications:
Steady-state error component due to a unit step
disturbance is �0.000012; steady-state error compo-
nent due to a unit ramp input is 0.003. [Section: 7.5]

C(s)K1(s + 2)

(s + 3)

K2

s(s + 4)

D(s)

+
R(s) +

–

+

FIGURE P7.15

40. In Figure P7.16, let GðsÞ ¼ 5 and PðsÞ ¼ 7

sþ 2
.

a. Calculate the steady-state error due to a com-

mand input RðsÞ ¼ 3

s
with DðsÞ ¼ 0.

b. Verify the result of Part a

using Simulink.

c. Calculate the steady-state error due to a distur-

bance input DðsÞ ¼ � 1

s
with RðsÞ ¼ 0.

d. Verify the result of Part c

using Simulink.

e. Calculate the total steady-state error due to a

command input RðsÞ ¼ 3

s
and a disturbance

DðsÞ ¼ � 1

s
applied simultaneously.

f. Verify the result of Part e

using Simulink.

G(s) P(s)
+

–
R(s) C(s)

D(s )

+
+

FIGURE P7.16

41. Derive Eq. (7.72) in the text, the final value of the
actuating signal for nonunity feedback systems.
[Section: 7.6]

42. For each of the systems shown in Figure P7.17, find
the following: [Section: 7.6]

a. The system type

b. The appropriate static error constant

c. The input waveform to yield a constant error
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d. The steady-state error for a unit input of the
waveform found in Part c

e. The steady-state value of the actuating signal

C(s)

s(s + 2)

10(s + 10)

(s + 4)

System 1

C(s)

System 2

R(s) +

–

R(s) +

–
s(s + 2)

10(s + 10)

(s + 1)

FIGURE P7.17 Closed-loop systems with nonunity feedback

43. For each of the systems shown in Figure P7.18, find
the appropriate static error constant as well as the
steady-state error, rð1Þ � cð1Þ, for unit step, ramp,
and parabolic inputs. [Section: 7.6]

R(s)
(s+ 3)(s+ 7)

s+ 4 C(s)

5

+

_
20

R(s)

(s+ 3)(s+ 7)
s+ 4 C(s)

10

+

_
5

10

System 1

System 2

FIGURE P7.18

44. Given the system shown in Figure P7.19,
find the following: [Section: 7.6]

a. The system type

b. The value of K to yield 0.1% error in the steady
state

R(s) +

–

(s + 1)
s2(s + 2)

C(s)

K

FIGURE P7.19

45. For the system shown in Figure P7.20, [Section: 7.6]

a. What is the system type?

b. What is the appropriate static error constant?

c. What is the value of the appropriate static error
constant?

d. What is the steady-state error for a unit step
input?

R(s) +

–

K(s + 1)

s2(s + 3)

C(s)

(s + 4)
(s + 2)

FIGURE P7.20

46. For the system shown in Figure
P7.21, use MATLAB to find the
following for K ¼ 10, and
K¼ 106: [Section: 7.6]

a. The system type

b. Kp, Kv, and Ka

c. The steady-state error for inputs of
30u(t), 30tu(t), and 30t2u(t)

R(s) +

–

K(s + 1)(s + 2)
s2(s + 4)(s + 5)(s + 6)

C(s)

(s + 6)

(s + 8)(s + 9)

FIGURE P7.21

47. A dynamic voltage restorer (DVR) is a device that is
connected in series to a power supply. It continu-
ously monitors the voltage delivered to the load,
and compensates voltage sags by applying the nec-
essary extra voltage to maintain the load voltage
constant.

In the model shown in Figure P7.22, ur represents
the desired reference voltage, uo is the output
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voltage, and ZL is the load impedance. All other
parameters are internal to the DVR (Lam, 2004).

a. Assuming ZL ¼ 1

sCL
, and b 6¼ 1, find the system’s

type.

b. Find the steady-state error to a unit step input as
a function of b.

– –

–

–
++ ++ 1

Ls
Kν + KmKT

1
Cs

1
ZL

ur uo

FIGURE P7.22 DVR Model

48. Derive Eq. (7.69) in the text. [Section: 7.6]

49. Given the system shown in Figure P7.23, do the
following: [Section: 7.6]

a. Derive the expression for the error,
EðsÞ ¼ RðsÞ � CðsÞ, in terms of R(s) and D(s).

b. Derive the steady-state error, eð1Þ, if R(s) and
D(s) are unit step functions.

c. Determine the attributes of G1ðsÞ; G2ðsÞ, and
H(s) necessary for the steady-state error to
become zero.

C(s)

D(s)

G2(s)
+R(s) +

–

+

G1(s)

H(s)

FIGURE P7.23 System with input and disturbance

50. Given the system shown in Figure P7.24, find the
sensitivity of the steady-state error to parameter a.
Assume a step input. Plot the sensitivity as a func-
tion of parameter a. [Section: 7.7]

C(s)
s(s + 1)(s + 4)

K

(s + a)

R(s) +

–

FIGURE P7.24

51. a. Show that the sensitivity to plant changes in the
system of Figure P7.13 is

ST:P ¼ P

T

dT

dP
¼ 1

1 þ LðsÞ
where LðsÞ ¼ GðsÞPðsÞHðsÞ and

TðsÞ ¼ CðsÞ
RðsÞ ¼

FðsÞLðsÞ
1 þ RðsÞ :

b. Show that ST:PðsÞ þ TðsÞ
FðsÞ ¼ 1 for all values of s.

52. In Figure P7.13, PðsÞ ¼ 2

s
;

TðsÞ ¼ CðsÞ
RðsÞ ¼

14K

ðsþ 1Þðsþ 2Þðs2 þ 5sþ 14Þ ;

and

ST:P ¼ P

T

dT

dP
¼ s2 þ 5s

s2 þ 5sþ 14
:

a. Find F(s) and G(s).

b. Find the value of K that will result in zero steady-
state error for a unit step input.

53. For the system shown in Figure P7.25,
find the sensitivity of the steady-state
error forchanges inK1 and inK2, when
K1 ¼ 100 and K2 ¼ 0:1. Assume step inputs for both
the input and the disturbance. [Section: 7.7]

C(s)

D(s)

+
R(s) +

–

+
K1

s + 1

K2

s + 2

FIGURE P7.25 System with input and disturbance

54. Given the block diagram of the active suspension
system shown in Figure P5.43 (Lin, 1997):

a. Find the transfer function from a road distur-
bance r to the error signal e.

b. Use the transfer function in Parta to find the steady-
state value of e for a unit step road disturbance.

c. Use the transfer function in Parta to find the steady-
state value of e for a unit ramp road disturbance.

d. From your results in Parts b and c, what is the
system’s type for e?

55. For each of the following closed-loop systems, find
the steady-state error for unit step and unit ramp
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inputs. Use both the final value theorem and input
substitution methods. [Section: 7.8]

a. _x ¼
�5 � 4 �2
�3 �10 0
�1 1 �5

" #
xþ

1
1
0

" #
r; y ¼ �1 2 1 �x½

b. _x ¼
0 1 0

�5 �9 7
�1 0 0

" #
xþ

0
0
1

" #
r; y ¼ ½ 1 0 0 �x

c. _x ¼
�9 �5 �1

1 0 �2
�3 �2 �5

" #
xþ

2
3
5

" #
r; y ¼ ½ 1 �2 4 �x

56. An automobile guidance system yields an actual
output distance, X(s), for a desired input distance,
Xe(s), as shown in Figure P7.26(a). Any difference,
Xe(s), between the commanded distance and the
actual distance is converted into a velocity com-
mand, Vc(s), by the controller and applied to the
vehicle accelerator. The vehicle responds to the
velocity command with a velocity, V(s), and a dis-
placement, X(s), is realized. The velocity control,
G2(s), is itself a closed-loop system, as shown in
Figure P7.26(b). Here the difference, Ve(s), between
the commanded velocity, Vc(s), and the actual vehi-
cle velocity, V(s), drives a motor that displaces the
automobile’s accelerator by Yc(s) (Stefani, 1978).
Find the steady-state error for the velocity control
loop if the motor and amplifier transfer function
G3ðsÞ ¼ K=½sðsþ 1Þ�. Assume G4(s) to be a first-
order system, where a maximum possible 1-foot
displacement of the accelerator linkage yields a
steady-state velocity of 100 miles/hour, with the
automobile reaching 60 miles/hour in 10 seconds.

Xc(s)

–

+

(a)

Controller Automobile

Vc(s)

–

+

(b)

Motor and
amplifier

Accelerator
and

automobile

Xe(s) Vc(s) V(s) X(s)

Ve(s) Yc(s) V(s)

1
sG1(s) G2(s)

G3(s) G4(s)

Commanded
distance

Distance
error

Velocity
command

Actual
distance

Velocity
command

Velocity
error

Accelerator
displacement

Automobile
velocity

FIGURE P7.26 Automobile guidance system: a. displacement
control system; b. velocity control loop

57. Asimplifiedblockdiagramofameterusedtomeasure
oxygen concentration is shown in Figure P7.27. The
meter uses the paramagnetic properties of a stream of

oxygen. A small body is placed in a stream of oxygen
whose concentration is R(s), and it is subjected to a
magnetic field. The torque on the body,K1R(s), due to
the magnetic field is a function of the concentration
of the oxygen. The displacement of the body, uðsÞ, is
detected, and a voltage, C(s), is developed propor-
tional to the displacement. This voltage is used to
develop an electrostatic field that places a torque,
K3C(s), on the body opposite to that developed by
the magnetic field. When the body comes to rest, the
outputvoltage represents the strength of the magnetic
torque, which in turn is related to the concentration
of the oxygen (Chesmond, 1982). Find the steady-
state error between the output voltage, representing
oxygen concentration, and the input oxygen con-
centration. How would you reduce the error to zero?

58. A space station, shown in Figure P7.28(a), will keep
its solar arrays facing the Sun. If we assume that
the simplified block diagram of Figure P7.28(b)
represents the solar tracking control system that
will be used to rotate the array via rotary joints
called solar alpha rotary joints (Figure P7.28(c)).
Find (Kumar, 1992)

a. The steady-state error for step commands

b. The steady-state error for ramp commands

c. The steady-state error for parabolic commands

d. The range of Kc=J to make the system stable

ModulesSolar alpha
rotary joint

Solar arrays
Y X (Flight direction)

Z (Nadir)

(a)
FIGURE P7.28 A space station: a. configuration
(# 1992 AIAA); (figure continues)

+R(s) T(s)

–

(s) C(s)
K1 K2

K3

1

Js2 + Ds

θ

Oxygen
concentration

Body
torque

Body
displacement

Voltage
out

FIGURE P7.27 Block diagram of a paramagnetic oxygen
analyzer
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+

–

Commanded
joint angle

s + 0.01
s

+

–

s + 0.01
s

Kc

J
1
s

Actual
joint angle

o(s)θ

 Position
controller

Velocity
controller

Gain and dynamics

(b)

1
s

c(s)θ

ωA, θA

TN TN

A B

Motor

Bearing set

Inner shear
plate   

Bearing race and
trundle bearings

Outer shear
plate

Inboard
structure

Outboard
structure

Pinion
Motor

resolver

Bull gear

VVG

Desired position,
velocity

Inboard
structure

Outboard
structure

A B

Motor
controller

Motor and
pinion

Bull gear and
trundle bearings

ω     θ  ωB, θBω    θ  

+–

(c)

FIGURE P7.28 (Continued) b. simplified block diagram;
c. alpha joint drive train and control system (# 1992 AIAA)

59. A simplified model of the steering of a four-wheel
drive vehicle is shown in Figure P7.29.

In this block diagram, the output r is the vehicle’s
yaw rate, while df and dr are the steering angles of the
front and rear tires respectively. In this model,

r
ðsÞ ¼
s

300
þ 0:8

s

10
þ 1

;Gf ðsÞ ¼ h1sþ h2

s2 þ a1sþ a2
;

GrðsÞ ¼ h3sþ b1

s2 þ a1sþ a2

and K(s) is a controller to be designed. (Yin, 2007).

a. Assuming a step input for df , find the minimum
system type of the controller K(s) necessary so
that in steady-state the error as defined by the
signal e in Figure P7.29 is zero if at all possible.

b. Assuming a step input for df , find the system type
of the controller K(s) necessary so that in steady
state the error as defined by df ð1Þ � rð1Þ is zero
if at all possible.

DESIGN PROBLEMS
60. The following specification applies to a position con-

trol: Kv ¼ 10. On hand is an amplifier with a variable
gain, K2, with which to drive a motor. Two one-turn
pots to convert shaft position into voltage are also
available, where 	3p volts are placed across the pots.
A motor is available whose transfer function is

umðsÞ
EaðsÞ ¼

K

sðsþ aÞ
where umðsÞ is the motor armature position andEa(s)
is the armature voltage. The components are inter-
connected as shown in Figure P7.30.

R(s) C(s)

 K1

Pot

K

s(s +    )α
K2

Amplifier Motor

K1

Pot

+

–

FIGURE P7.30 Position control system

The transfer function of the motor is found
experimentally as follows. The motor and load are
driven separately by applying a large, short square
wave (a unit impulse) to the armature. An oscillo-
graph of the response shows that the motor reached
63% of its final output value 0.5 second after appli-
cation of the impulse. Furthermore, with 10 volts dc
applied to the armature, the constant output speed
was 100 rad/s. Draw the completed block diagram of
the system, specifying the transfer function of each
component of the block diagram.

61. A boat is circling a ship that is using a tracking radar.
The speed of the boat is 20 knots, and it is circling

Gf

Kr* Gr
δf u (δr)+ +

+
e r

–

FIGURE P7.29 Steering model for a four-wheel drive vehicle
(# 2007 IEEE)
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the ship at a distance of 1 nautical mile, as shown in
Figure P7.31(a). A simplified model of the tracking
system is shown in Figure P7.31(b). Find the value of
K so that the boat is kept in the center of the radar
beam with no more than 0.1 degree error.

Boat

 Boat’s trajectory

Tracking radar

θ i(s) K θ0(s) 

(  )a

(  )b

+

–

Ship

s(s + 4)

θe(s) 

FIGURE P7.31 Boat tracked by ship’s radar: a. physical
arrangement; b. block diagram of tracking system

62. Figure P7.32 shows a simplified block diagram of a
pilot in a loop to control the roll attitude of an Army
UH-60A Black Hawk twin-engine helicopter with a
single main rotor (Hess, 1993).

a. Find the system type.

b. The pilot’s response determines K1. Find the
value of K1 if an appropriate static error constant
value of 700 is required.

c. Would a pilot whose K1 is the value found in Part
b be hired to fly the helicopter?

Note: In the block diagram GD(s) is a delay of about
0.154 second and can be represented by a Pade
approximation of GDðsÞ ¼ �ðs� 13Þ=ðsþ 13Þ.

63. Motion control, which includes position
or force control, is used in robotics and
machining. Force control requires the
designer to consider two phases: contact and non-
contact motions. Figure P7.33(a) is a diagram of a
mechanical system for force control under contact
motion. A force command,Fcmd(s), is the input to the
system, while the output, F(s), is the controlled
contact force.

In the figure a motor is used as the force actuator.
The force output from the actuator is applied to the

Commanded
roll angle

+

–

+

–

+

–

+

–
K1 GD(s)

–s

2

100
s2 + 14s + 100

2
(s + 0.5)(s2 + 9.5s + 78)

Actual
roll angle

s
s + 0.2

o(s)φφc(s)φ

Central nervous system Neuromuscular system

Vestibular system

φe(s)φ

FIGURE P7.32 Simplified block diagram of a pilot in a loop (# 1992 AIAA)

–

++Fcmd(s)

K2

K1

Force
sensor

Electric
motor

Rotational
direction

Des + Ke

Environment (Des + Ke)

(b)

(a)

F(s)

Fcmd(s)

(s)θ

(s)

F(s)

θ

(s)ωref(s)ω

–

1
s

1
s

.

FIGURE P7.33 a. Force control mechanical loop under
contact motion (# 1996 IEEE); b. block diagram
(# 1996 IEEE)
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object through a force sensor. A block diagram rep-
resentation of the system is shown in Figure P7.33(b).
K2 is velocity feedback used to improve the transient
response. The loop is actually implemented by an
electrical loop (not shown) that controls the armature
current of the motor to yield the desired torque at the
output. Recall that Tm ¼ Ktia (Ohnishi, 1996). Find
an expression for the range of K2 to keep the steady-
state force error below 10% for ramp inputs of com-
manded force.

64. Problem 50 in Chapter 4 describes an open-loop
swivel controller and plant for an industrial robot.
The transfer function for the controller and plant is

GeðsÞ ¼ voðsÞ
ViðsÞ ¼

K

ðsþ 10Þðs2 þ 4sþ 10Þ
where voðsÞ is the Laplace transform of the robot’s
angular swivel velocity and Vi(s) is the input voltage
to the controller. Assume Ge(s) is the forward
transfer function of a velocity control loop with
an input transducer and sensor, each represented
by a constant gain of 3 (Schneider, 1992).

a. Find the value of gain, K, to minimize the steady-
state error between the input commanded angu-
lar swivel velocity and the output actual angular
swivel velocity.

b. What is the steady-state error for the value of K
found in Part a?

c. For what kind of input does the design in Part a
apply?

65. Packet information flow in a router working under
TCP/IP can be modeled using the linearized transfer
function

PðsÞ ¼ QðsÞ
f ðsÞ ¼

C2

2N
e�sR

sþ 2N

R2C

� �
sþ 1

R

� �

where

C¼ link capacity (packets/second).

N¼ load factor (number of TCP sessions)

Q¼ expected queue length

R¼ round trip time (second)

p¼ probability of a packet drop

The objective of an active queue management
(AQM) algorithm is to automatically choose a
packet-drop probability, p, so that the queue length
is maintained at a desired level. This system can be
represented by the block diagram of Figure P7.13
with the plant model in the P(s) block, the AQM
algorithm in the G(s) block, and FðsÞ ¼ HðsÞ ¼ 1.

Several AQM algorithms are available, but one that
has received special attention in the literature is the
random early detection (RED) algorithm. This al-

gorithm can be approximated with GðsÞ ¼ LK

sþK
,

where L and K are constants (Hollot, 2001). Find the
value of L required to obtain a 10% steady-state
error for a unit step input when C¼ 3750 packets/s,
N¼ 50 TCP sessions, R¼ 0.1 s, and K¼ 0.005.

66. In Figure P7.16, the plant, PðsÞ ¼ 48;500

s2 þ 2:89s
, repre-

sents the dynamics of a robotic manipulator joint. The
system’s output, C(s), is the joint’s angular position
(Low, 2005). The system is controlled in a closed-loop

configuration as shown with GðsÞ ¼ KP þKI

s
, a

proportional-plus-integral (PI) controller to be dis-
cussed in Chapter 9. R(s) is the joint’s desired angular
position. D(s) is an external disturbance, possibly
caused by improper dynamics modeling, Coulomb
friction, or other external forces acting on the joint.

a. Find the system’s type.

b. Show that for a step disturbance input, ess ¼ 0
when KI 6¼ 0.

c. Find the value of KI that will result in ess ¼ 5%
for a parabolic input.

d. Using the value of KI found in Part c, find the
range of KP for closed-loop stability.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
67. High-speed rail pantograph. Problem 21 in Chapter 1

discusses the active control of a pantograph mecha-
nism for high-speed rail systems. In Problem 79(a),
Chapter 5, you found the block diagram for the active
pantograph control system. Use your solution for
Problem 79(a) in Chapter 5 to perform steady-state
error analysis and design as follows (O’Connor, 1997):

a. Find the system type.

b. Find the value of controller gain, K, that mini-
mizes the steady-state force error.

c. What is the minimum steady-state force error?

68. Control of HIV/AIDS. Consider the HIV infection
model of Problem 68 in Chapter 6 and its block
diagram in Figure P6.20 (Craig, 2004).

a. Find the system’s type if G(s) is a constant.

b. It was shown in Problem 68, Chapter 6, that when
GðsÞ ¼ K the system will be stable when

K < 2:04 � 10�4. What value of K will result in
a unit step input steady-state error of 10%?
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c. It is suggested that to reduce the steady-state
error the system’s type should be augmented by

making GðsÞ ¼ K

s
. Is this a wise choice? What is

the resulting stability range for K?

69. Hybrid vehicle.Figure P7.34 shows the block diagram
of the speed control of an HEV taken from Figure
P5.54, and rearranged as a unity feedback system
(Preitl, 2007). Here the system output is, CðsÞ ¼
KSS VðsÞ, theoutputvoltageofthespeedsensor/trans-
ducer.

UC (s)E (s)+

_

R (s) C(s)
0.6)(s0.11 +

0.01908)(s0.6)(s50.5173)(s ++++s
G

SC
(s)

FIGURE P7.34

a. Assume the speed controller is given as
GSCðsÞ ¼ KPSC . Find the gain, KPSC , that yields
a steady-state error, estepð1Þ ¼ 1%.

b. Now assume that in order to reduce the steady-
stateerrorforstepinputs,integrationisaddedtothe
controller yielding GSCðsÞ ¼ KPSC þ ðKISC=sÞ ¼
100þ ðKISC=sÞÞ. Find the value of the integral
gain, KISC , that results in a steady-state error,
erampð1Þ ¼ 2:5%.

c. In Parts a andb, the HEV was assumed to be driven
on level ground. Consider the case when, after
reaching a steady-state speed with a controller

given by GSCðsÞ ¼ 100 þ 40

s
, the car starts climbing

up a hill with a gradient angle, a ¼ 5�. For small
angles sin a ¼ a (in radians) and, hence, when
reflected to the motor shaft the climbing torque is:

Tst ¼ Fstr

itot
¼ mgr

itot
sina ¼ mgra

itot
¼

1590 � 9:8 � 0:3 � 5

4:875 � 57:3
¼ 83:7 Nm:

The block diagram in Figure P7.35 represents the con-
trol system of the HEV rearranged for Part c.

s+0.01908
–

G2(s) = Equivalent transfer function of the car

Tst(s)
+

–E(s)=–KSS V(s)

(s + 0.5)

13.53 s

s

100s + 40

(s + 0.5)

3 (s + 0.6)

+

+

G1(s) = Transfer function representation
of torque & speed controllers

FIGURE P7.35

In this diagram, the input is TstðtÞ ¼ 83:7 uðtÞ, corre-
sponding to a¼ 5�, and the output is the negative error,
�eðtÞ ¼ �cðtÞ ¼ �KSS vðtÞ, proportional to the change
in car speed, v(t). Find the steady-state error e(1) due
to a step change in the disturbance; e.g., the climbing
torque, TstðtÞ ¼ 83:7 uðtÞ.

Cyber Exploration Laboratory

Experiment 7.1

Objective To verify the effect of input waveform, loop gain, and system type
upon steady-state errors.

Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. What system types will yield zero steady-state error for step inputs?

2. What system types will yield zero steady-state error for ramp inputs?

3. What system types will yield infinite steady-state error for ramp inputs?

4. What system types will yield zero steady-state error for parabolic inputs?

5. What system types will yield infinite steady-state error for parabolic inputs?

6. For the negative feedback system of Figure P7.36, where GðsÞ ¼
Kðsþ 6Þ

ðsþ 4Þðsþ 7Þðsþ 9Þðsþ 12Þ and HðsÞ ¼ 1, calculate the steady-state error

in terms of K for the following inputs: 5u(t), 5tu(t), and 5t2uðtÞ.

R(s) + C(s)
G(s)

H(s)

–

FIGURE P7.36
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7. Repeat Prelab 6 for GðsÞ ¼ Kðsþ 6Þðsþ 8Þ
sðsþ 4Þðsþ 7Þðsþ 9Þðsþ 12Þ and HðsÞ ¼ 1.

8. Repeat Prelab 6 for GðsÞ ¼ Kðsþ 1Þðsþ 6Þðsþ 8Þ
s2ðsþ 4Þðsþ 7Þðsþ 9Þðsþ 12Þ and HðsÞ ¼ 1.

Lab
1. Using Simulink, set up the negative feedback system of Prelab 6. Plot on one

graph the error signal of the system for an input of 5u(t) and K ¼ 50; 500; 1000,
and 5000. Repeat for inputs of 5tu(t) and 5t2uðtÞ.

2. Using Simulink, set up the negative feedback system of Prelab 7. Plot on one
graph the error signal of the system for an input of 5u(t) and K ¼ 50; 500; 1000,
and 5000. Repeat for inputs of 5tu(t) and 5t2uðtÞ.

3. Using Simulink, set up the negative feedback system of Prelab 8. Plot on one
graph the error signal of the system for an input of 5u(t) and K ¼ 200; 400; 800,
and 1000. Repeat for inputs of 5tu(t) and 5t2uðtÞ.

Postlab
1. Use your plots from Lab 1 and compare the expected steady-state errors to those

calculated in the Prelab. Explain the reasons for any discrepancies.

2. Use your plots from Lab 2 and compare the expected steady-state errors to those
calculated in the Prelab. Explain the reasons for any discrepancies.

3. Use your plots from Lab 3 and compare the expected steady-state errors to those
calculated in the Prelab. Explain the reasons for any discrepancies.

Experiment 7.2

Objective To use the LabVIEW Control Design and Simulation Module for
analysis of steady-state performance for step and ramp inputs.

Minimum Required Software Package Lab
VIEW with the Control Design and Simulation Module

Prelab You are given the model of a single joint of a
robotic manipulator shown in Figure P7.37 (Spong,
2005), where B is the coefficient of viscous friction,
udðsÞ is the desired angle, u(s) is the output angle, and
D(s) is the disturbance. We want to track the joint angle
using a PD controller, which we will study in Chapter 9.
Assume J ¼ B ¼ 1. Find the step and ramp responses of this system for the following
combinations of PD gains ðKP;KDÞ: (16, 7), (64, 15), and (144, 23).

Lab

1. Create a LabVIEW VI to simulate the response of this system to a step and a
ramp inputs, under no-disturbance conditions. Use the functions available in the
Control Design and Simulation/Control Design palette.

2. Create a LabVIEW VI using the functions available in the Control Design and
Simulation/Simulation palette, to track an input set-point of 10 under a disturbance
of D¼ 40.

Postlab Compare your results with those of the Prelab. What conclusions can you
draw from the various responses of this system to different inputs and different PD
parameters? What is the system type? Does the steady-state behavior corroborate the
theory you learned regarding system type and the steady-state error for various
inputs? Explain your answer.

+ +KP + KDs
θ (s)θd (s)

PD controller Plant

1
Js2 + Bs

–

-

D (s)

FIGURE P7.37
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Root Locus Techniques

8

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Define a root locus (Sections 8.1–8.2)

� State the properties of a root locus (Section 8.3)

� Sketch a root locus (Section 8.4)

� Find the coordinates of points on the root locus and their associated gains
(Sections 8.5–8.6)

� Use the root locus to design a parameter value to meet a transient response
specification for systems of order 2 and higher (Sections 8.7–8.8)

� Sketch the root locus for positive-feedback systems (Section 8.9)

� Find the root sensitivity for points along the root locus (Section 8.10)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the preamplifier gain to meet a transient response
specification.

� Given the pitch or heading control system for the Unmanned Free-Swimming
Submersible vehicle shown on the back endpapers, you will be able to plot the
root locus and design the gain to meet a transient response specification. You will
then be able to evaluate other performance characteristics.
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8.1 Introduction

Root locus, a graphical presentation of the closed-loop poles as a system parameter is
varied, is a powerful method of analysis and design for stability and transient response
(Evans, 1948; 1950). Feedback control systems are difficult to comprehend from a
qualitative point of view, and hence they rely heavily upon mathematics. The root locus
covered in this chapter is a graphical technique that gives us the qualitative description
of a control system’s performance that we are looking for and also serves as a powerful
quantitative tool that yields more information than the methods already discussed.

Up to this point, gains and other system parameters were designed to yield a
desired transient response for only first- and second-order systems. Even though the
root locus can be used to solve the same kind of problem, its real power lies in its
ability to provide solutions for systems of order higher than 2. For example, under
the right conditions, a fourth-order system’s parameters can be designed to yield a
given percent overshoot and settling time using the concepts learned in Chapter 4.

The root locus can be used to describe qualitatively the performance of a
system as various parameters are changed. For example, the effect of varying gain
upon percent overshoot, settling time, and peak time can be vividly displayed. The
qualitative description can then be verified with quantitative analysis.

Besides transient response, the root locus also gives a graphical representation
of a system’s stability. We can clearly see ranges of stability, ranges of instability, and
the conditions that cause a system to break into oscillation.

Before presenting root locus, let us review two concepts that we need for the
ensuing discussion: (1) the control system problem and (2) complex numbers and
their representation as vectors.

The Control System Problem
We have previously encountered the control system problem in Chapter 6: Whereas the
poles of the open-loop transfer function are easily found (typically, they are known by
inspection and do not change with changes in system gain), the poles of the closed-loop
transferfunctionaremoredifficulttofind(typically,theycannotbefoundwithoutfactoring
the closed-loop system’s characteristic polynomial, the denominator of the closed-loop
transfer function), and further, the closed-loop poles change with changes in system gain.

A typical closed-loop feedback control system is shown in Figure 8.1(a). The
open-loop transfer function was defined in Chapter 5 as KG(s)H(s). Ordinarily, we

FIGURE 8.1 a. Closed-loop
system; b. equivalent transfer
function

+ Ea(s)

–

H(s)

KG(s)

Input
R(s)

Actuating
signal

Forward
transfer
function Output

C(s)

Feedback
transfer
function

(a)

C(s)R(s) KG(s)

1 + KG(s)H(s)

(b)
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can determine the poles of KG(s)H(s), since these poles arise from simple cascaded
first- or second-order subsystems. Further, variations in K do not affect the location
of any pole of this function. On the other hand, we cannot determine the poles of
TðsÞ ¼ KGðsÞ=½1þKGðsÞHðsÞ� unless we factor the denominator. Also, the poles of
T(s) change with K.

Let us demonstrate. Letting

GðsÞ ¼ NGðsÞ
DGðsÞ ð8:1Þ

and

HðsÞ ¼ NHðsÞ
DHðsÞ ð8:2Þ

then

TðsÞ ¼ KNGðsÞDHðsÞ
DGðsÞDHðsÞ þKNGðsÞNHðsÞ ð8:3Þ

whereN andD are factored polynomials and signify numerator and denominator terms,
respectively. We observe the following: Typically, we know the factors of the numerators
and denominators of G(s) and H(s). Also, the zeros of T(s) consist of the zeros of G(s)
and the poles of H(s). The poles of T(s) are not immediately known and in fact can
change with K. For example, if GðsÞ ¼ ðsþ 1Þ=½sðsþ 2Þ� and HðsÞ ¼ ðsþ 3Þ=ðsþ 4Þ,
the poles of KG(s)H(s) are 0;�2; and�4. The zeros of KG(s)H(s) are �1 and � 3.
Now, TðsÞ ¼ Kðsþ 1Þðsþ 4Þ=½s3 þ ð6þKÞs2þ ð8þ 4KÞsþ 3K�. Thus, the zeros of
T(s) consist of the zeros of G(s) and the poles of H(s). The poles of T(s) are not
immediately known without factoring the denominator, and they are a function of K.
Since the system’s transient response and stability are dependent upon the poles ofT(s),
we have no knowledge of the system’s performance unless we factor the denominator
for specific values ofK. The root locus will be used to give us a vivid picture of the poles
of T(s) as K varies.

Vector Representation of Complex Numbers
Any complex number, s þ jv, described in Cartesian coordinates can be graphi-
cally represented by a vector, as shown in Figure 8.2(a). The complex number also
can be described in polar form with magnitude M and angle u, as M—u. If the
complex number is substituted into a complex function, F(s), another complex
number will result. For example, if FðsÞ ¼ ðsþ aÞ, then substituting the com-
plex number s ¼ s þ jv yields FðsÞ ¼ ðs þ aÞ þ jv, another complex number. This
number is shown in Figure 8.2(b). Notice that F(s) has a zero at �a. If we translate
the vector a units to the left, as in Figure 8.2(c), we have an alternate represen-
tation of the complex number that originates at the zero of F(s) and terminates on
the point s ¼ s þ jv.

We conclude that (sþ a) is a complex number and can be represented by a
vector drawn from the zero of the function to the point s. For example, ðsþ 7Þjs!5þj2 is
a complex number drawn from the zero of the function, �7, to the point s, which is
5þ j2, as shown in Figure 8.2(d).

8.1 Introduction 389
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Now let us apply the concepts to a complicated function. Assume a function

FðsÞ ¼
Qm
i¼1
ðsþ ziÞ

Qn
j¼1
ðsþ pjÞ

¼
Q

numerator’s complex factorsQ
denominator’s complex factors

ð8:4Þ

where the symbol
Q

means ‘‘product,’’ m ¼ number of zeros; and n ¼ number of
poles. Each factor in the numerator and each factor in the denominator is a complex
number that can be represented as a vector. The function defines the complex
arithmetic to be performed in order to evaluate F(s) at any point, s. Since each com-
plex factor can be thought of as a vector, the magnitude, M, of F(s) at any point, s, is

M ¼
Q

zero lengthsQ
pole lengths

¼

Ym
i¼1

j sþ zið Þj
Yn
j¼1

jðsþ pjÞj
ð8:5Þ

where a zero length, jðsþ ziÞj, is the magnitude of the vector drawn from the zero ofF(s)
at�zi to the point s, and a pole length, jðsþ pjÞj, is the magnitude of the vector drawn
from the pole of F(s) at �pj to the point s. The angle, u, of F(s) at any point, s, is

u ¼P zero angles�P pole angles

¼
Xm
i¼1

— sþ zið Þ �
Xn
j¼1

—ðsþ pjÞ ð8:6Þ

where a zero angle is the angle, measured from the positive extension of the real axis,
of a vector drawn from the zero of F(s) at �zi to the point s, and a pole angle is the

FIGURE 8.2 Vector
representation of complex
numbers: a. s ¼ s þ jv;
b. ðsþ aÞ; c. alternate
representation of ðsþ aÞ;
d. ðsþ 7Þjs!5þj2
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angle, measured from the positive extension of the real axis, of the vector drawn from
the pole of F(s) at �pj to the point s.

As a demonstration of the above concept, consider the following example.

Example 8.1

Evaluation of a Complex Function via Vectors

PROBLEM: Given

FðsÞ ¼ ðsþ 1Þ
sðsþ 2Þ ð8:7Þ

find F(s) at the point s ¼ �3þ j4.

SOLUTION: The problem is graphically depicted in Figure 8.3, where each
vector, ðsþ aÞ, of the function is shown terminating on the selected point
s ¼ �3þ j4. The vector originating at the zero at �1 isffiffiffiffiffi

20
p

—116:6� ð8:8Þ
The vector originating at the pole at the origin is

5—126:9� ð8:9Þ
The vector originating at the pole at �2 isffiffiffiffiffi

17
p

—104:0� ð8:10Þ
Substituting Eqs. (8.8) through (8.10) into Eqs. (8.5) and (8.6) yields

M—u ¼
ffiffiffiffiffi
20
p

5
ffiffiffiffiffi
17
p —116:6� � 126:9� � 104:0� ¼ 0:217—� 114:3� ð8:11Þ

as the result for evaluating F(s) at the point �3þ j4.

Skill-Assessment Exercise 8.1

PROBLEM: Given

FðsÞ ¼ ðsþ 2Þðsþ 4Þ
sðsþ 3Þðsþ 6Þ

find F(s) at the point s ¼ �7þ j9 the following ways:

a. Directly substituting the point into F(s)

b. Calculating the result using vectors

ANSWER:

�0:0339� j0:0899 ¼ 0:096—� 110:7�

The complete solution is at www.wiley.com/college/nise.

We are now ready to begin our discussion of the root locus.

j1

j2

j3

j4

s-plane

jω

–2 –1 0

(s + 2)

(s + 1)

–3

(s)

s

FIGURE 8.3 Vector
representation of Eq. (8.7)

TryIt 8.1

Use the following MATLAB
statements to solve the
problem given in Skill-
Assessment Exercise 8.1.

s=-7+9j;
G=(s+2)*(s+4)/...
(s*(s+3)*(s+6));
Theta=(180/pi)*...
angle(G)

M=abs(G)
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8.2 Defining the Root Locus

A security camera system similar to that shown in Figure 8.4(a) can automatically
follow a subject. The tracking system monitors pixel changes and positions the
camera to center the changes.

The root locus technique can be used to analyze and design the effect of loop
gain upon the system’s transient response and stability. Assume the block diagram
representation of a tracking system as shown in Figure 8.4(b), where the closed-loop
poles of the system change location as the gain, K, is varied. Table 8.1, which was
formed by applying the quadratic formula to the denominator of the transfer
function in Figure 8.4(c), shows the variation of pole location for different values
of gain, K. The data of Table 8.1 is graphically displayed in Figure 8.5(a), which
shows each pole and its gain.

As the gain, K, increases in Table 8.1 and Figure 8.5(a), the closed-loop pole,
which is at�10 for K ¼ 0, moves toward the right, and the closed-loop pole, which is
at 0 forK ¼ 0, moves toward the left. They meet at�5, break away from the real axis,
and move into the complex plane. One closed-loop pole moves upward while the
other moves downward. We cannot tell which pole moves up or which moves down.
In Figure 8.5(b), the individual closed-loop pole locations are removed and their
paths are represented with solid lines. It is this representation of the paths of the

(a)

K1
s(s + 10)

R(s)

Subject’s
position

+

–

C(s)

Camera
position

C(s)

s2 + 10s + K

where K = K1K2

(b)

(c)

Amplifier
Motor

and camera

K2

R(s) K

Sensors

FIGURE 8.4 a. Security cameras with auto tracking can be used to follow moving objects
automatically; b. block diagram; c. closed-loop transfer function
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closed-loop poles as the gain is varied that we call a root locus. For most of our work,
the discussion will be limited to positive gain, or K � 0.

The root locus shows the changes in the transient response as the gain, K, varies.
First of all, the poles are real for gains less than 25. Thus, the system is overdamped. At
a gain of 25, the poles are real and multiple and hence critically damped. For gains
above 25, the system is underdamped. Even though these preceding conclusions were
available through the analytical techniques covered in Chapter 4, the following
conclusions are graphically demonstrated by the root locus.

Directing our attention to the underdamped portion of the root locus, we see that
regardless of the value of gain, the real parts of the complex poles are always the same.

TABLE 8.1 Pole location as function of gain for the
system of Figure 8.4

K Pole 1 Pole 2

0 �10 0

5 �9.47 �0.53

10 �8.87 �1.13

15 �8.16 �1.84

20 �7.24 �2.76

25 �5 �5

30 �5þ j2:24 �5� j2:24

35 �5þ j3:16 �5� j3:16

40 �5þ j3:87 �5� j3:87

45 �5þ j4:47 �5� j4:47

50 �5þ j5 �5� j5

FIGURE 8.5 a. Pole plot from Table 8.1; b. root locus
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Since the settling time is inversely proportional to the real part of the complex poles for
this second-order system, the conclusion is that regardless of the value of gain, the settling
time for the system remains the same under all conditions of underdamped responses.

Also, as we increase the gain, the damping ratio diminishes, and the percent
overshoot increases. The damped frequency of oscillation, which is equal to the
imaginary part of the pole, also increases with an increase in gain, resulting in a
reduction of the peak time. Finally, since the root locus never crosses over into the
right half-plane, the system is always stable, regardless of the value of gain, and can
never break into a sinusoidal oscillation.

These conclusions for such a simple system may appear to be trivial. What we
are about to see is that the analysis is applicable to systems of order higher than 2.
For these systems, it is difficult to tie transient response characteristics to the pole
location. The root locus will allow us to make that association and will become an
important technique in the analysis and design of higher-order systems.

8.3 Properties of the Root Locus

In Section 8.2, we arrived at the root locus by factoring the second-order polynomial
in the denominator of the transfer function. Consider what would happen if that
polynomial were of fifth or tenth order. Without a computer, factoring the polyno-
mial would be quite a problem for numerous values of gain.

We are about to examine the properties of the root locus. From these
properties we will be able to make a rapid sketch of the root locus for higher-order
systems without having to factor the denominator of the closed-loop transfer
function.

The properties of the root locus can be derived from the general control system
of Figure 8.1(a). The closed-loop transfer function for the system is

TðsÞ ¼ KGðsÞ
1þKGðsÞHðsÞ ð8:12Þ

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denomi-
nator becomes zero, or

KGðsÞHðsÞ ¼ �1 ¼ 1—ð2kþ 1Þ180� k ¼ 0;�1;�2;�3; . . . ð8:13Þ

where�1 is represented in polar form as 1 —ð2kþ 1Þ180�. Alternately, a value of s is
a closed-loop pole if

jKGðsÞHðsÞj ¼ 1 ð8:14Þ

and

—KGðsÞHðsÞ ¼ ð2kþ 1Þ180� ð8:15Þ

Equation (8.13) implies that if a value of s is substituted into the function
KG(s)H(s), a complex number results. If the angle of the complex number is an odd
multiple of 180�, that value of s is a system pole for some particular value of K. What
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value of K? Since the angle criterion of Eq. (8.15) is satisfied, all that remains is to
satisfy the magnitude criterion, Eq. (8.14). Thus,

K ¼ 1

jGðsÞjjHðsÞj ð8:16Þ

We have just found that a pole of the closed-loop system causes the angle of
KG(s)H(s), or simply G(s)H(s) since K is a scalar, to be an odd multiple of 180�.
Furthermore, the magnitude ofKG(s)H(s) must be unity, implying that the value ofK is
the reciprocal of the magnitude of G(s)H(s) when the pole value is substituted for s.

Let us demonstrate this relationship for the second-order system of Figure 8.4.
The fact that closed-loop poles exist at �9:47 and �0:53 when the gain is 5 has
already been established in Table 8.1. For this system,

KGðsÞHðsÞ ¼ K

sðsþ 10Þ ð8:17Þ

Substituting the pole at �9:47 for s and 5 for K yields KGðsÞHðsÞ ¼ �1. The student
can repeat the exercise for other points in Table 8.1 and show that each case yields
KGðsÞHðsÞ ¼ �1.

It is helpful to visualize graphically the meaning of Eq. (8.15). Let us apply the
complex number concepts reviewed in Section 8.1 to the root locus of the system
shown in Figure 8.6. For this system the open-loop transfer function is

KGðsÞHðsÞ ¼ Kðsþ 3Þðsþ 4Þ
ðsþ 1Þðsþ 2Þ ð8:18Þ

The closed-loop transfer function, T(s), is

TðsÞ ¼ Kðsþ 3Þðsþ 4Þ
ð1þKÞs2 þ ð3þ 7KÞsþ ð2þ 12KÞ ð8:19Þ

If point s is a closed-loop system pole for some value of gain, K, then s must
satisfy Eqs. (8.14) and (8.15).

K(s + 3) (s + 4)

(s + 1) (s + 2)

R(s)

(a)

(b)

C(s)

–

+

–4

jω

s-plane

–3 –2 –1

σ

FIGURE 8.6 a. Example
system; b. pole-zero plot
of G(s)
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Consider the point�2þ j3. If this point is a closed-loop pole for some value of
gain, then the angles of the zeros minus the angles of the poles must equal an odd
multiple of 180�. From Figure 8.7,

u1 þ u2 � u3 � u4 ¼ 56:31� þ 71:57� � 90� � 108:43� ¼ �70:55� ð8:20Þ
Therefore, �2þ j3 is not a point on the root locus, or alternatively, �2þ j3 is not a
closed-loop pole for any gain.

If these calculations are repeated for the point�2þ jð ffiffiffi2p =2Þ, the angles do add
up to 180�. That is, �2þ jð ffiffiffi2p =2Þ is a point on the root locus for some value of gain.
We now proceed to evaluate that value of gain.

From Eqs. (8.5) and (8.16),

K ¼ 1

jGðsÞHðsÞj ¼
1

M
¼
Q

pole lengthsQ
zero lengths

ð8:21Þ

Looking at Figure 8.7 with the point�2þ j3 replaced by�2þ jð ffiffiffi2p =2Þ, the gain,K, is
calculated as

K ¼ L3L4

L1L2
¼

ffiffiffi
2
p

2
ð1:22Þ

ð2:12Þð1:22Þ ¼ 0:33 ð8:22Þ

Thus, the point �2þ jð ffiffiffi2p =2Þ is a point on the root locus for a gain of 0.33.
We summarize what we have found as follows: Given the poles and zeros of the

open-loop transfer function, KG(s)H(s), a point in the s-plane is on the root locus for
a particular value of gain, K, if the angles of the zeros minus the angles of the poles,
all drawn to the selected point on the s-plane, add up to ð2kþ 1Þ180�. Furthermore,
gain K at that point for which the angles add up to ð2kþ 1Þ180� is found by dividing
the product of the pole lengths by the product of the zero lengths.

jω

j3

L4

s-plane

L3L2L1

–1–2–3– 4

3θ 4θ2θ1θ
σ

FIGURE 8.7 Vector representation of G(s) from Figure 8.6(a) at �2þ j3
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Skill-Assessment Exercise 8.2

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðsþ 2Þ
ðs2 þ 4sþ 13Þ

do the following:

a. Calculate the angle ofG(s) at the point (�3þ j0) by finding the algebraic sum of
angles of the vectors drawn from the zeros and poles of G(s) to the given point.

b. Determine if the point specified in a is on the root locus.

c. If the point specified in a is on the root locus, find the gain, K, using the
lengths of the vectors.

ANSWERS:

a. Sum of angles ¼ 180�

b. Point is on the root locus

c. K ¼ 10

The complete solution is at www.wiley.com/college/nise.

8.4 Sketching the Root Locus

It appears from our previous discussion that the root locus can be obtained by
sweeping through every point in the s-plane to locate those points for which the
angles, as previously described, add up to an odd multiple of 180�. Although this task
is tedious without the aid of a computer, the concept can be used to develop rules
that can be used to sketch the root locus without the effort required to plot the locus.
Once a sketch is obtained, it is possible to accurately plot just those points that are of
interest to us for a particular problem.

The following five rules allow us to sketch the root locus using minimal
calculations. The rules yield a sketch that gives intuitive insight into the behavior
of a control system. In the next section, we refine the sketch by finding actual points
or angles on the root locus. These refinements, however, require some calculations or
the use of computer programs, such as MATLAB.

1. Number of branches. Each closed-loop pole moves as the gain is varied. If we
define a branch as the path that one pole traverses, then there will be one branch
for each closed-loop pole. Our first rule, then, defines the number of branches of
the root locus:

The number of branches of the root locus equals the number of closed-loop poles.

As an example, look at Figure 8.5(b), where the two branches are shown. One
originates at the origin, the other at �10.

2. Symmetry. If complex closed-loop poles do not exist in conjugate pairs, the resulting
polynomial, formed by multiplying the factors containing the closed-loop poles,

TryIt 8.2

Use MATLAB and the fol-
lowing statements to solve
Skill-Assessment Exercise
8.2.

s=-3+0j;
G=(s+2)/(s^2+4*s+13);
Theta=(180/pi)*...
angle(G)
M=abs(G);
K=1/M
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would have complex coefficients. Physically realizable systems cannot have complex
coefficients in their transfer functions. Thus, we conclude:

The root locus is symmetrical about the real axis.

An example of symmetry about the real axis is shown in Figure 8.5(b).

3. Real-axis segments. Let us make use of the angle property, Eq. (8.15), of the
points on the root locus to determine where the real-axis segments of the root

locus exist. Figure 8.8 shows the poles and zeros of a general open-loop
system. If an attempt is made to calculate the angular contribution of
the poles and zeros at each point, P1, P2, P3, and P4, along the real axis,
we observe the following: (1) At each point the angular contribution of
a pair of open-loop complex poles or zeros is zero, and (2) the
contribution of the open-loop poles and open-loop zeros to the left
of the respective point is zero. The conclusion is that the only contri-
bution to the angle at any of the points comes from the open-loop, real-
axis poles and zeros that exist to the right of the respective point. If we
calculate the angle at each point using only the open-loop, real-axis
poles and zeros to the right of each point, we note the following: (1) The
angles on the real axis alternate between 0� and 180�, and (2) the angle

is 180� for regions of the real axis that exist to the left of an odd number of poles
and/or zeros. The following rule summarizes the findings:

On the real axis, for K > 0 the root locus exists to the left of an odd number of real-
axis, finite open-loop poles and/or finite open-loop zeros.

Examine Figure 8.6(b). According to the rule just developed, the real-axis
segments of the root locus are between �1 and �2 and between �3 and �4
as shown in Figure 8.9.

4. Starting and ending points. Where does the root locus begin (zero gain) and end
(infinite gain)? The answer to this question will enable us to expand the sketch of
the root locus beyond the real-axis segments. Consider the closed-loop transfer
function, T(s), described by Eq. (8.3). T(s) can now be evaluated for both large
and small gains, K. As K approaches zero (small gain),

TðsÞ � KNGðsÞDHðsÞ
DGðsÞDHðsÞ þ e

ð8:23Þ

From Eq. (8.23) we see that the closed-loop system poles at small gains approach
the combined poles of G(s) and H(s). We conclude that the root locus begins at
the poles of G(s)H(s), the open-loop transfer function.

s-plane

jω

P4 P3 P2 P1
σ

FIGURE 8.8 Poles and zeros of a general
open-loop system with test points, Pi, on the
real axis

–4

jω

s-plane

–3 –2 –1

σ

FIGURE 8.9 Real-axis segments of the root locus for the system of Figure 8.6
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At high gains, where K is approaching infinity,

TðsÞ � KNGðsÞDHðsÞ
eþKNGðsÞNHðsÞ ð8:24Þ

From Eq. (8.24) we see that the closed-loop system poles at large gains approach
the combined zeros of G(s) and H(s). Now we conclude that the root locus ends at
the zeros of G(s)H(s), the open-loop transfer function.

Summarizing what we have found:

The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the
finite and infinite zeros of G(s)H(s).

Remember that these poles and zeros are the open-loop poles and zeros.
In order to demonstrate this rule, look at the system in Figure 8.6(a), whose

real-axis segments have been sketched in Figure 8.9. Using the rule just derived,
we find that the root locus begins at the poles at�1 and�2 and ends at the zeros at
�3 and �4 (see Figure 8.10). Thus, the poles start out at �1 and �2 and move
through the real-axis space between the two poles. They meet somewhere
between the two poles and break out into the complex plane, moving as complex
conjugates. The poles return to the real axis somewhere between the zeros at �3
and �4, where their path is completed as they move away from each other, and
end up, respectively, at the two zeros of the open-loop system at �3 and �4.

5. Behavior at infinity. Consider applying Rule 4 to the following open-loop transfer
function:

KGðsÞHðsÞ ¼ K

sðsþ 1Þðsþ 2Þ ð8:25Þ

There are three finite poles, at s ¼ 0;�1; and� 2, and no finite zeros.

A function can also have infinite poles and zeros. If the function approaches
infinity as s approaches infinity, then the function has a pole at infinity. If the
function approaches zero as s approaches infinity, then the function has a zero at
infinity. For example, the function GðsÞ ¼ s has a pole at infinity, since G(s)
approaches infinity as s approaches infinity. On the other hand, GðsÞ ¼ 1=s has a
zero at infinity, since G(s) approaches zero as s approaches infinity.

Every function of s has an equal number of poles and zeros if we include the
infinite poles and zeros as well as the finite poles and zeros. In this example,

jω

–3–4 –2 –1

s-plane

σ

j1

–j1 FIGURE 8.10 Complete root
locus for the system of Figure
8.6
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Eq. (8.25) contains three finite poles and three infinite zeros. To illustrate, let s
approach infinity. The open-loop transfer function becomes

KGðsÞHðsÞ � K

s3
¼ K

s 	 s 	 s ð8:26Þ

Each s in the denominator causes the open-loop function, KG(s)H(s), to become
zero as that s approaches infinity. Hence, Eq. (8.26) has three zeros at infinity.

Thus, for Eq. (8.25), the root locus begins at the finite poles of KG(s)H(s) and
ends at the infinite zeros. The question remains: Where are the infinite zeros? We
must know where these zeros are in order to show the locus moving from the three
finite poles to the three infinite zeros. Rule 5 helps us locate these zeros at infinity.
Rule 5 also helps us locate poles at infinity for functions containing more finite zeros
than finite poles.1

We now state Rule 5, which will tell us what the root locus looks like as it
approaches the zeros at infinity or as it moves from the poles at infinity. The
derivation can be found in Appendix M.1 at www.wiley.com/college/nise.

The root locus approaches straight lines as asymptotes as the locus approaches
infinity. Further, the equation of the asymptotes is given by the real-axis intercept, sa

and angle, ua as follows:

sa ¼
P

finite poles�P finite zeros

#finite poles�#finite zeros
ð8:27Þ

ua ¼
ð2kþ 1Þp

#finite poles�#finite zeros
ð8:28Þ

where k ¼ 0;�1;�2;�3 and the angle is given in radianswith respect to the positive
extension of the real axis.

Notice that the running index, k, in Eq. (8.28) yields a multiplicity of lines that
account for the many branches of a root locus that approach infinity. Let us
demonstrate the concepts with an example.

Example 8.2

Sketching a Root Locus with Asymptotes

PROBLEM: Sketch the root locus for the system shown in Figure 8.11.

1 Physical systems, however, have more finite poles than finite zeros, since the implied differentiation
yields infinite output for discontinuous input functions, such as step inputs.

R(s) +

–

C(s)K(s + 3)

s(s + 1)(s + 2)(s + 4)

FIGURE 8.11 System for Example 8.2.
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SOLUTION: Let us begin by calculating the asymptotes. Using Eq. (8.27), the real-
axis intercept is evaluated as

sa ¼ ð�1� 2� 4Þ � ð�3Þ
4� 1

¼ � 4

3
ð8:29Þ

The angles of the lines that intersect at �4=3, given by Eq. (8.28), are

ua ¼ ð2kþ 1Þp
#finite poles�#finite zeros

ð8:30aÞ

¼ p=3 for k ¼ 0 ð8:30bÞ
¼ p for k ¼ 1 ð8:30cÞ
¼ 5p=3 for k ¼ 2 ð8:30dÞ

If the value for k continued to increase, the angles would begin to repeat. The
number of lines obtained equals the difference between the number of finite poles
and the number of finite zeros.

Rule 4 states that the locus begins at the open-loop poles and ends at the
open-loop zeros. For the example there are more open-loop poles than open-loop
zeros. Thus, there must be zeros at infinity. The asymptotes tell us how we get to
these zeros at infinity.

Figure 8.12 shows the complete root locus as well as the asymptotes that were
just calculated. Notice that we have made use of all the rules learned so far. The
real-axis segments lie to the left of an odd number of poles and/or zeros. The locus
starts at the open-loop poles and ends at the open-loop zeros. For the example
there is only one open-loop finite zero and three infinite zeros. Rule 5, then, tells us
that the three zeros at infinity are at the ends of the asymptotes.

–2 0

Asymptote

s-plane

–4 –3

Asymptote

Asymptote

j1

jω

1 2

–j1

σ

–j2

–j3

j3

–1

j2

FIGURE 8.12 Root locus and
asymptotes for the system of
Figure 8.11
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Skill-Assessment Exercise 8.3

PROBLEM: Sketch the root locus and its asymptotes for a unity feedback system
that has the forward transfer function

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

8.5 Refining the Sketch

The rules covered in the previous section permit us to sketch a root locus rapidly. If we
want more detail, we must be able to accurately find important points on the root locus
along with their associated gain. Points on the real axis where the root locus enters or
leaves the complex plane—real-axis breakaway and break-in points—and the jv-axis
crossings are candidates. We can also derive a better picture of the root locus by finding
the angles of departure and arrival from complex poles and zeros, respectively.

In this section, we discuss the calculations required to obtain specific points on
the root locus. Some of these calculations can be made using the basic root locus
relationship that the sum of the zero angles minus the sum of the pole angles equals
an odd multiple of 180�, and the gain at a point on the root locus is found as the ratio
of (1) the product of pole lengths drawn to that point to (2) the product of zero
lengths drawn to that point. We have yet to address how to implement this task. In
the past, an inexpensive tool called a SpiruleTM added the angles together rapidly
and then quickly multiplied and divided the lengths to obtain the gain. Today we can
rely on hand-held or programmable calculators as well as personal computers.

Students pursuing MATLAB will learn how to apply it to the root locus at the
end of Section 8.6. Other alternatives are discussed in Appendix H.2 at www.wiley.
com/college/nise. The discussion can be adapted to programmable hand-held calcu-
lators. All readers are encouraged to select a computational aid at this point. Root
locus calculations can be labor intensive if hand calculations are used.

We now discuss how to refine our root locus sketch by calculating real-axis
breakaway and break-in points, jv-axis crossings, angles of departure from complex
poles, and angles of arrival to complex zeros. We conclude by showing how to find
accurately any point on the root locus and calculate the gain.

Real-Axis Breakaway and Break-In Points
Numerous root loci appear to break away from the real axis as the system poles
move from the real axis to the complex plane. At other times the loci appear to
return to the real axis as a pair of complex poles becomes real. We illustrate this in
Figure 8.13. This locus is sketched using the first four rules: (1) number of branches,
(2) symmetry, (3) real-axis segments, and (4) starting and ending points. The figure
shows a root locus leaving the real axis between �1 and�2 and returning to the real
axis betweenþ3 andþ5. The point where the locus leaves the real axis,�s1, is called
the breakaway point, and the point where the locus returns to the real axis, s2, is
called the break-in point.
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At the breakaway or break-in point, the branches of the root locus form an
angle of 180�=n with the real axis, where n is the number of closed-loop poles arriving
at or departing from the single breakaway or break-in point on the real axis (Kuo,
1991). Thus, for the two poles shown in Figure 8.13, the branches at the breakaway
point form 90� angles with the real axis.

We now show how to find the breakaway and break-in points. As the two
closed-loop poles, which are at�1 and�2 when K ¼ 0, move toward each other, the
gain increases from a value of zero. We conclude that the gain must be maximum
along the real axis at the point where the breakaway occurs, somewhere between�1
and �2. Naturally, the gain increases above this value as the poles move into the
complex plane. We conclude that the breakaway point occurs at a point of maximum
gain on the real axis between the open-loop poles.

Now let us turn our attention to the break-in point somewhere between þ3
and þ5 on the real axis. When the closed-loop complex pair returns to the real axis,
the gain will continue to increase to infinity as the closed-loop poles move toward
the open-loop zeros. It must be true, then, that the gain at the break-in point is the
minimum gain found along the real axis between the two zeros.

The sketch in Figure 8.14 shows the variation of real-axis gain. The breakaway
point is found at the maximum gain between �1 and �2, and the break-in point is
found at the minimum gain between þ3 and þ5.

There are three methods for finding the points at which the root locus breaks
away from and breaks into the real axis. The first method is to maximize and
minimize the gain, K, using differential calculus. For all points on the root locus,
Eq. (8.13) yields

K ¼ � 1

GðsÞHðsÞ ð8:31Þ

3–2 –1

–

s-plane

j

210

0

j1

j3

j4

–j1

–j3

4 5

2

–j2

j2

1
σ

σσ

ω

FIGURE 8.13 Root locus example showing real-axis breakaway (�s1) and break-in
points (s2)
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For points along the real-axis segment of the root locus where breakaway and break-
in points could exist, s ¼ s. Hence, along the real axis Eq. (8.31) becomes

K ¼ � 1

GðsÞHðsÞ ð8:32Þ

This equation then represents a curve ofK versuss similar to that shown in Figure 8.14.
Hence, if we differentiate Eq. (8.32) with respect to s and set the derivative equal to
zero, we can find the points of maximum and minimum gain and hence the breakaway
and break-in points. Let us demonstrate.

Example 8.3

Breakaway and Break-in Points via Differentiation

PROBLEM: Find the breakaway and break-in points for the root locus of Figure 8.13,
using differential calculus.

SOLUTION: Using the open-loop poles and zeros, we represent the open-loop
system whose root locus is shown in Figure 8.13 as follows:

KGðsÞHðsÞ ¼ Kðs� 3Þðs� 5Þ
ðsþ 1Þðsþ 2Þ ¼

Kðs2 � 8sþ 15Þ
ðs2 þ 3sþ 2Þ ð8:33Þ

But for all points along the root locus, KGðsÞHðsÞ ¼ �1, and along the real axis,
s ¼ s. Hence,

Kðs2 � 8s þ 15Þ
ðs2 þ 3s þ 2Þ ¼ �1 ð8:34Þ

Solving for K, we find

K ¼ �ðs
2 þ 3s þ 2Þ

ðs2 � 8s þ 15Þ ð8:35Þ

Differentiating K with respect to s and setting the derivative equal to zero yields

dK

ds
¼ ð11s2 � 26s � 61Þ
ðs2 � 8s þ 15Þ2 ¼ 0 ð8:36Þ

Solving fors, we finds ¼ �1:45 and 3.82, which are the breakaway and break-in points.

FIGURE 8.14 Variation of
gain along the real axis for the
root locus of Figure 8.13

K

54321 2
σ

–1–2–3 1– σ σ0
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The second method is a variation on the differential calculus method. Called
the transition method, it eliminates the step of differentiation (Franklin, 1991). This
method, derived in Appendix M.2 at www.wiley.com/college/nise, is now stated:

Breakaway and break-in points satisfy the relationship

Xm
1

1

s þ zi
¼
Xn

1

1

s þ pi
ð8:37Þ

where zi and pi are the negative of the zero and pole values, respectively, of G(s)H(s).

Solving Eq. (8.37) for s, the real-axis values that minimize or maximize K, yields
the breakaway and break-in points without differentiating. Let us look at an
example.

Example 8.4

Breakaway and Break-in Points Without Differentiation

PROBLEM: Repeat Example 8.3 without differentiating.

SOLUTION: Using Eq. (8.37),

1

s � 3
þ 1

s � 5
¼ 1

s þ 1
þ 1

s þ 2
ð8:38Þ

Simplifying,

11s2 � 26s � 61 ¼ 0 ð8:39Þ
Hence, s ¼ �1:45 and 3.82, which agrees with Example 8.3.

For the third method, the root locus program discussed in Appendix H.2 at www
.wiley.com/college/nise can be used to find the breakaway and break-in points. Simply
use the program to search for the point of maximum gain between �1 and�2 and to
search for the point of minimum gain betweenþ3 andþ5. Table 8.2 shows the results
of the search. The locus leaves the axis at�1:45, the point of maximum gain between
�1 and�2, and reenters the real axis atþ3:8, the point of minimum gain betweenþ3
and þ5. These results are the same as those obtained using the first two methods.
MATLAB also has the capability of finding breakaway and break-in points.

The jv-Axis Crossings
We now further refine the root locus by finding the imaginary-axis crossings. The
importance of the jv-axis crossings should be readily apparent. Looking at Fig-
ure 8.12, we see that the system’s poles are in the left half-plane up to a particular
value of gain. Above this value of gain, two of the closed-loop system’s poles move
into the right half-plane, signifying that the system is unstable. The jv-axis crossing is
a point on the root locus that separates the stable operation of the system from the
unstable operation. The value of v at the axis crossing yields the frequency of
oscillation, while the gain at the jv-axis crossing yields, for this example, the
maximum positive gain for system stability. We should note here that other examples
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illustrate instability at small values of gain and stability at large values of gain. These
systems have a root locus starting in the right–half-plane (unstable at small values of
gain) and ending in the left–half-plane (stable for high values of gain).

To find the jv-axis crossing, we can use the Routh-Hurwitz criterion, covered in
Chapter 6, as follows: Forcing a row of zeros in the Routh table will yield the gain;
going back one row to the even polynomial equation and solving for the roots yields
the frequency at the imaginary-axis crossing.

Example 8.5

Frequency and Gain at Imaginary-Axis Crossing

PROBLEM: For the system of Figure 8.11, find the frequency and gain, K, for which
the root locus crosses the imaginary axis. For what range of K is the system stable?

SOLUTION: The closed-loop transfer function for the system of Figure 8.11 is

TðsÞ ¼ Kðsþ 3Þ
s4 þ 7s3 þ 14s2 þ ð8þKÞsþ 3K

ð8:40Þ

Using the denominator and simplifying some of the entries by multiplying any row
by a constant, we obtain the Routh array shown in Table 8.3.

A complete row of zeros yields the possibility for imaginary axis roots. For
positive values of gain, those for which the root locus is plotted, only the s1 row can
yield a row of zeros. Thus,

�K2 � 65K þ 720 ¼ 0 ð8:41Þ
From this equation K is evaluated as

K ¼ 9:65 ð8:42Þ

TABLE 8.2 Data for breakaway and break-in points for the root locus of Figure 8.13

Real-axis value Gain Comment

�1.41 0.008557

�1.42 0.008585

�1.43 0.008605

�1.44 0.008617

�1.45 0.008623  Max: gain: breakaway

�1.46 0.008622

3.3 44.686

3.4 37.125

3.5 33.000

3.6 30.667

3.7 29.440

3.8 29.000  Min: gain: break-in

3.9 29.202
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Forming the even polynomial by using the s2 row with K ¼ 9:65, we obtain

ð90�KÞs2 þ 21K ¼ 80:35s2 þ 202:7 ¼ 0 ð8:43Þ
and s is found to be equal to �j1:59. Thus the root locus crosses the jv-axis at
�j1:59 at a gain of 9.65. We conclude that the system is stable for 0 
 K < 9:65.

Another method for finding the jv-axis crossing (or any point on the root
locus, for that matter) uses the fact that at the jv-axis crossing, the sum of angles
from the finite open-loop poles and zeros must add to ð2kþ 1Þ180�. Thus, we can
search jv-axis until we find the point that meets this angle condition. A computer
program, such as the root locus program discussed in Appendix H.2 at www.wiley
.com/college/nise or MATLAB, can be used for this purpose. Subsequent exam-
ples in this chapter use this method to determine the jv-axis crossing.

Angles of Departure and Arrival
In this subsection, we further refine our sketch of the root locus by finding angles
of departure and arrival from complex poles and zeros. Consider Figure 8.15,
which shows the open-loop poles and zeros, some of which are complex. The root
locus starts at the open-loop poles and ends at the open-loop zeros. In order to
sketch the root locus more accurately, we want to calculate the root locus
departure angle from the complex poles and the arrival angle to the complex
zeros.

If we assume a point on the root locus e close to a complex pole, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple of 180�.
Except for the pole that is e close to the point, we assume all angles drawn from all
other poles and zeros are drawn directly to the pole that is near the point. Thus, the
only unknown angle in the sum is the angle drawn from the pole that is e close. We
can solve for this unknown angle, which is also the angle of departure from this
complex pole. Hence, from Figure 8.15(a),

�u1 þ u2 þ u3 � u4 � u5 þ u6 ¼ ð2kþ 1Þ180� ð8:44aÞ

or

u1 ¼ u2 þ u3 � u4 � u5 þ u6 � ð2kþ 1Þ180� ð8:44bÞ
If we assume a point on the root locus e close to a complex zero, the sum of

angles drawn from all finite poles and zeros to this point is an odd multiple of 180�.
Except for the zero that is e close to the point, we can assume all angles drawn from
all other poles and zeros are drawn directly to the zero that is near the point. Thus,

TABLE 8.3 Routh table for Eq. (8.40)

s4 1 14 3K

s3 7 8þK

s2 90�K 21K

s1 �K2 � 65K þ 720

90�K
s0 21K
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the only unknown angle in the sum is the angle drawn from the zero that is e close.
We can solve for this unknown angle, which is also the angle of arrival to this
complex zero. Hence, from Figure 8.15(b),

�u1 þ u2 þ u3 � u4 � u5 þ u6 ¼ ð2kþ 1Þ180� ð8:45aÞ
or

u2 ¼ u1 � u3 þ u4 þ u5 � u6 þ ð2kþ 1Þ180� ð8:45bÞ
Let us look at an example.

2θ

�

s-plane

− q1 + q2 + q3  − q4 − q5 + q6 = (2k + 1)180

s

(a)

q1

q4

q6

q5

q3

w

�

jw

s-plane

s

− q1 + q2 + q3  − q4 − q5 + q6 = (2k + 1)180

(b)

q4

q2 q2

q6

q5

q3

FIGURE 8.15 Open-loop poles and zeros and calculation of a. angle of departure; b. angle of
arrival
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Example 8.6

Angle of Departure from a Complex Pole

PROBLEM: Given the unity feedback system of Figure 8.16, find the angle of
departure from the complex poles and sketch the root locus.

SOLUTION: Using the poles and zeros of GðsÞ ¼ ðsþ 2Þ=½ðsþ 3Þðs2 þ 2sþ 2Þ� as
plotted in Figure 8.17, we calculate the sum of angles drawn to a point e close to the
complex pole, �1þ j1, in the second quadrant. Thus,

�u1 � u2 þ u3 � u4 ¼ �u1 � 90� þ tan�1 1

1

� �
� tan�1 1

2

� �
¼ 180� ð8:46Þ

from which u ¼ �251:6� ¼ 108:4�. A sketch of the root locus is shown in Figure 8.17.
Notice how the departure angle from the complex poles helps us to refine the
shape.

K(s + 2) 

(s + 3)(s2 + 2s + 2)

R(s) C(s)

–

+

FIGURE 8.16 Unity feedback
system with complex poles
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FIGURE 8.17 Root locus for
system of Figure 8.16 showing
angle of departure
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Plotting and Calibrating the Root Locus
Once we sketch the root locus using the rules from Section 8.4, we may want to
accurately locate points on the root locus as well as find their associated gain. For
example, we might want to know the exact coordinates of the root locus as it crosses
the radial line representing 20% overshoot. Further, we also may want the value of
gain at that point.

Consider the root locus shown in Figure 8.12. Let us assume we want to find the
exact point at which the locus crosses the 0.45 damping ratio line and the gain at that
point. Figure 8.18 shows the system’s open-loop poles and zeros along with the z ¼
0:45 line. If a few test points along the z ¼ 0:45 line are selected, we can evaluate
their angular sum and locate that point where the angles add up to an odd multiple of
180�. It is at this point that the root locus exists. Equation (8.20) can then be used to
evaluate the gain, K, at that point.

Selecting the point at radius 2 ðr ¼ 2Þ on the z ¼ 0:45 line, we add the angles of
the zeros and subtract the angles of the poles, obtaining

u2 � u1 � u3 � u4 � u5 ¼ �251:5� ð8:47Þ

Since the sum is not equal to an odd multiple of 180�, the point at radius¼ 2 is not on
the root locus. Proceeding similarly for the points at radius ¼ 1:5; 1; 0:747, and 0.5,
we obtain the table shown in Figure 8.18. This table lists the points, giving their
radius, r, and the sum of angles indicated by the symbol —. From the table we see that
the point at radius 0.747 is on the root locus, since the angles add up to�180�. Using
Eq. (8.21), the gain, K, at this point is

K ¼ jAjjCjjDjjEjjBj ¼ 1:71 ð8:48Þ

In summary, we search a given line for the point yielding a summation of angles
(zero angles–pole angles) equal to an oddmultiple of 180�. We conclude that the point
is on the root locus. The gain at that point is then found by multiplying the pole
lengths drawn to that point and dividing by the product of the zero lengths drawn to
that point. A computer program, such as that discussed in Appendix H.2 at www.
wiley.com/college/nise or MATLAB, can be used.

–4 –3 –2 –1

θ5θ4θ3θ2θ1 σ
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FIGURE 8.18 Finding and calibrating exact points on the root locus of Figure 8.12
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Skill-Assessment Exercise 8.4

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðsþ 2Þ
ðs2 � 4sþ 13Þ

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jv-axis crossing.

d. Find the break-in point.

e. Find the angle of departure from the complex poles.

ANSWERS:

a. See solution at www.wiley.com/college/nise.

b. s ¼ �j ffiffiffiffiffi
21
p

c. K ¼ 4

d. Break-in point ¼ �7

e. Angle of departure ¼ �233:1�

The complete solution is at www.wiley.com/college/nise.

8.6 An Example

We now review the rules for sketching and finding points on the root locus, as well as
present an example. The root locus is the path of the closed-loop poles of a system as
a parameter of the system is varied. Each point on the root locus satisfies the angle
condition, —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. Using this relationship, rules for sketching
and finding points on the root locus were developed and are now summarized:

Basic Rules for Sketching the Root Locus
Number of branches The number of branches of the root locus equals the number of

closed-loop poles.

Symmetry The root locus is symmetrical about the real axis.

Real-axis segments On the real axis, for K > 0 the root locus exists to the left of an
odd number of real-axis, finite open-loop poles and/or finite open-loop zeros.

Starting and ending points The root locus begins at the finite and infinite poles of
G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s).

Behavior at infinity The root locus approaches straight lines as asymptotes as the
locus approaches infinity. Further, the equations of the asymptotes are given by
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the real-axis intercept and angle in radians as follows:

sa ¼
P

finite poles�P finite zeros

#finite poles�#finite zeros
ð8:49Þ

ua ¼ ð2kþ 1Þp
#finite poles�#finite zeros

ð8:50Þ

where k ¼ 0;�1; � 2; � 3; . . . .

Additional Rules for Refining the Sketch
Real-axis breakaway and break-in points The root locus breaks away from the real

axis at a point where the gain is maximum and breaks into the real axis at a point
where the gain is minimum.

Calculation of jv-axis crossings The root locus crosses the jv-axis at the point
where —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. Routh-Hurwitz or a search of the jv-axis for
ð2kþ 1Þ180� can be used to find the jv-axis crossing.

Angles of departure and arrival The root locus departs from complex, open-loop
poles and arrives at complex, open-loop zeros at angles that can be calculated as
follows. Assume a point e close to the complex pole or zero. Add all angles drawn
from all open-loop poles and zeros to this point. The sum equals ð2kþ 1Þ180�. The
only unknown angle is that drawn from the e close pole or zero, since the vectors
drawn from all other poles and zeros can be considered drawn to the complex pole
or zero that is e close to the point. Solving for the unknown angle yields the angle
of departure or arrival.

Plotting and calibrating the root locus All points on the root locus satisfy the
relationship —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. The gain, K, at any point on the root
locus is given by

K ¼ 1

jGðsÞHðsÞj ¼
1

M
�
Q

finite pole lengthsQ
finite zero lengths

ð8:51Þ

Let us now look at a summary example.

Example 8.7

Sketching a Root Locus and Finding Critical Points

PROBLEM: Sketch the root locus for the system shown in Figure 8.19(a) and find
the following:

a. The exact point and gain where the locus crosses the 0.45 damping ratio line

b. The exact point and gain where the locus crosses the jv-axis

c. The breakaway point on the real axis

d. The range of K within which the system is stable
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SOLUTION: The problem solution is shown, in part, in Figure 8.19(b). First sketch
the root locus. Using Rule 3, the real-axis segment is found to be between �2 and
�4. Rule 4 tells us that the root locus starts at the open-loop poles and ends at the
open-loop zeros. These two rules alone give us the general shape of the root locus.

a. To find the exact point where the locus crosses the z ¼ 0:45 line, we can use
the root locus program discussed in Appendix H.2 at www.wiley.com/college/
nise to search along the line

u ¼ 180� � cos�1 0:45 ¼ 116:7� ð8:52Þ
for the point where the angles add up to an odd multiple of 180�. Searching in
polar coordinates, we find that the root locus crosses the z ¼ 0:45 line at
3:4 — 116:7� with a gain, K, of 0.417.

b. To find the exact point where the locus crosses the jv-axis, use the root locus
program to search along the line

u ¼ 90� ð8:53Þ

–2

= 0.45ζ

–j5

0

(  )b

R(s) C(s)K(s2 – 4s + 20)

(s + 2)(s + 4)

(  )a

jω

–4

s-plane

2 + j4

2 – j4

–j1

–j2

–j3

–j4

j2

j3

j4

j5

2 4
σ

–1 31–3

+

–

j1j1

FIGURE 8.19 a. System for Example 8.7; b. root locus sketch.
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for the point where the angles add up to an odd multiple of 180�. Searching in
polar coordinates, we find that the root locus crosses the jv-axis at�j3:9 with
a gain of K ¼ 1:5.

c. To find the breakaway point, use the root locus program to search the real
axis between�2 and�4 for the point that yields maximum gain. Naturally, all
points will have the sum of their angles equal to an odd multiple of 180�. A
maximum gain of 0.0248 is found at the point �2:88. Therefore, the break-
away point is between the open-loop poles on the real axis at �2:88.

d. From the answer to b, the system is stable for K between 0 and 1.5.

Students who are using MATLAB should now run ch8p1 in Appendix B.
You will learn how to use MATLAB to plot and title a root locus,
overlay constant z and vn curves, zoom into and zoom out from a
root locus, and interact with the root locus to find critical
points as well as gains at those points. This exercise solves
Example 8.7 using MATLAB.

Skill-Assessment Exercise 8.5

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðs� 2Þðs� 4Þ
ðs2 þ 6sþ 25Þ

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jv-axis crossing.

d. Find the break-in point.

e. Find the point where the locus crosses the 0.5 damping ratio line.

f. Find the gain at the point where the locus crosses the 0.5 damping ratio line.

g. Find the range of gain, K, for which the system is stable.

ANSWERS:

a. See solution at www.wiley.com/college/nise.

b. s ¼ �j4:06

c. K ¼ 1

d. Break-in point ¼ þ2:89

e. s ¼ �2:42þ j4:18

f. K ¼ 0:108

g. K < 1

The complete solution is at www.wiley.com/college/nise.

TryIt 8.3

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to plot the
root locus for Skill-
Assessment Exercise 8.5.
Solve the remaining parts of
the problem by clicking on
the appropriate points on the
plotted root locus.

numg=poly([2 4]);
deng=[1 6 25];
G=tf(numg,deng)
rlocus(G)
z=0.5
sgrid(z,0)
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8.7 Transient Response Design via Gain
Adjustment

Now that we know how to sketch a root locus, we show how to use it for the design of
transient response. In the last section we found that the root locus crossed the 0.45
damping ratio line with a gain of 0.417. Does this mean that the system will respond
with 20.5% overshoot, the equivalent to a damping ratio of 0.45? It must be
emphasized that the formulas describing percent overshoot, settling time, and
peak time were derived only for a system with two closed-loop complex poles
and no closed-loop zeros. The effect of additional poles and zeros and the conditions
for justifying an approximation of a two-pole system were discussed in Sections 4.7
and 4.8 and apply here to closed-loop systems and their root loci. The conditions
justifying a second-order approximation are restated here:

1. Higher-order poles are much farther into the left half of the s-plane than the
dominant second-order pair of poles. The response that results from a higher-
order pole does not appreciably change the transient response expected from the
dominant second-order poles.

2. Closed-loop zeros near the closed-loop second-order pole pair are nearly can-
celed by the close proximity of higher-order closed-loop poles.

3. Closed-loop zeros not canceled by the close proximity of higher-order closed-loop
poles are far removed from the closed-loop second-order pole pair.

The first condition as it applies to the root locus is shown graphically in Figure
8.20(a) and (b). Figure 8.20(b) would yield a much better second-order approxima-
tion than Figure 8.20(a), since closed-loop pole p3 is farther from the dominant,
closed-loop second-order pair, p1 and p2.

The second condition is shown graphically in Figure 8.20(c) and (d).
Figure 8.20(d) would yield a much better second-order approximation than
Figure 8.20(c), since closed-loop pole p3 is closer to canceling the closed-loop zero.

σ

jω

p1
s-plane

(a)

(d)

σ

Open-loop pole

Closed-loop pole

Closed-loop zero

p2
p3

jω

s-plane
p1

p2

σ

(b)

jω

s-plane p1

p2

σ

(c)

jω

s-plane p1

p2

p3

p3 p3

FIGURE 8.20 Making second-order approximations
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Summarizing the design procedure for higher-order systems, we arrive at the
following:

1. Sketch the root locus for the given system.

2. Assume the system is a second-order system without any zeros and then find the
gain to meet the transient response specification.

3. Justify your second-order assumption by finding the location of all higher-order
poles and evaluating the fact that they are much farther from the jv-axis than the
dominant second-order pair. As a rule of thumb, this textbook assumes a factor of
five times farther. Also, verify that closed-loop zeros are approximately canceled
by higher-order poles. If closed-loop zeros are not canceled by higher-order
closed-loop poles, be sure that the zero is far removed from the dominant second-
order pole pair to yield approximately the same response obtained without the
finite zero.

4. If the assumptions cannot be justified, your solution will have to be simulated in
order to be sure it meets the transient response specification. It is a good idea to
simulate all solutions, anyway.

We now look at a design example to show how to make a second-order
approximation and then verify whether or not the approximation is valid.

Example 8.8

Third-Order System Gain Design

PROBLEM: Consider the system shown in Figure 8.21. Design the
value of gain, K, to yield 1.52% overshoot. Also estimate the
settling time, peak time, and steady-state error.

SOLUTION: The root locus is shown in Figure 8.22. Notice that this
is a third-order system with one zero. Breakaway points on the real

jω

j2

0

j3

j4

–j1

–j2

s-plane

–10

–4.6 + j3.45, K = 39.64

= 0.8ζ

–1–1.5

–1.19 + j0.90, K = 12.79
–0.87 + j0.66, K = 7.36

σ
–9 –8 –7 –6 –5 – 4 –3

= Closed-loop pole

= Open-loop pole

FIGURE 8.22 Root locus for Example 8.8

C(s)

s(s + 1)(s + 10)
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–

+

–

+

–

FIGURE 8.21 System for Example 8.8
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axis can occur between 0 and �1 and between �1:5 and �10, where the gain
reaches a peak. Using the root locus program and searching in these regions for
the peaks in gain, breakaway points are found at�0:62 with a gain of 2.511 and at
�4:4 with a gain of 28.89. A break-in point on the real axis can occur between
�1:5 and �10, where the gain reaches a local minimum. Using the root locus
program and searching in these regions for the local minimum gain, a break-in
point is found at �2:8 with a gain of 27.91.

Next assume that the system can be approximated by a second-order, under-
damped system without any zeros. A 1.52% overshoot corresponds to a damping
ratio of 0.8. Sketch this damping ratio line on the root locus, as shown in Figure 8.22.

Use the root locus program to search along the 0.8 damping ratio line for the
point where the angles from the open-loop poles and zeros add up to an odd multiple of
180�. This is the point where the root locus crosses the 0.8 damping ratio or 1.52 percent
overshoot line. Three points satisfy this criterion: �0:87� j0:66; � 1:19� j0:90, and
�4:6� j 3:45 with respective gains of 7.36, 12.79, and 39.64. For each point the settling
time and peak time are evaluated using

Ts ¼ 4

zvn
ð8:54Þ

where zvn is the real part of the closed-loop pole, and also using

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð8:55Þ

where vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is the imaginary part of the closed-loop pole.

To test our assumption of a second-order system, we must calculate the
location of the third pole. Using the root locus program, search along the negative
extension of the real axis between the zero at �1:5 and the pole at �10 for points
that match the value of gain found at the second-order dominant poles. For each of
the three crossings of the 0.8 damping ratio line, the third closed-loop pole is at
�9:25, �8:6, and �1:8, respectively. The results are summarized in Table 8.4.

Finally, let us examine the steady-state error produced in each case. Note that
we have little control over the steady-state error at this point. When the gain is set
to meet the transient response, we have also designed the steady-state error. For
the example, the steady-state error specification is given by Kv and is calculated as

Kv ¼ lim
s!0

sGðsÞ ¼ Kð1:5Þ
ð1Þð10Þ ð8:56Þ

The results for each case are shown in Table 8.4.
How valid are the second-order assumptions? From Table 8.4, Cases 1 and 2

yield third closed-loop poles that are relatively far from the closed-loop zero. For
these two cases there is no pole-zero cancellation, and a second-order system

TABLE 8.4 Characteristics of the system of Example 8.8

Case
Closed-loop

poles
Closed-loop

zero Gain
Third

closed-loop pole
Settling
time

Peak
time Kv

1 �0:87� j0:66 �1:5þ j0 7.36 �9.25 4.60 4.76 1.1

2 �1:19� j0:90 �1:5þ j0 12.79 �8.61 3.36 3.49 1.9

3 �4:60� j3:45 �1:5þ j0 39.64 �1.80 0.87 0.91 5.9
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approximation is not valid. In Case 3, the third closed-loop pole and the closed-loop
zero are relatively close to each other, and a second-order system approximation
can be considered valid. In order to show this, let us make a partial-fraction
expansion of the closed-loop step response of Case 3 and see that the amplitude of
the exponential decay is much less than the amplitude of the underdamped
sinusoid. The closed-loop step response, C3ðsÞ, formed from the closed-loop poles
and zeros of Case 3 is

C3ðsÞ ¼ 39:64ðsþ 1:5Þ
sðsþ 1:8Þðsþ 4:6þ j3:45Þðsþ 4:6� j3:45Þ

¼ 39:64ðsþ 1:5Þ
sðsþ 1:8Þðs2 þ 9:2sþ 33:06Þ

¼ 1

s
þ 0:3

sðsþ 18Þ �
1:3ðsþ 4:6Þ þ 1:6ð3:45Þ
ðsþ 4:6Þ2þ3:452

ð8:57Þ

Thus, the amplitude of the exponential decay from the third pole is 0.3, and the
amplitude of the underdamped response from the dominant poles isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:32 þ 1:62
p

¼ 2:06. Hence, the dominant pole response is 6.9 times as large as
the nondominant exponential response, and we assume that a second-order
approximation is valid.

Using a simulation program, we obtain Figure 8.23, which shows comparisons
of step responses for the problem we have just solved. Cases 2 and 3 are plotted for
both the third-order response and a second-order response, assuming just the
dominant pair of poles calculated in the design problem. Again, the second-order
approximation was justified for Case 3, where there is a small difference in percent
overshoot. The second-order approximation is not valid for Case 2. Other than the
excess overshoot, Case 3 responses are similar.

Students who are using MATLAB should now run ch8p2 in Appendix B.
You will learn how to use MATLAB to enter a value of percent
overshoot from the keyboard. MATLAB will then draw the root locus
and overlay the percent overshoot line requested. You will then
interact with MATLAB and select the point of intersection of the
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FIGURE 8.23 Second- and third-order responses for Example 8.8: a. Case 2; b. Case 3
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root locus with the requested percent overshoot line. MATLAB
willrespondwiththevalueofgain,allclosed-looppolesatthat
gain, and a closed-loop step response plot corresponding to the
selected point. This exercise solves Example 8.8 using MATLAB.

Students who are using MATLAB may want to explore the SISO Design
Tool described in Appendix E at www.wiley.com/college/nise. The
SISO Design Tool is a convenient and intuitive way to obtain, view,
and interact with a system’s root locus. Section D.7 describes the
advantages of using the tool, while Section D.8 describes how to
use it. For practice, you may want to apply the SISO Design Tool to
some of the problems at the end of this chapter.

Skill-Assessment Exercise 8.6

PROBLEM: Given a unity feedback system that has the forward-path transfer
function

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ
do the following:

a. Sketch the root locus.

b. Using a second-order approximation, design the value of K to yield 10%
overshoot for a unit-step input.

c. Estimate the settling time, peak time, rise time, and steady-state error for the
value of K designed in (b).

d. Determine the validity of your second-order approximation.

ANSWERS:

a. See solution located at www.wiley.com/college/nise.

b. K ¼ 45:55

c. Ts ¼ 1:97 s; Tp ¼ 1:13 s; Tr ¼ 0:53s, and estepð1Þ ¼ 0:51

d. Second-order approximation is not valid.

The complete solution is located at www.wiley.com/college/nise.

8.8 Generalized Root Locus

Up to this point we have always drawn the root locus as a function of the forward-
path gain, K. The control system designer must often know how the closed-loop
poles change as a function of another parameter. For example, in Figure 8.24, the
parameter of interest is the open-loop pole at �p1. How can we obtain a root locus
for variations of the value of p1?
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If the function KG(s)H(s) is formed as

KGðsÞHðsÞ ¼ 10

ðsþ 2Þðsþ p1Þ
ð8:58Þ

the problem is that p1 is not a multiplying factor of the function, as the
gain, K, was in all of the previous problems. The solution to this
dilemma is to create an equivalent system where p1 appears as the
forward-path gain. Since the closed-loop transfer function’s denomi-
nator is 1þKGðsÞHðsÞ, we effectively want to create an equivalent
system whose denominator is 1þ p1GðsÞHðsÞ.

For the system of Figure 8.24, the closed-loop transfer function is

TðsÞ ¼ KGðsÞ
1þKGðsÞHðsÞ ¼

10

s2 þ ðp1 þ 2Þsþ 2p1 þ 10
ð8:59Þ

Isolating p1, we have

TðsÞ ¼ 10

s2 þ 2sþ 10þ p1ðsþ 2Þ ð8:60Þ

Converting the denominator to the form [1þ p1GðsÞHðsÞ] by dividing numerator
and denominator by the term not included with p1; s

2 þ 2sþ 10, we obtain

TðsÞ ¼
10

s2 þ 2sþ 10

1þ p1ðsþ 2Þ
s2 þ 2sþ 10

ð8:61Þ

Conceptually, Eq. (8.61) implies that we have a system for which

KGðsÞHðsÞ ¼ p1ðsþ 2Þ
s2 þ 2sþ 10

ð8:62Þ

The root locus can now be sketched as a function of p1, assuming the open-loop
system of Eq. (8.62). The final result is shown in Figure 8.25.

R(s) C(s)

(s + 2)(s + p1)
10+

–

FIGURE 8.24 System requiring a root locus
calibrated with p1 as a parameter

FIGURE 8.25 Root locus for
the system of Figure 8.24, with
p1 as a parameter
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Skill-Assessment Exercise 8.7

PROBLEM: Sketch the root locus for variations in the value of p1, for a unity
feedback system that has the following forward transfer function:

GðsÞ ¼ 100

sðsþ p1Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

In this section, we learned to plot the root locus as a function of any system
parameter. In the next section we will learn how to plot root loci for positive-
feedback systems.

8.9 Root Locus for Positive-Feedback
Systems

The properties of the root locus were derived from the system of Figure
8.1. This is a negative-feedback system because of the negative summing
of the feedback signal to the input signal. The properties of the root locus
change dramatically if the feedback signal is added to the input rather
than subtracted. A positive-feedback system can be thought of as a
negative-feedback system with a negative value of H(s). Using this
concept, we find that the transfer function for the positive-feedback
system shown in Figure 8.26 is

TðsÞ ¼ KGðsÞ
1�KGðsÞHðsÞ ð8:63Þ

We now retrace the development of the root locus for the denominator of
Eq. (8.63). Obviously, a pole, s, exists when

KGðsÞHðsÞ ¼ 1 ¼ 1—k360� k ¼ 0;�1;�2;�3; . . . ð8:64Þ

Therefore, the root locus for positive-feedback systems consists of all points on the
s-plane where the angle of KGðsÞHðsÞ ¼ k360�. How does this relationship change
the rules for sketching the root locus presented in Section 8.4?

1. Number of branches. The same arguments as for negative feedback apply to this
rule. There is no change.

2. Symmetry. The same arguments as for negative feedback apply to this rule. There
is no change.

3. Real-axis segments. The development in Section 8.4 for the real-axis segments
led to the fact that the angles of G(s)H(s) along the real axis added up to either an
odd multiple of 180� or a multiple of 360�. Thus, for positive-feedback systems the

KG(s)

H(s)

C(s)R(s) +

+

+

FIGURE 8.26 Positive-feedback system
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root locus exists on the real axis along sections where the locus for negative-
feedback systems does not exist. The rule follows:

Real-axis segments: On the real axis, the root locus for positive-feedback systems
exists to the left of an even number of real-axis, finite open-loop poles and/or finite
open-loop zeros.

The change in the rule is the word even; for negative-feedback systems the locus
existed to the left of an odd number of real-axis, finite open-loop poles and/or
zeros.

4. Starting and ending points. You will find no change in the development in Section
8.4 if Eq. (8.63) is used instead of Eq. (8.12). Therefore, we have the following
rule.

Starting and ending points: The root locus for positive-feedback systems begins at
the finite and infinite poles of G(s)H(s) and ends at the finite and infinite zeros of
G(s)H(s).

5. Behavior at infinity. The changes in the development of the asymptotes begin at
Eq. (M.4) in Appendix M at www.wiley.com/college/nise since positive-feedback
systems follow the relationship in Eq. (8.64). That change yields a different slope
for the asymptotes. The value of the real-axis intercept for the asymptotes
remains unchanged. The student is encouraged to go through the development
in detail and show that the behavior at infinity for positive-feedback systems is
given by the following rule:

The root locus approaches straight lines as asymptotes as the locus approaches
infinity. Further, the equations of the asymptotes for positive-feedback systems are
given by the real-axis intercept, sa, and angle, ua, as follows:

sa ¼
P

finite poles�P finite zeros

# finite poles�# finite zeros
ð8:65Þ

ua ¼ k2p

# finite poles�# finite zeros
ð8:66Þ

where k ¼ 0; � 1; � 2; � 3; . . . , and the angle is given in radians with respect to
the positive extension of the real axis.

The change we see is that the numerator of Eq. (8.66) is k2p instead of
ð2kþ 1Þp.

What about other calculations? The imaginary-axis crossing can be found using
the root locus program. In a search of the jv-axis, you are looking for the point where
the angles add up to a multiple of 360� instead of an odd multiple of 180�. The
breakaway points are found by looking for the maximum value of K. The break-in
points are found by looking for the minimum value of K.

When we were discussing negative-feedback systems, we always made the root
locus plot for positive values of gain. Since positive-feedback systems can also be
thought of as negative-feedback systems with negative gain, the rules developed in
this section apply equally to negative-feedback systems with negative gain. Let us
look at an example.

422 Chapter 8 Root Locus Techniques
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Example 8.9

Root Locus for a Positive-Feedback System

PROBLEM: Sketch the root locus as a function of negative gain, K, for the system
shown in Figure 8.11.

SOLUTION: The equivalent positive-feedback system found by pushing �1, asso-
ciated with K, to the right past the pickoff point is shown in Figure 8.27(a).

Therefore, as the gain of the equivalent system goes through positive values of K,
the root locus will be equivalent to that generated by the gain, K, of the original
system in Figure 8.11 as it goes through negative values.

The root locus exists on the real axis to the left of an even number of real,
finite open-loop poles and/or zeros. Therefore, the locus exists on the entire
positive extension of the real axis, between �1 and �2 and between �3 and
�4. Using Eq. (8.27), the sa intercept is found to be

sa ¼ ð�1� 2� 4Þ � ð�3Þ
4� 1

¼ � 4

3
ð8:67Þ

The angles of the lines that intersect at �4=3 are given by

ua ¼ k2p

# finite poles�# finite zeros
ð8:68aÞ

¼ 0 for k ¼ 0 ð8:68bÞ
¼ 2p=3 for k ¼ 1 ð8:68cÞ
¼ 4p=3 for k ¼ 2 ð8:68dÞ

The final root locus sketch is shown in Figure 8.27(b)
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s-plane
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4 –2 –1
σ

(b)

–j3

–j2

–j1

j1

j2

j3

–

FIGURE 8.27 a. Equivalent
positive-feedback system for
Example 8.9; b. root locus
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Skill-Assessment Exercise 8.8

PROBLEM: Sketch the root locus for the positive-feedback system whose forward
transfer function is

GðsÞ ¼ Kðsþ 4Þ
ðsþ 1Þðsþ 2Þðsþ 3Þ

The system has unity feedback.

ANSWER: The complete solution is at www.wiley.com/college/nise.

8.10 Pole Sensitivity

The root locus is a plot of the closed-loop poles as a system parameter is varied.
Typically, that system parameter is gain. Any change in the parameter changes the
closed-loop poles and, subsequently, the performance of the system. Many times the
parameter changes against our wishes, due to heat or other environmental condi-
tions. We would like to find out the extent to which changes in parameter values
affect the performance of our system.

The root locus exhibits a nonlinear relationship between gain and pole
location. Along some sections of the root locus, (1) very small changes in gain
yield very large changes in pole location and hence performance; along other
sections of the root locus, (2) very large changes in gain yield very small changes
in pole location. In the first case we say that the system has a high sensitivity to
changes in gain. In the second case, the system has a low sensitivity to changes in
gain. We prefer systems with low sensitivity to changes in gain.

In Section 7.7, we defined sensitivity as the ratio of the fractional change in a
function to the fractional change in a parameter as the change in the parameter
approaches zero. Applying the same definition to the closed-loop poles of a system
that vary with a parameter, we define root sensitivity as the ratio of the fractional
change in a closed-loop pole to the fractional change in a system parameter, such as
gain. Using Eq. (7.75), we calculate the sensitivity of a closed-loop pole, s, to gain, K:

Ss:K ¼ K

s

ds

dK
ð8:69Þ

where s is the current pole location, and K is the current gain. Using Eq. (8.69) and
converting the partials to finite increments, the actual change in the closed-loop
poles can be approximated as

Ds ¼ s Ss:Kð ÞDK
K

ð8:70Þ

where Ds is the change in pole location, and DK=K is the fractional change in the
gain, K. Let us demonstrate with an example. We begin with the characteristic
equation from which ds=dK can be found. Then, using Eq. (8.69) with the current
closed-loop pole, s, and its associated gain, K, we can find the sensitivity.

424 Chapter 8 Root Locus Techniques
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Example 8.10

Root Sensitivity of a Closed-Loop System to Gain Variations

PROBLEM: Find the root sensitivity of the system in Figure 8.4 at s ¼ �9:47 and
�5þ j5. Also calculate the change in the pole location for a 10% change in K.

SOLUTION: The system’s characteristic equation, found from the closed-loop
transfer function denominator, is s2 þ 10sþK ¼ 0. Differentiating with respect
to K, we have

2s
ds

dK
þ 10

ds

dK
þ 1 ¼ 0 ð8:71Þ

from which
ds

dK
¼ �1

2sþ 10
ð8:72Þ

Substituting Eq. (8.72) into Eq. (8.69), the sensitivity is found to be

Ss:K ¼ K

s

�1

2sþ 10
ð8:73Þ

For s ¼ �9:47, Table 8.1 shows K ¼ 5. Substituting these values into Eq. (8.73)
yields Ss:K ¼ �0:059. The change in the pole location for a 10% change in K can be
found using Eq. (8.70), with s ¼ �9:47; DK=K ¼ 0:1, and Ss:K ¼ �0:059. Hence,
Ds ¼ 0:056, or the pole will move to the right by 0.056 units for a 10% change in K.

For s ¼ �5þ j5, Table 8.1 shows K ¼ 50. Substituting these values into Eq.
(8.73) yields Ss:K ¼ 1=ð1þ j1Þ ¼ ð1= ffiffiffi

2
p Þ—� 45�. The change in the pole location for

a 10% change in K can be found using Eq. (8.70), with s ¼ � 5þ j5; DK=K ¼ 0:1,
and Ss:K ¼ ð1=

ffiffiffi
2
p Þ—� 45�. Hence, Ds ¼ �j5, or the pole will move vertically by 0.5

unit for a 10% change in K.
In summary, then, atK ¼ 5; Ss:K ¼ �0:059. AtK ¼ 50; Ss:K ¼ ð1=

ffiffiffi
2
p Þ—� 45�.

Comparing magnitudes, we conclude that the root locus is less sensitive to changes in
gain at the lower value of K. Notice that root sensitivity is a complex quantity
possessing both the magnitude and direction information from which the change in
poles can be calculated.

Skill-Assessment Exercise 8.9

PROBLEM: A negative unity feedback system has the forward transfer function

GðsÞ ¼ Kðsþ 1Þ
sðsþ 2Þ

If K is set to 20, find the changes in closed-loop pole location for a 5% change in K.

ANSWER: For the closed-loop pole at �21:05; Ds ¼ �0:9975; for the closed-loop
pole at �0:95; Ds ¼ �0:0025.

The complete solution is at www.wiley.com/college/nise.
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Case Studies

Antenna Control: Transient Design via Gain

The main thrust of this chapter is to demonstrate design of higher-order systems
(higher than two) through gain adjustment. Specifically, we are interested in
determining the value of gain required to meet transient response requirements,
such as percent overshoot, settling time, and peak time. The following case study
emphasizes this design procedure, using the root locus.

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, find the preamplifier gain required for 25% overshoot.

SOLUTION: The block diagram for the system was derived in the Case Studies section in
Chapter 5 and is shown in Figure 5.34(c), where GðsÞ ¼ 6:63K=½sðsþ 1:71Þðsþ 100Þ�.

First a sketch of the root locus is made to orient the designer. The real-axis
segments are between the origin and �1:71 and from �100 to infinity. The locus
begins at the open-loop poles, which are all on the real axis at the origin,�1:71, and
�100. The locus then moves toward the zeros at infinity by following asymptotes
that, from Eqs. (8.27) and (8.28), intersect the real axis at �33:9 at angles of 60�,
180�, and �60�. A portion of the root locus is shown in Figure 8.28.

From Eq. (4.39), 25% overshoot corresponds to a damping ratio of 0.404. Now
draw a radial line from the origin at an angle of cos�1 z ¼ 113:8. The intersection of
this line with the root locus locates the system’s dominant, second-order closed-
loop poles. Using the root locus program discussed in Appendix H.2 at www.wiley
.com/college/nise to search the radial line for 180� yields the closed-loop dominant
poles as 2:063 —113:8� ¼ �0:833� j1:888. The gain value yields 6:63K ¼ 425:7,
from which K ¼ 64:21.

FIGURE 8.28 Portion of the
root locus for the antenna
control system
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Checking our second-order assumption, the third pole must be to the left of
the open-loop pole at �100 and is thus greater than five times the real part of
the dominant pole pair, which is �0:833. The second-order approximation is
thus valid.

The computer simulation of the closed-loop system’s step response in
Figure 8.29 shows that the design requirement of 25% overshoot is met.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. Referring to the antenna azimuth position control system shown on the
front endpapers, Configuration 2, do the following:

a. Find the preamplifier gain, K, required for an 8-second settling time.

b. Repeat, using MATLAB.

UFSS Vehicle: Transient Design via Gain

In this case study, we apply the root locus to the UFSS vehicle pitch control loop.
The pitch control loop is shown with both rate and position feedback on the back
endpapers. In the example that follows, we plot the root locus without the rate
feedback and then with the rate feedback. We will see the stabilizing effect that rate
feedback has upon the system.

PROBLEM: Consider the block diagram of the pitch control loop for the UFSS
vehicle shown on the back endpapers (Johnson, 1980).

a. If K2 ¼ 0 (no rate feedback), plot the root locus for the system as a function of
pitch gain, K1, and estimate the settling time and peak time of the closed-loop
response with 20% overshoot.

b. Let K2 ¼ K1 (add rate feedback) and repeat a.

10
Time (seconds)

c(
t)

9876543210

1.4

1.0

1.2

0.8

0.6

0.4

0.2

0

FIGURE 8.29 Step response of the gain-adjusted antenna control system
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SOLUTION:

a. Letting K2 ¼ 0, the open-loop transfer function is

GðsÞHðsÞ ¼ 0:25K1ðsþ 0:435Þ
ðsþ 1:23Þðsþ 2Þðs2 þ 0:226sþ 0:0169Þ ð8:74Þ

from which the root locus is plotted in Figure 8.30. Searching along the 20%
overshoot line evaluated from Eq. (4.39), we find the dominant second-order
poles to be �0:202� j0:394 with a gain of K ¼ 0:25K1 ¼ 0:706, or K1 ¼ 2:824.

From the real part of the dominant pole, the settling time is estimated to be
Ts ¼ 4=0:202 ¼ 19:8 seconds. From the imaginary part of the dominant pole, the
peak time is estimated to be Tp ¼ p=0:394 ¼ 7:97 seconds. Since our estimates
are based upon a second-order assumption, we now test our assumption by
finding the third closed-loop pole location between �0:435 and �1:23 and the
fourth closed-loop pole location between �2 and infinity. Searching each of
these regions for a gain of K ¼ 0:706, we find the third and fourth poles at
�0:784 and �2:27, respectively. The third pole, at �0:784, may not be close
enough to the zero at �0:435, and thus the system should be simulated. The
fourth pole, at �2:27, is 11 times as far from the imaginary axis as the dominant
poles and thus meets the requirement of at least five times the real part of the
dominant poles.

A computer simulation of the step response for the system, which is shown
in Figure 8.31, shows a 29% overshoot above a final value of 0:88, approximately
20-second settling time, and a peak time of approximately 7.5 seconds.

20%
s-plane

j1

0

–0.202 + j0.394 K = 0.706; K1 = 2.824

jω

–1–2–3

–j3

j3

σ
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–j2

–j1

= Closed-loop pole
= Open-loop pole

FIGURE 8.30 Root locus of pitch control loop without rate feedback, UFSS vehicle
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b. Adding rate feedback by letting K2 ¼ K1 in the pitch control system shown on
the back endpapers, we proceed to find the new open-loop transfer function.
Pushing �K1 to the right past the summing junction, dividing the pitch rate
sensor by �K1, and combining the two resulting feedback paths obtaining
ðsþ 1Þ give us the following open-loop transfer function:

GðsÞHðsÞ ¼ 0:25K1ðsþ 0:435Þðsþ 1Þ
ðsþ 1:23Þðsþ 2Þðs2 þ 0:226sþ 0:0169Þ ð8:75Þ

Notice that the addition of rate feedback adds a zero to the open-loop transfer
function. The resulting root locus is shown in Figure 8.32. Notice that this root
locus, unlike the root locus in a, is stable for all values of gain, since the locus
does not enter the right half of the s-plane for any value of positive gain,
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FIGURE 8.31 Computer
simulation of step response of
pitch control loop without rate
feedback, UFSS vehicle
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K ¼ 0:25K1. Also notice that the intersection with the 20% overshoot line is
much farther from the imaginary axis than is the case without rate feedback,
resulting in a faster response time for the system.

The root locus intersects the 20% overshoot line at �1:024� j1:998 with a
gain of K ¼ 0:25K1 ¼ 5:17, or K1 ¼ 20:68. Using the real and imaginary parts of
the dominant pole location, the settling time is predicted to be Ts ¼ 4=1:024 ¼
3:9 seconds, and the peak time is estimated to be Tp ¼ p=1:998 ¼ 1:57 seconds.
The new estimates show considerable improvement in the transient response as
compared to the system without the rate feedback.

Now we test our second-order approximation by finding the location of the
third and fourth poles between �0:435 and �1. Searching this region for a gain
of K ¼ 5:17, we locate the third and fourth poles at approximately �0:5 and
�0:91. Since the zero at�1 is a zero of H(s), the student can verify that this zero
is not a zero of the closed-loop transfer function. Thus, although there may be
pole-zero cancellation between the closed-loop pole at �0:5 and the closed-
loop zero at �0:435, there is no closed-loop zero to cancel the closed-loop pole
at �0:91.2 Our second-order approximation is not valid.

A computer simulation of the system with rate feedback is shown in
Figure 8.33. Although the response shows that our second-order approximation
is invalid, it still represents a considerable improvement in performance over
the system without rate feedback; the percent overshoot is small, and the
settling time is about 6 seconds instead of about 20 seconds.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on the
back endpapers, and introduced in the case study challenge in Chapter 5, do the
following:

a. Let K2 ¼ K1 and find the value of K1 that yields 10% overshoot.

b. Repeat, using MATLAB.

2 The zero at �1 shown on the root locus plot of Figure 8.32 is an open-loop zero since it comes from the
numerator of H(s).

FIGURE 8.33 Computer
simulation of step response
of pitch control loop with rate
feedback, UFSS vehicle
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We have concluded the chapter with two case studies showing the use and
application of the root locus. We have seen how to plot a root locus and estimate
the transient response by making a second-order approximation. We saw that the
second-order approximation held when rate feedback was not used for the UFSS.
When rate feedback was used, an open-loop zero from H(s) was introduced. Since it
was not a closed-loop zero, there was no pole-zero cancellation, and a second-order
approximation could not be justified. In this case, however, the transient response
with rate feedback did represent an improvement in transient response over the
system without rate feedback. In subsequent chapters we will see why rate feedback
yields an improvement. We will also see other methods of improving the transient
response.

Summary

In this chapter, we examined the root locus, a powerful tool for the analysis and design
of control systems. The root locus empowers us with qualitative and quantitative
information about the stability and transient response of feedback control systems.
The root locus allows us to find the poles of the closed-loop system by starting from the
open-loop system’s poles and zeros. It is basically a graphical root-solving technique.

We looked at ways to sketch the root locus rapidly, even for higher-order
systems. The sketch gave us qualitative information about changes in the transient
response as parameters were varied. From the locus we were able to determine
whether a system was unstable for any range of gain.

Next we developed the criterion for determining whether a point in the s-plane
was on the root locus: The angles from the open-loop zeros, minus the angles from the
open-loop poles drawn to the point in the s-plane, add up to an odd multiple of 180�.

The computer program discussed in Appendix G.2 at www.wiley.com/college/
nise helps us to search rapidly for points on the root locus. This program allows us to
find points and gains to meet certain transient response specifications as long as we
are able to justify a second-order assumption for higher-order systems. Other
computer programs, such as MATLAB, plot the root locus and allow the user to
interact with the display to determine transient response specifications and system
parameters.

Our method of design in this chapter is gain adjustment. We are limited to
transient responses governed by the poles on the root locus. Transient responses
represented by pole locations outside of the root locus cannot be obtained by a
simple gain adjustment. Further, once the transient response has been established,
the gain is set, and so is the steady-state error performance. In other words, by a
simple gain adjustment, we have to trade off between a specified transient response
and a specified steady-state error. Transient response and steady-state error cannot
be designed independently with a simple gain adjustment.

We also learned how to plot the root locus against system parameters other
than gain. In order to make this root locus plot, we must first convert the closed-loop
transfer function into an equivalent transfer function that has the desired system
parameter in the same position as the gain. The chapter discussion concluded with
positive-feedback systems and how to plot the root loci for these systems.

The next chapter extends the concept of the root locus to the design of
compensation networks. These networks have as an advantage the separate design
of transient performance and steady-state error performance.
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Review Questions

1. What is a root locus?

2. Describe two ways of obtaining the root locus.

3. If KGðsÞHðsÞ ¼ 5—180�, for what value of gain is s a point on the root locus?

4. Do the zeros of a system change with a change in gain?

5. Where are the zeros of the closed-loop transfer function?

6. What are two ways to find where the root locus crosses the imaginary axis?

7. How can you tell from the root locus if a system is unstable?

8. How can you tell from the root locus if the settling time does not change over a
region of gain?

9. How can you tell from the root locus that the natural frequency does not change
over a region of gain?

10. How would you determine whether or not a root locus plot crossed the real axis?

11. Describe the conditions that must exist for all closed-loop poles and zeros in
order to make a second-order approximation.

12. What rules for plotting the root locus are the same whether the system is a
positive- or a negative-feedback system?

13. Briefly describe how the zeros of the open-loop system affect the root locus and
the transient response.

Problems

1. For each of the root loci shown in Figure P8.1, tell
whether or not the sketch can be a root locus. If the
sketch cannot be a root locus, explain why. Give all
reasons. [Section: 8.4]
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2. Sketch the general shape of the root
locus for each of the open-loop pole-
zero plots shown in Figure P8.2.
[Section: 8.4]
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FIGURE P8.2

3. Sketch the root locus for the unity feedback system
shown in Figure P8.3 for the following transfer
functions: [Section: 8.4]

a. GðsÞ ¼ Kðsþ 2Þðsþ 6Þ
s2 þ 8sþ 25

b. GðsÞ ¼ Kðs2 þ 4Þ
ðs2 þ 1Þ

c. GðsÞ ¼ Kðs2 þ 1Þ
s2

d. GðsÞ ¼ K

ðsþ 1Þ3ðsþ 4Þ

R(s)
G(s)

C(s)

–

+

FIGURE P8.3

4. Let

GðsÞ ¼
K sþ 2

3

� �

s2ðsþ 6Þ
in Figure P8.3. [Section: 8.5]

a. Plot the root locus.

b. Write an expression for the closed-loop transfer
function at the point where the three closed-loop
poles meet.

5. Let

GðsÞ ¼ �Kðsþ 1Þ2
s2 þ 2sþ 2

with K > 0 in Figure P8.3. [Sections: 8.5, 8.9]

a. Find the range of K for closed-loop stability.

b. Sketch the system’s root locus.

c. Find the position of the closed-loop poles when
K ¼ 1 and K ¼ 2.

6. For the open-loop pole-zero plot shown in Figure
P8.4, sketch the root locus and find the break-in
point. [Section: 8.5]

–1–2–3

–j1

j1
s-plane

jω

σ
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FIGURE P8.4

7. Sketch the root locus of the unity feedback system
shown in Figure P8.3, where

GðsÞ ¼ Kðsþ 3Þðsþ 5Þ
ðsþ 1Þðs� 7Þ

and find the break-in and breakaway points. [Sec-
tion: 8.5]
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8. The characteristic polynomial of a feedback control
system, which is the denominator of the closed-loop
transfer function, is given by s3 þ 2s2þ
ð20K þ 7Þsþ 100K. Sketch the root locus for this
system. [Section: 8.8]

9. Figure P8.5 shows open-loop poles and zeros. There
are two possibilities for the sketch of the root locus.
Sketch each of the two possibilities. Be aware that
only one can be the real locus for specific open-loop
pole and zero values. [Section: 8.4]

σ

s-plane

jω

FIGURE P8.5

10. Plot the root locus for the unity feedback system
shown in Figure P8.3, where

GðsÞ ¼ Kðsþ 2Þðs2 þ 4Þ
ðsþ 5Þðs� 3Þ

For what range of K will the poles be in the right
half-plane? [Section: 8.5]

11. For the unity feedback system shown in
Figure P8.3, where

GðsÞ ¼ K s2 � 9
� �
s2 þ 4ð Þ

sketch the root locus and tell for what values of K
the system is stable and unstable. [Section: 8.5]

12. Sketch the root locus for the unity feedback system
shown in Figure P8.3, where

GðsÞ ¼ K s2 þ 2
� �

ðsþ 3Þðsþ 4Þ

Give the values for all critical points of interest. Is
the system ever unstable? If so, for what range of K?
[Section: 8.5]

13. For each system shown in Figure P8.6, make an
accurate plot of the root locus and find the follow-
ing: [Section: 8.5]

a. The breakaway and break-in points

b. The range of K to keep the system stable

c. The value of K that yields a stable system with
critically damped second-order poles

d. The value of K that yields a stable system with a
pair of second-order poles that have a damping
ratio of 0.707

C(s)K(s + 2)(s + 1)

(s – 2)(s – 1)

System 1

R(s) +

–

C(s)K(s + 2)(s + 1)

(s2 – 2s + 2)

System 2

R(s) +

–

FIGURE P8.6

14. Sketch the root locus and find the range of K for
stability for the unity feedback system shown in Figure
P8.3 for the following conditions: [Section: 8.5]

a. GðsÞ ¼ Kðs2 þ 1Þ
ðs� 1Þðsþ 2Þðsþ 3Þ

b. GðsÞ ¼ Kðs2 � 2sþ 2Þ
sðsþ 1Þðsþ 2Þ

15. For the unity feedback system of Figure
P8.3, where

GðsÞ ¼ Kðsþ 3Þ
ðs2 þ 2Þðs� 2Þðsþ 5Þ

sketch the root locus and find the range of K such
that there will be only two right–half-plane poles for
the closed-loop system. [Section: 8.5]

16. For the unity feedback system of Figure P8.3, where

GðsÞ ¼ K

sðsþ 6Þðsþ 9Þ
plot the root locus and calibrate your plot for gain. Find
all the critical points, such as breakaways, asymptotes,
jv-axis crossing, and so forth. [Section: 8.5]
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17. Given the unity feedback system of Figure P8.3,
make an accurate plot of the root locus for the
following:

a. GðsÞ ¼ Kðs2 � 2sþ 2Þ
ðsþ 1Þðsþ 2Þ

b. GðsÞ ¼ Kðs� 1Þðs� 2Þ
ðsþ 1Þðsþ 2Þ

Calibrate the gain for at least four points for each case.
Also find the breakaway points, the jv-axis crossing,
and the range of gain for stability for each case. Find the
angles of arrival for Part a. [Section: 8.5]

18. Given the root locus shown in Figure P8.7, [Section:
8.5]

a. Find the value of gain that will make the system
marginally stable.

b. Find the value of gain for which the closed-loop
transfer function will have a pole on the real axis
at �5.

–4 –1

j1

–j1

σ

s-plane

jω

FIGURE P8.7

19. Given the unity feedback system of Figure P8.3,
where

GðsÞ ¼ Kðsþ 1Þ
sðsþ 2Þðsþ 3Þðsþ 4Þ

do the following: [Section: 8.5]

a. Sketch the root locus.

b. Find the asymptotes.

c. Find the value of gain that will make the system
marginally stable.

d. Find the value of gain for which the closed-loop
transfer function will have a pole on the real axis
at �0:5.

20. For the unity feedback system of Figure
P8.3, where

GðsÞ ¼ Kðsþ aÞ
sðsþ 3Þðsþ 6Þ

find the values of a and K that will yield a second-
order closed-loop pair of poles at �1� j100.
[Section: 8.5]

21. For the unity feedback system of Figure P8.3, where

GðsÞ ¼ Kðs� 1Þðs� 2Þ
sðsþ 1Þ

sketch the root locus and find the following:
[Section: 8.5]

a. The breakaway and break-in points

b. The jv-axis crossing

c. The range of gain to keep the system stable

d. The value of K to yield a stable system with
second-order complex poles, with a damping
ratio of 0.5

22. For the unity feedback system shown in Figure P8.3,
where

GðsÞ ¼ Kðsþ 10Þðsþ 20Þ
ðsþ 30Þ s2 � 20sþ 200ð Þ

do the following: [Section: 8.7]

a. Sketch the root locus.

b. Find the range of gain, K, that makes the system
stable.

c. Find the value of K that yields a damping ratio of
0.707 for the system’s closed-loop dominant poles.

d. Find the value of K that yields closed-loop criti-
cally damped dominant poles.

23. For the system of Figure P8.8(a),
sketch the root locus and find the
following: [Section: 8.7]

a. Asymptotes

b. Breakaway points

c. The range of K for stability

d. The value ofK to yield a 0.7 damping ratio for the
dominant second-order pair

To improve stability, we desire the root locus to
cross the jv-axis at j5.5. To accomplish this, the
open-loop function is cascaded with a zero, as
shown in Figure P8.8(b).
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C(s)K
(s + 1)(s + 2)(s + 3)(s + 4)

C(s) K(s + α)
(s + 1)(s + 2)(s + 3)(s + 4)

(a)

(b)

R(s) +

–

R(s) +

–

α

FIGURE P8.8

e. Find the value of a and sketch the new root locus.

f. Repeat Part c for the new locus.

g. Compare the results of Part c and Part f. What
improvement in transient response do you
notice?

24. Sketch the root locus for the positive-feedback
system shown in Figure P8.9. [Section: 8.9]

K C(s)R(s) +

+
s(s+1)

FIGURE P8.9

25. Root loci are usually plotted for variations in the
gain. Sometimes we are interested in the variation
of the closed-loop poles as other parameters are
changed. For the system shown in Figure P8.10,
sketch the root locus as a is varied. [Section: 8.8]

C(s)R(s) +

–

1
s(s +    ) α

FIGURE P8.10

26. Given the unity feedback system shown in Figure
P8.3, where

GðsÞ ¼ K

ðsþ 1Þðsþ 2Þðsþ 3Þ
do the following problem parts by first making a
second-order approximation. After you are finished
with all of the parts, justify your second-order
approximation. [Section: 8.7]

a. Sketch the root locus.

b. Find K for 20% overshoot.

c. For K found in Part b, what is the settling time,
and what is the peak time?

d. Find the locations of higher-order poles for K
found in Part b.

e. Find the range of K for stability.

27. For the unity feedback system shown in Figure P8.3,
where

GðsÞ ¼ Kðs2 � 2sþ 2Þ
ðsþ 2Þðsþ 4Þðsþ 5Þðsþ 6Þ

do the following: [Section: 8.7]

a. Sketch the root locus.

b. Find the asymptotes.

c. Find the range of gain, K, that makes the system
stable.

d. Find the breakaway points.

e. Find the value of K that yields a closed-loop step
response with 25% overshoot.

f. Find the location of higher-order closed-loop
poles when the system is operating with 25%
overshoot.

g. Discuss the validity of your second-order
approximation.

h. Use MATLAB to obtain the
closed-loop step re-
sponse to validate or refute your
second-order approximation.

28. The unity feedback system shown in Figure P8.3, where

GðsÞ ¼ Kðsþ 2Þðsþ 3Þ
sðsþ 1Þ

is to be designed for minimum damping ratio. Find
the following: [Section: 8.7]

a. The value of K that will yield minimum damping
ratio

b. The estimated percent overshoot for that case

c. The estimated settling time and peak time for
that case

d. The justification of a second-order approxima-
tion (discuss)

e. The expected steady-state error for a unit ramp
input for the case of minimum damping ratio
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29. For the unity feedback system shown in Figure P8.3,
where

GðsÞ ¼ Kðsþ 2Þ
sðsþ 6Þðsþ 10Þ

find K to yield closed-loop complex poles with a
damping ratio of 0.55. Does your solution require a
justification of a second-order approximation?
Explain. [Section: 8.7]

30. For the unity feedback system shown in
Figure P8.3, where

GðsÞ ¼ Kðsþ aÞ
sðsþ 1Þðsþ 10Þ

find the value of a so that the system will have a
settling time of 4 seconds for large values of K.
Sketch the resulting root locus. [Section: 8.8]

31. For the unity feedback system shown in Figure 8.3,
where

GðsÞ ¼ Kðsþ 6Þ
ðs2 þ 10sþ 26Þðsþ 1Þ2ðsþ aÞ

design K and a so that the dominant complex poles
of the closed-loop function have a damping ratio of
0.45 and a natural frequency of 9/8 rad/s.

32. For the unity feedback system shown in Figure 8.3,
where

GðsÞ ¼ K

sðsþ 3Þðsþ 4Þðsþ 8Þ
do the following: [Section: 8.7]

a. Sketch the root locus.

b. Find the value of K that will yield a 10%
overshoot.

c. Locate all nondominant poles. What can you say
about the second-order approximation that led
to your answer in Part b?

d. Find the range of K that yields a stable system.

33. Repeat Problem 32 using MATLAB.
Use one program to do the
following:

a. Display a root locus and pause.

b. Draw a close-up of the root locus where
the axes go from�2 to 0 on the real axis
and �2 to 2 on the imaginary axis.

c. Overlay the 10% overshoot line on the
close-up root locus.

d. Select interactively the point where
the root locus crosses the 10% over-
shoot line, and respond with the gain
at that point as well as all of the
closed-loop poles at that gain.

e. Generate the step response at the gain
for 10% overshoot.

34. For the unity feedback system shown in
Figure 8.3, where

GðsÞ ¼ Kðs2 þ 4sþ 5Þ
ðs2 þ 2sþ 5Þðsþ 3Þðsþ 4Þ

do the following: [Section: 8.7]

a. Find the gain, K, to yield a 1-second peak time if
one assumes a second-order approximation.

b. Check the accuracy of the
second-orderapproximation
using MATLAB to simulate the system.

35. For the unity feedback system shown in Figure P8.3,
where

GðsÞ ¼ Kðsþ 2Þðsþ 3Þ
ðs2 þ 2sþ 2Þðsþ 4Þðsþ 5Þðsþ 6Þ

do the following: [Section: 8.7]

a. Sketch the root locus.

b. Find the jv-axis crossing and the gain, K, at the
crossing.

c. Find all breakaway and break-in points.

d. Find angles of departure from the complex poles.

e. Find the gain, K, to yield a damping ratio of 0.3
for the closed-loop dominant poles.

36. Repeat Parts a through c and e of Problem 35 for
[Section: 8.7]

GðsÞ ¼ Kðsþ 8Þ
sðsþ 2Þðsþ 4Þðsþ 6Þ

37. For the unity feedback system shown in Figure P8.3,
where

GðsÞ ¼ K

ðsþ 3Þðs2 þ 4sþ 5Þ

do the following: [Section: 8.7]

a. Find the location of the closed-loop dominant poles
if the system is operating with 15% overshoot.

b. Find the gain for Part a.
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c. Find all other closed-loop poles.

d. Evaluate the accuracy of your second-order
approximation.

38. For the system shown in Figure P8.11, do the fol-
lowing: [Section: 8.7]

K
   

C(s)R(s) +

–
(s + 2)(s + 3)

(s2 + 2s + 5)

s2 – 4s + 8

FIGURE P8.11

a. Sketch the root locus.

b. Find the jv-axis crossing and the gain, K, at the
crossing.

c. Find the real-axis breakaway to two-decimal-
place accuracy.

d. Find angles of arrival to the complex zeros.

e. Find the closed-loop zeros.

f. Find the gain, K, for a closed-loop step response
with 30% overshoot.

g. Discuss the validity of your second-order
approximation.

39. Sketch the root locus for the system of Figure P8.12
and find the following: [Section: 8.7]

K
   

C(s)

(s + 30)

R(s) +

–
s(s + 3)(s + 7)(s + 8)

(s2 + 20s + 200)

FIGURE P8.12

a. The range of gain to yield stability

b. The value of gain that will yield a damping ratio
of 0.707 for the system’s dominant poles

c. The value of gain that will yield closed-loop poles
that are critically damped

40. Repeat Problem 39 using MATLAB.
The program will do the follow-
ing in one program:

a. Display a root locus and pause.

b. Display a close-up of the root locus
where the axes go from �2 to 2 on the
real axis and �2 to 2 on the imaginary
axis.

c. Overlay the 0.707 damping ratio line
on the close-up root locus.

d. Allow you to select interactively the
point where the root locus crosses the
0.707dampingratioline, andrespondby
displaying the gain at that point as
well as all of the closed-loop poles
at that gain. The program will then al-
low you to select interactively the
imaginary-axis crossing and respond
with a display of the gain at that point
as well as all of the closed-loop poles
at that gain. Finally, the program will
repeat the evaluation for critically
damped dominant closed-loop poles.

e. Generate the step response at the gain
for 0.707 damping ratio.

41. Given the unity feedback system shown
in Figure P8.3, where

GðsÞ ¼ Kðsþ zÞ
s2ðsþ 20Þ

do the following: [Section: 8.7]

a. If z ¼ 6, find K so that the damped frequency of
oscillation of the transient response is 10 rad/s.

b. For the system of Part a, what static error con-
stant (finite) can be specified? What is its value?

c. The system is to be redesigned by changing the
values of z and K. If the new specifications are
%OS ¼ 4:32% and Ts ¼ 0:4 s, find the new val-
ues of z and K.

42. Given the unity feedback system shown in Figure
P8.3, where

GðsÞ ¼ K

ðsþ 1Þðsþ 3Þðsþ 6Þ2

find the following: [Section: 8.7]

a. The value of gain, K, that will yield a settling time
of 4 seconds

b. The value of gain, K, that will yield a critically
damped system
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43. Let

GðsÞ ¼ Kðs� 1Þ
ðsþ 2Þðsþ 3Þ

in Figure P8.3. [Section: 8.7].

a. Find the range of K for closed-loop stability.

b. Plot the root locus for K > 0.

c. Plot the root locus for K < 0.

d. Assuming a step input, what value of Kwill result
in the smallest attainable settling time?

e. Calculate the system’s ess for a unit step
input assuming the value of K obtained in Part d.

f. Make an approximate hand sketch of the unit
step response of the system if K has the value
obtained in Part d.

44. Given the unity feedback system shown in Figure
P8.3, where

GðsÞ ¼ K

sðsþ 1Þðsþ 5Þ

evaluate the pole sensitivity of the closed-loop
system if the second-order, underdamped closed-
loop poles are set for [Section: 8.10]

a. z ¼ 0:591

b. z ¼ 0:456

c. Which of the two previous cases has more desir-
able sensitivity?

45. Figure P8.13(a) shows a robot equipped to per-
form arc welding. A similar device can be con-
figured as a six-degrees-of-freedom industrial
robot that can transfer objects according to a
desired program. Assume the block diagram of
the swing motion system shown in Figure P8.13(b).
If K ¼ 64; 510, make a second-order approxima-
tion and estimate the following (Hardy, 1967):

a. Damping ratio

b. Percent overshoot

c. Natural frequency

d. Settling time

e. Peak time

What can you say about your original second-order
approximation?

46. During ascent, the automatic steering program
aboard the space shuttle provides the interface

between the low-rate processing of guidance (com-
mands) and the high-rate processing of flight con-
trol (steering in response to the commands). The
function performed is basically that of smoothing. A
simplified representation of a maneuver smoother
linearized for coplanar maneuvers is shown in Fig-
ure P8.14. Here uCB(s) is the commanded body
angle as calculated by guidance, and uCB(s) is the
desired body angle sent to flight control after
smoothing.3 Using the methods of Section 8.8, do
the following:

3 Source: Rockwell International.

+

–

1
s

Ram
position

Input
position K

(b)

Network

0.00076s

Pressure
signal

Tachometer

0.02s

Position feedback

s2 + 7s + 1220

s2
s + 0.06

Load
actuator

– –

FIGURE P8.13 a. Robot equipped to perform arc welding;
b. block diagram for swing motion system
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a. Sketch a root locus where the roots vary as a
function of K3.

b. Locate the closed-loop zeros.

c. Repeat Parts a and b for a root locus sketched as
a function of K2.

47. Repeat Problem 3 but sketch your root loci for
negative values of K. [Section: 8.9]

48. Large structures in space, such as the space station,
have to be stabilized against unwanted vibration.
One method is to use an active vibration absorber to
control the structure, as shown in Figure P8.15(a)
(Bruner, 1992). Assuming that all values except the
mass of the active vibration absorber are known and
are equal to unity, do the following:

a. Obtain G(s) and HðsÞ ¼ H1ðsÞH2ðsÞ in the block
diagram representation of the system of Figure
8.15(b), which shows that the active vibration
absorber acts as a feedback element to control
the structure. (Hint: Think of Kc and Dc as
producing inputs to the structure.)

b. Find the steady-state position of the structure for
a force disturbance input.

c. Sketch the root locus for the system as a function
of active vibration absorber mass, Mc.

49. Figure P8.16 shows the block diagram of the closed-
loop control of the linearized magnetic levitation
system described in Chapter 2, Problem 58. (Galv~ao,
2003).

A
s2 –h2  

G(s) 
R(s) C(s)+

+

FIGURE P8.16 Linearized magnetic levitation system block
diagram

AssumingA ¼ 1300 and h ¼ 860, draw the root locus
and find the range ofK for closed-loop stability when:

a. GðsÞ ¼ K;

b. GðsÞ ¼ Kðsþ 200Þ
sþ 1000

50. The simplified transfer function model from steer-
ing angle dðsÞ to tilt angle wðsÞ in a bicycle is
given by

GðsÞ ¼ wðsÞ
dðsÞ ¼

aV

bh

sþ V

a

s2 � g

h

In this model, h represents the vertical distance from
the center of mass to the floor, so it can be readily
verified that the model is open-loop unstable.
(A
�
str€om, 2005). Assume that for a specific bicycle,

a ¼ 0:6 m, b ¼ 1:5 m, h ¼ 0:8 m, and g ¼ 9:8 m/sec.
In order to stabilize the bicycle, it is assumed that the
bicycle is placed in the closed-loop configuration
shown in Figure P8.3 and that the only available
control variable is V, the rear wheel velocity.

a. Find the range of V for closed-loop stability.

b. Explain why the methods presented in this chap-
ter cannot be used to obtain the root locus.

c. Use MATLAB to obtain the
system’s root locus.

1
s

1
s

θ DB(s)

s

K3

K1

+

–

+

–

+
K2

θCB(s)

FIGURE P8.14 Block diagram of smoother

K

D

M

Kc

Dc

Mc

xa

Plant

x

Active
vibration
absorber

xc = xa–x

(a)

+

–

Xc(s)= Xa(s)–X(s)

Input force
F(s) C(s)

G(s) s2

H2(s) H1(s)

(b)

Output structure
accelerationStructure

Active vibration absorber

FIGURE P8.15 a. Active vibration absorber (# 1992 AIAA);
b. control system block diagram
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51. A technique to control the steering of a vehicle that
follows a line located in the middle of a lane is to
define a look-ahead point and measure vehicle
deviations with respect to the point. A linearized
model for such a vehicle is

_V

_r

_c

_Yg

2
66664

3
77775 ¼

a11 a12 �b1K
b1K

d

a21 a22 �b2K
b2K

d
0 1 0 0

1 0 U 0

2
6666664

3
7777775

V

r

c

Yg

2
66664

3
77775

whereV ¼ vehicle’s lateral velocity, r ¼ vehicle’s yaw
velocity, c ¼ vehicle’s yaw position, and Yg ¼ the
y-axis coordinate of the vehicle’s center of gravity. K
is a parameter to be varied depending upon trajectory
changes. In a specific vehicle traveling at a speed of
U ¼ �10 m/sec, the parameters are a11 ¼ �11:6842;
a12 ¼ 6:7632; b1 ¼ �61:5789; a21 ¼ �3:5143; a22 ¼
24:0257, and b2 ¼ 66:8571: d ¼ 5 m is the look-ahead
distance ( €Unyelio�glu, 1997). Assuming the vehicle will
be controlled in closed loop:

a. Find the system’s characteristic equation as a
function of K.

b. Find the system’s root locus as K is varied.

c. Using the root locus found in Part b, show that
the system will be unstable for all values K.

52. It is known that mammals have hormonal regulation
mechanisms that help maintain almost constant
calcium plasma levels (0.08–0.1 g/L in dairy
cows). This control is necessary to maintain healthy
functions, as calcium is responsible for diverse phys-
iological functions, such as bone formation, intra-
cellular communications, and blood clotting. It has
been postulated that the mechanism of calcium
control resembles that of a PI (proportional-plus-
integral) controller. PI controllers (discussed in
detail in Chapter 9) are placed in cascade with
the plant and used to improve steady-state error.
Assume that the PI controller has the form GcðsÞ ¼
KP þKI

S

� �
where KP and KI are constants. Also

assume that the mammal’s system accumulates
calcium in an integrator-like fashion, namely

PðsÞ ¼ 1

Vs
, where V is the plasma volume. The

closed-loop model is similar to that of Figure
P8.3, where GðsÞ ¼ GcðsÞPðsÞ (Khammash, 2004).

a. Sketch the system’s root locus as a function of
KP, assuming KI > 0 is constant.

b. Sketch the system’s root locus as a function of KI,
assuming KP > 0 is constant.

53. Problem 65 in Chapter 7 introduced the model of a
TCP/IP router whose packet-drop probability is
controlled by using a random early detection
(RED) algorithm (Hollot, 2001). Using Figure
P8.3 as a model, a specific router queue’s open-
loop transfer function is

GðsÞ ¼ 7031250Le�0:2s

ðsþ 0:667Þðsþ 5Þðsþ 50Þ
The function e�0:2s represents delay. To apply the root
locus method, the delay function must be replaced
with a rational function approximation. A first-order
Pad�e approximation can be used for this purpose.
Let e�sD � 1�Ds. Using this approximation, plot
the root locus of the system as a function of L.

54. For the dynamic voltage restorer (DVR) discussed
in Problem 47, Chapter 7, do the following:

a. When ZL ¼ 1

sCL
, a pure capacitance, the system

is more inclined toward instability. Find the sys-
tem’s characteristic equation for this case.

b. Using the characteristic equation found in
Part a, sketch the root locus of the system as a
function of CL: Let L ¼ 7:6 mH; C ¼ 11 mF;a ¼
26:4; b ¼ 1; Km ¼ 25; Kv ¼ 15; KT ¼ 0:09565,
and t ¼ 2 ms (Lam, 2004).

55. The closed-loop vehicle response in stopping a train
depends on the train’s dynamics and the driver, who
is an integral part of the feedback loop. In Figure
P8.3, let the input be RðsÞ ¼ vr the reference veloc-
ity, and the output CðsÞ ¼ v, the actual vehicle
velocity. (Yamazaki, 2008) shows that such dynam-
ics can be modeled by GðsÞ ¼ GdðsÞGtðsÞ where

GdðsÞ ¼ h 1þK

s

� � s� L

2

sþ L

2
represents the driver dynamics with h, K, and L
parameters particular to each individual driver. We
assume here that h¼ 0.003 and L¼ 1. The train
dynamics are given by

GtðsÞ ¼ kbfKp

Mð1þ keÞsðtsþ 1Þ
whereM¼ 8000kg,thevehiclemass;ke ¼ 0:1theiner-
tial coefficient;kb ¼ 142:5, the brake gain;Kp ¼ 47:5,
the pressure gain; t ¼ 1:2 sec, a time constant; and
f ¼ 0:24, the normal friction coefficient.

a. Make a root locus plot of the system as a function
of the driver parameter K.

b. Discuss why this model may not be an accurate
description of a real driver-train situation.
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56. Voltage droop control is a technique in which loads
are driven at lower voltages than those provided by
the source. In general, the voltage is decreased as
current demand increases in the load. The advan-
tage of voltage droop is that it results in lower
sensitivity to load current variations.

Voltage droop can be applied to the power dis-
tribution of several generators and loads linked
through a dc bus. In (Karlsson, 2003) generators
and loads are driven by 3-phase ac power, so they
are interfaced to the bus through ac/dc converters.
Since each one of the loads works independently, a
feedback system shown in Figure P8.17 is used in
each to respond equally to bus voltage variations.
Given thatCs¼Cr¼ 8,000mF,Lcable¼ 50mH,Rcable¼
0.06 V, Zr¼Rr¼ 5 V, vlp¼ 200 rad/s, Gconv(s)¼ 1,
Vdc-ref¼ 750 V, and Pref-ext¼ 0, do the following:

a. If Zreq is the parallel combination of Rr and Cr,
and Gconv(s)¼ 1, find

GðsÞ ¼ VsðsÞ
IsðsÞ ¼

VsðsÞ
Is�ref ðsÞ :

b. Write a MATLAB M-file to plot
and copy the full root locus
for that system, then zoom-in the lo-
cus by setting the x-axis (real-axis)
limits to �150 to 0 and the y-axis
(imaginary-axis) limits to �150 to
150. Copy that plot, too, and find
and record the following:

(1) The gain, K, at which the system
would have complex-conjugate

closed-loop dominant poles with a
damping ratio z¼0.707

(2) The coordinates of the correspond-
ingpointselectedontheroot-locus

(3) Thevaluesofallclosed-looppoles
at that gain

(4) The output voltage vs(t) for a step
input voltage vdc-ref (t)¼750 u(t)
volts

c. Plot that step response and use MATLAB
Characteristics tool (in the graph
window) to note on the curve the fol-
lowing parameters:

(1) The actual percent overshoot and
the corresponding peak time, Tp

(2) The rise time, Tr, and the settling
time, Ts

(3) The final steady-state value in
volts

DESIGN PROBLEMS
57. A disk drive is a position control system in which a

read/write head is positioned over a magnetic disk.
The system responds to a command from a com-
puter to position itself at a particular track on the
disk. A physical representation of the system and a
block diagram are shown in Figure P8.18.

a. Find K to yield a settling time of 0.1 second.

b. What is the resulting percent overshoot?

c. What is the range ofK that keeps the system stable?

_

H (s)

Icable(s)
_

+ Vs (s) Ev(s)

GC(s)

1

Vs(s)

+

_

Vdc-ref (s)

Vs-lp(s) 

sCs

1

Zcable + Zreq

1

Pref-ext(s)

s + ω lp

K
+

Iref-ext(s)

Is-ref (s) Is(s)

Gconv(s)

ω lp

FIGURE P8.17 (# 2003 IEEE)
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58. A simplified block diagram of a human
pupil servomechanism is shown in Figure
P8.19. The term e�0:18s represents a time
delay. This function can be approximated by what is
known as a Pad�e approximation. This approximation
can take on many increasingly complicated forms,
depending upon the degree of accuracy required. If
we use the Pad�e approximation

e�x ¼ 1

1þ xþ x2

2!

then

e�0:18s ¼ 61:73

s2 þ 11:11sþ 61:73

Since the retinal light flux is a function of the
opening of the iris, oscillations in the amount of
retinal light flux imply oscillations of the iris (Guy,
1976). Find the following:

a. The value of K that will yield oscillations

b. The frequency of these oscillations

c. The settling time for the iris if K is such that the
eye is operating with 20% overshoot

Retinal
light
flux

External
light
flux +

– (s + 10)3
Ke–0.18s

FIGURE P8.19 Simplified block diagram of pupil
servomechanism

59. An active suspension system for AMTRAK trains
has been proposed. The system uses a pneumatic
actuator in parallel with the passive suspension sys-
tem, as shown in Figure P8.20. The force of the
actuator subtracts from the force applied by the
ground, as represented by displacement, ygðtÞ. Ac-
celeration is sensed by an accelerometer, and signals
proportional to acceleration and velocity are fed
back to the force actuator. The transfer function
relating acceleration to ground displacement is

€YmðsÞ
YgðsÞ ¼

s2ðDs þKÞ
ðCa þMÞs2 þ ðCv þDÞsþK

Assuming that M ¼ 1 and D ¼ K ¼ Cv ¼ 2, do the
following (Cho, 1985):

a. Sketch a root locus for this system as Ca varies
from zero to infinity.

b. Find the value of Ca that would yield a damping
ratio of 0.69 for the closed-loop poles.

Ca

ym(t)

M

D

yg(t)

+

+

Cv

K

Actuator
force

ym(t)
ym(t)

Accelerometer

:

.

FIGURE P8.20 Active suspension system (Reprinted with
permission of ASME)

60. The pitch stabilization loop for an F4-E military
aircraft is shown in Figure P8.21. dcom is the elevator

XA(s )

Controller

20,000
s(s + 100)

Motor and load

XD(s) K
(s + 500)(s + 800)

Controller Desired position, xD(t)

Position
sensor

Motor

Head

Magnetic
disk

Actual position, xA(t)

(a)

(b)

–

+

–

FIGURE P8.18 Disk drive: a. physical representation;
b. block diagram
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and canard input deflection command to create a
pitch rate (see Problem 22, Chapter 3). If

G2ðsÞ ¼ �508ðsþ 1:6Þ
ðsþ 14Þðs� 1:8Þðsþ 4:9Þ

do the following (Cavallo, 1992):

a. Sketch the root locus of the inner loop.

b. Find the range of K2 to keep the inner loop stable
with just pitch-rate feedback.

c. Find the value of K2 that places the inner-loop
poles to yield a damping ratio of 0.5.

d. For your answer to Part c, find the range of K1

that keeps the system stable.

e. Find the value of K1 that yields closed-loop poles
with a damping ratio of 0.45.

61. Accurate pointing of spacecraft is
required for communication and
mapping. Attitude control can be
implemented by exchanging angular momentum
between the body of the spacecraft and an onboard
momentum wheel. The block diagram for the pitch
axis attitude control is shown in Figure P8.22, where
ucðsÞ is a commanded pitch angle and uðsÞ is the
actual pitch angle of the spacecraft. The compensa-
tor, which improves pointing accuracy, provides a
commanded momentum, HcðsÞ, to the momentum
wheel assembly. The spacecraft momentum, HsysðsÞ,
is an additional input to the momentum wheel. This

body momentum is given by

hsysðtÞ ¼ I2
_uðtÞ þ hwðtÞ

where I2 is the spacecraft moment of inertia about
the pitch axis and hwðtÞ is the momentum of the
wheel. The total torque output from the momentum
wheel, Tw, as shown in Figure P8.22, is

TwðtÞ ¼ hsysðtÞ � hwðtÞ þ hcðtÞ
t

If t ¼ 23 seconds and I2 ¼ 9631 in-lb-s2, do the
following (Piper, 1992):

a. Sketch the root locus for the pitch axis control
system.

b. Find the value of K to yield a closed-loop step
response with 25% overshoot.

c. Evaluate the accuracy of any second-order ap-
proximations that were made.

62. During combustion in such devices as gas turbines and
jet engines, acoustic waves are generated. These pres-
sure waves can lead to excessive noise as well as
mechanical failure. Active control is proposed to
reduce this thermoacoustic effect. Specifically, a mi-
crophone is used as a sensor to read the sound waves,
while a loudspeaker is used as an actuator to set up
opposing pressure waves to reduce the effect. A
proposed diagram showing the microphone and loud-
speaker positioned in the combustion chamber is

1
s

G2(s)K2K1
+

–

dcom(s) d(s)+

–

Pitch
command

Aircraft
dynamics

Pitch
rate Pitch

θc(s)θ d(s)

FIGURE P8.21 F4-E pitch stabilization loop

θc(s)θ

+

+

Compensator

K(s+0.01)
s

Momentum
wheel

assembly

1

1
s

1
Izs2

Hc(s)

–

+

Hw(s)

Tw(s) q(s)

Hsys(s)
Pitch

dynamics
Pitch
output

+

Pitch
command

+

Disturbance
Td = 0

–
τ

FIGURE P8.22 Pitch axis attitude control system utilizing momentum wheel
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shown in Figure P8.23(a). A simplified block dia-
gram of the active control system is shown in
Figure P8.23(b). The transfer functions are dependent
upon microphone and loudspeaker placement and
parameters as well as flame placement and parame-
ters. The forward-path transfer function is of the form

GðsÞ¼ KG1ðsÞGcðsÞGmðsÞ

¼ K sþ zf
� �

s2 þ 2z2v2sþ v2
2

� �
sþ pf

	 

ðs2 � 2z1v1sþ v2

1Þ s2 þ 2z2v2sþ v2
2

� �

where the values for three configurations (A, B,
and C) are given in the following table for Part b
(Annaswamy, 1995).

a. Draw the root locus for each configuration.

b. For those configurations where stable regions of
operation are possible, evaluate the range of
gain, K, for stability.

63. Wind turbines, such as the one shown in Figure
P8.24(a), are becoming popular as a way of generating
electricity. Feedback control loops are designed to
control the output power of the turbine, given an
input power demand. Blade-pitch control may be
used as part of the control loop for a constant-speed,
pitch-controlled wind turbine, as shown in Figure
P8.24(b). The drivetrain, consisting of the windmill
rotor, gearbox, and electric generator (see Figure
P8.24(c)), is part of the control loop. The torque
created by the wind drives the rotor. The windmill
rotor is connected to the generator through a gearbox.

The transfer function of the drivetrain is

PoðsÞ
TRðsÞ ¼ GdtðsÞ

¼ 3:92KLSSKHSSKGN
2s

fN2KHSS JRs2 þKLSSð ÞðJGs2 telsþ 1½ �
þKGsÞ þ JRs2KLSS½ðJGs2 þKHSSÞ
ðtelsþ 1Þ þKGs�g

where PoðsÞ is the Laplace transform of the output
power from the generator and TRðsÞ is the Laplace

A B C

zf 1500 1500 1500

pf 1000 1000 1000

zz 0.45 0.45 �0.45

vz 4500 4500 4500

z1 0.5 �0.5 �0.5

v1 995 995 995

z2 0.3 0.3 0.3

v2 3500 3500 3500

Controller

Controller

Desired microphone
output = 0

Microphone
output

K

Loudspeaker

G1(s) Gc(s) Gm(s)

Combustor Microphone

Sensor
(microphone)

Actuator
(speaker)

+

(b)

(a)

Fuel
Air

Air-fuel mixture

Pilot jet diffusion flame

Premixed flameAir-fuel mixture

–

FIGURE P8.23 a. Combustor with microphone and loudspeaker (# 1995 IEEE); b. block diagram (# 1995 IEEE)
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(a)

+

–

+ ++ ++

–

Power
controller

Pitch
actuator

Power
transducer

Rotor pitch
sensitivity

Rotor gust
sensitivity

Pitch
inertia

Drivetrain

Windspeed
disturbance

Applied
moment

Disturbance
momentPitch

demand
Electrical

power
Power

demand

Control surface
aerodynamics

(b)

Pitch
angle

Shaft
torque

(c)

Rotor
inertia JR

Low-speed shaft
stiffness

Gearbox
Ratio N

KLSS

High-speed shaft
stiffness KHSS

Generator
Inertia Jg, Generator gain KG, 
Time constant elτ

FIGURE P8.24 a. Wind turbines generating electricity near Palm Springs, California b. control loop for a constant-speed
pitch-controlled wind turbine (# 1998 IEEE); c. drivetrain (# 1998 IEEE)

446 Chapter 8 Root Locus Techniques



Apago PDF Enhancer

E1C08 11/02/2010 10:23:37 Page 447

transform of the input torque on the rotor. Substituting
typical numerical values into the transfer function
yields

PoðsÞ
TRðsÞ ¼ GdtðsÞ

¼ ð3:92Þð12:6� 106Þð301� 103Þð688ÞN2s

fN2ð301� 103Þð190; 120s2 þ 12:6� 106Þ
� ð3:8s2½20� 10�3sþ 1� þ 668sÞ
þ 190; 120s2ð12:6� 106Þ
� ½ð3:8s2 þ 301� 103Þ
� ð20� 10�3sþ 1Þ þ 668s�g

(Anderson, 1998). Do the following for the drive-
train dynamics, making use of any computational
aids at your disposal:

a. Sketch a root locus that shows the pole locations
of Gdt(s) for different values of gear ratio, N.

b. Find the value of N that yields a pair of complex
poles of Gdt(s) with a damping ratio of 0.5.

64. A hard disk drive (HDD) arm has an open-loop
unstable transfer function,

PðsÞ ¼ XðsÞ
FðsÞ ¼

1

Ibs2

whereX(s) is arm displacement andF(s) is the applied
force (Yan, 2003). Assume the arm has an inertia of
Ib ¼ 3� 10�5 kg-m2 and that a lead controller, GcðsÞ
(used to improve transient response and discussed in
Chapter 9), is placed in cascade to yield

PðsÞGcðsÞ ¼ GðsÞ ¼ K

Ib

ðsþ 1Þ
s2ðsþ 10Þ

as in Figure P8.3.

a. Plot the root locus of the system as a function
of K.

b. Find the value of K that will result in dominant
complex conjugate poles with a z ¼ 0:7 damping
factor.

65. A robotic manipulator together with a cascade PI
controller (used to improve steady-state response
and discussed in Chapter 9) has a transfer function
(Low, 2005)

GðsÞ ¼ Kp þK1

s

� �
48; 500

s2 þ 2:89s

Assume the robot’s joint will be controlled in the
configuration shown in Figure P8.3.

a. Find the value of KI that will result in ess ¼ 2%
for a parabolic input.

b. Using the value of KI found in Part a, plot the
root locus of the system as a function of KP.

c. Find the value of KP that will result in a real pole
at �1. Find the location of the other two poles.

66. An active system for the elimina-
tion of floor vibrations due to
human presence is presented in
(Nyawako, 2009). The system consists of
a sensor that measures the floor’s verti-
cal acceleration and an actuator that
changes the floor characteristics. The
open-loop transmission of the partic-
ular setup used can be described by
GðsÞ ¼ KGaðsÞFðsÞGmðsÞ, where the actua-
tor’s transfer function is

GaðsÞ ¼ 10:26

s2 þ 11:31sþ 127:9

Thefloor’sdynamiccharactristicscanbe
modeled by

FðsÞ ¼ 6:667� 10�5s2

s2 þ 0:2287sþ 817:3

The sensor’s transfer function is

GmðsÞ ¼ s
s2 þ 5:181sþ 22:18

and K is the gain of the controller. The
systemoperationscanbedescribedbythe
unity-gain feedback loop of Figure P8.3.

a. Use MATLAB’s SISO Design Tool to obtain
the root locus of the system in terms
of K.

b. Find the range of K for closed-loop
stability.

c. Find, if possible, a value of K that
will yield a closed-loop overdamped
response.

67. Many implantable medical devices such as pace-
makers, retinal implants, deep brain stimulators, and
spinal cord stimulators are powered by an in-body
battery that can be charged through a trans-
cutaneous inductive device. Optimal battery charge
can be obtained when the out-of-body charging
circuit is in resonance with the implanted charging
circuit (Baker, 2007). Under certain conditions, the
coupling of both resonant circuits can be modeled
by the feedback system in Figure P8.3 where

GðsÞ ¼ Ks4

s2 þ 2zvnsþ v2
n

� �2
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The gain K is related to the magnetic coupling
between the external and in-body circuits. K may
vary due to positioning, skin conditions, and other
variations. For this problem let z ¼ 0:5 and vn ¼ 1.

a. Find the range of K for closed-loop stability.

b. Draw the corresponding root locus.

68. It is important to precisely
control the amount of organic
fertilizerappliedtoaspecific
crop area in order to provide
specific nutrient quantities and to
avoid unnecessary environmental pollu-
tion. A precise delivery liquid manure
machine has been developed for this pur-
pose(Saeys,2008).Thesystemconsistsof
a pressurized tank, a valve, and a rheo-
logical flow sensor. After simplifica-
tion, the system can be modeled as a
closed-loop negative-feedback system
with a forward-path transfer function

GðsÞ ¼ 2057:38Kðs2 � 120sþ 4800Þ
sðsþ 13:17Þðs2 þ 120sþ 4800Þ

consisting of an electrohydraulic sys-
tem in cascade with the gain of the manure
flow valve and a variable gain, K. The
feedback path is comprised of

HðsÞ ¼ 10ðs2 � 4sþ 5:333Þ
ðsþ 10Þðs2 þ 4sþ 5:333Þ

a. Use the SISO Design Tool in MATLAB to
obtain the root locus of the system.

b. Use the SISO Design Tool to find the
range of K for closed-loop stability.

c. Find the value of K that will result in
the smallest settling time for this
system.

d. Calculate the expected settling time
for a step input with the value of K
obtained in Part c.

e. Check your result through a step-
response simulation.

69. Harmonic drives are very popular
for use in robotic manipulators
due to their low backlash, high
torque transmission, and compact size
(Spong, 2006). The problem of joint flex-
ibility is sometimes a limiting factor in
achieving good performance. Consider

that the idealized model representing
joint flexibility is shown in Figure
P8.25. The input to the drive is from an
actuator and is applied at um. The output
is connected to a load at ul. The spring
represents the joint flexibility and Bm

and Bl represent the viscous damping of
the actuator and load, respectively. Now
we insert the device into the feedback
loop shown in Figure P8.26. The first
blockinthe forward pathisa PD control-
ler, which we will study in thenext chap-
ter. The PD controller is used to improve
transient response performance.

Bm

Bl

Ji
θl

θm
u

k
Jm

FIGURE P8.25 Idealized model representing joint flexibility
(Reprinted with permission of John Wiley & Sons, Inc.)

Kp + KDs

k

r
+

++

–

k
pl (s)

θm θi
1

pm(s)

FIGURE P8.26 Joint flexibility model inserted in feedback
loop. (Reprinted with permission of John Wiley & Sons, Inc.)

Use MATLAB to find the gain KD to yield
an approximate 5% overshoot in the step
response given the following parame-
ters: Jl=10; Bl=1; k=100; Jm=2; Bm=0.5;
KP

KD
¼ 0:25;plðsÞ ¼ Jls2 þ Blsþ k;and pmðsÞ ¼

Jms2þ Bmsþ k

70. Using LabVIEW, the Control Design
and Simulation Module, and the
MathScript RT Module, open and
customize the Interactive Root Locus VI
from the Examples to implement the sys-
tem of Problem 69. Select the parameter
KD to meet the requirement of Problem
69 by varying the location of the closed-
loop poles on the root locus. Be sure
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your front panel shows the following: (1)
open-looptransferfunction, (2) closed-
loop transfer function, (3) root locus,
(4) list of closed-loop poles, and (5)
step response.

71. An automatic regulator is used
to control the field current of
a three-phase synchronous ma-
chine with identical symmetrical arma-
ture windings (Stapleton, 1964). The
purpose of the regulator is to maintain
the system voltage constant within cer-
tain limits. The transfer function of
the synchronous machine is

GsmðsÞ ¼ DdðsÞ
DPmðsÞ ¼

Mðs� z1Þðs� z2Þ
ðs� p1Þðs� p2Þðs� p3Þ

which relates the variation of rotor an-
gle, Dd sð Þ, to the change in the synchro-
nous machine’s shaft power, DPm sð Þ. The
closed-loop system is shown in Figure
P8.3, where G sð Þ ¼ KGC sð ÞGsm sð Þ and K is a
gain to be adjusted. The regulator’s
transfer function, Gc(s), is given by:

GcðsÞ ¼
m
.
Te

sþ 1

Te

Assume the following parameter values:

m ¼ 4;M ¼ 0:117;Te ¼ 0:5;z1;2 ¼ �0:071� j6:25;

p1 ¼ �0:047;and p2;3 ¼ �0:262� j5:1;

and do the following:
Write a MATLAB M-file to plot the root

locus for the system and to find the
following:

a. The gain K at which the system becomes
marginally stable

b. The closed-loop poles, p, and transfer
function, T(s), corresponding to a 16%
overshoot

c. The coordinates of the point selected
on the root-locus corresponding to 16%
overshoot

d. A simulation of the unit-step response
of the closed-loop system correspond-
ing to your 16% overshoot design. Note
in your simulation the following val-
ues: (1) actual percent overshoot, (2)

corresponding peak time, Tp, (2) rise
time, Tr, (3) settling time, Ts, and (4)
final steady-state value.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
72. High-speed rail pantograph. Problem 21 in Chapter 1

discusses the active control of a pantograph mecha-
nism for high-speed rail systems. In Problem 79,
Chapter 5, you found the block diagram for the active
pantograph control system. Use your block diagram to
do the following (O’Connor, 1997):

a. Sketch the root locus.

b. Assume a second-order approximation and find
the gain, K, to yield a closed-loop step response
that has 38% overshoot.

c. Estimate settling time and peak time for the
response designed in Part b.

d. Discuss the validity of your second-order
approximation.

e. Use MATLAB to plot the closed-
loop step response for the
value of K found in Part b. Com-
pare the plot to predicted values found
in Parts b and c.

73. Control of HIV/AIDS. In the linearized model of
Chapter 6, Problem 68, where virus levels are con-
trolled by means of RTIs, the open-loop plant
transfer function was shown to be

PðsÞ ¼ YðsÞ
U1ðsÞ ¼

�520s� 10:3844

s3 þ 2:6817s2 þ 0:11sþ 0:0126

The amount of RTIs delivered to the patient will
automatically be calculated by embedding the pa-
tient in the control loop as G(s) shown in Figure
P6.20 (Craig, 2004).

a. In the simplest case, GðsÞ ¼ K, with K > 0. Note
that this effectively creates a positive-feedback
loop because the negative sign in the numerator of
P(s) cancels out with the negative-feedback sign
in the summing junction. Use positive-feedback
rules to plot the root locus of the system.

b. Now assume GðsÞ ¼ �K with K > 0. The system
is now a negative-feedback system. Use negative-
feed-back rules to draw the root locus. Show that
in this case the system will be closed-loop stable
for all K > 0.

74. Hybrid vehicle. In chapter 7,
Figure P7.34 shows the
block diagram of the speed control of
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an HEV rearranged as a unity feedback
system (Preitl, 2007).

Let the transfer function of the speed
controller be

GSCðsÞ ¼ KPsc þ
KIsc

s
¼

KPsc sþ KIsc

KPsc

� �

s

a. Assume first that the speed controller
is configured as a proportional con-
troller KISC ¼ 0ð and GSCðsÞ ¼ KPSC Þ. Cal-
culate the forward-path open-loop
poles. Now use MATLAB to plot the sys-
tem’s root locus and find the gain, KPSC

that yields a critically damped

closed-loop response. Finally, plot
the time-domain response, c(t), for
a unit-step input using MATLAB. Note
on the curve the rise time, Tr, and
settling time, Ts.

b. Now add an integral gain, KISC, to the
controller, such that KISC=KPSC ¼ 0:4.
Use MATLAB to plot the root locus and
find the proportional gain, KPSC, that
could lead to a closed-loop unit-step
response with 10% overshoot. Plot c(t)
using MATLAB and note on the curve the
peak time, Tp, and settling time, Ts.
Does the response obtained resemble a
second-order underdamped response?

Cyber Exploration Laboratory

Experiment 8.1

Objective To verify the effect of open-loop poles and zeros upon the shape of the
root locus. To verify the root locus as a tool for estimating the effect of open-loop
gain upon the transient response of closed-loop systems.

MinimumRequired Software Packages MATLAB and the Control System
Toolbox

Prelab

1. Sketch two possibilities for the root locus of a unity negative-feedback system
with the open-loop pole-zero configuration shown in Figure P8.27.

jω

σ

FIGURE P8.27

2. If the open-loop system of Prelab 1 is GðsÞ ¼ Kðsþ 1:5Þ
sðsþ 0:5Þðsþ 10Þ, estimate the

percent overshoot at the following values of gain, K: 20, 50, 85, 200, and 700.

Lab

1. Using Matlab’s SISO Design Tool, set up a negative unity feedback system with

GðsÞ ¼ Kðsþ 6Þ
sðsþ 0:5Þðsþ 10Þ to produce a root locus. For convenience, set up the zero
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at �6 using SISO Design Tool’s compensator function by simply dragging a zero
to�6 on the resulting root locus. Print the root locus for the zero at�6. Move the
zero to the following locations and print out a root locus at each location: �2,
�1:5, �1:37, and �1:2.

2. Using Matlab’s SISO Design Tool, set up a negative unity feedback system with

GðsÞ ¼ Kðsþ 1:5Þ
sðsþ 0:5Þðsþ 10Þ to produce a root locus. Open the LTI Viewer for SISO

Design Tool to show step responses. Using the values of K specified in Prelab 2,
record the percent overshoot and settling time and print the root loci and step
response for each value of K.

Postlab

1. Discuss your findings from Prelab 1 and Lab 1. What conclusions can you draw?

2. Make a table comparing percent overshoot and settling time from your calcula-
tions in Prelab 2 and your experimental values found in Lab 2. Discuss the
reasons for any discrepancies. What conclusions can you draw?

Experiment 8.2

Objective To use MATLAB to design the gain of a controller via root locus.

Minimum Required Software Package MATLAB with the Control Sys-
tems Toolbox.

Prelab The open-loop system dynamics model for the NASA eight-axis
Advanced Research Manipulator II (ARM II) electromechanical shoulder joint/
link, actuated by an armature-controlled dc servomotor is shown in Figure P8.28.

The ARM II shoulder joint constant parameters areKa¼ 12,L¼ 0.006 H,R¼ 1.4V,
Kb¼ 0.00867, n¼ 200, Km¼ 4.375, J¼ Jmþ JL=n

2, D¼DmþDL=n
2, JL¼ 1, DL¼ 0.5,

Jm¼ 0.00844, and Dm¼ 0.00013(Craig, 2005), (Nyzen, 1999), (Williams, 1994).

a. Obtain the equivalent open-loop transfer function, GðsÞ ¼ uLðsÞ
Vref ðsÞ.

b. The loop is to be closed by cascading a controller, GcðsÞ ¼ KDsþKP, with G(s) in
the forward path forming an equivalent forward-transfer function,
GeðsÞ ¼ GcðsÞGðsÞ. Parameters of Gc(s) will be used to design a desired transient
performance. The input to the closed-loop system is a voltage, VIðsÞ, representing
the desired angular displacement of the robotic joint with a ratio of 1 volt equals
1 radian. The output of the closed-loop system is the actual angular displacement
of the joint, uLðsÞ. An encoder in the feedback path, Ke, converts the actual joint
displacement to a voltage with a ratio of 1 radian equals 1 volt. Draw the closed-
loop system showing all transfer functions.

c. Find the closed-loop transfer function.

Ka (Ls + R)(Js + D)

Km 1/n
s

Kb

Vref

Amp 

+

_

Armature circuit 
&

motor dynamics 

Back emf 

Gears & 
integrator 

θL

FIGURE P8.28 Open-loop model for ARM ll
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Lab Let
KP

KD
¼ 4 and use MATLAB to design the value of KD to yield a step

response with a maximum percent overshoot of 0.2%.

Postlab

1. Discuss the success of your design.

2. Is the steady-state error what you would expect? Give reasons for your answer.

Experiment 8.3

Objective To use LabVIEW to design the gain of a controller via root locus.

Minimum Required Software Package LabVIEW with the Control Design
and Simulation Module, and the MathScript RT Module.

Prelab Complete the Prelab to Experiment 8.2 if you have not already done so.

Lab Let
KP

KD
¼ 4. Use LabVIEW to open and customize the Interactive Root

Locus VI from the Examples in order to implement a design of KD to yield a step
response with a maximum percent overshoot of 0.2%. Use a hybrid graphical/
MathScript approach.

Postlab

1. Discuss the success of your design.

2. Is the steady-state error what you would expect? Give reasons for your answer.
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Design via Root Locus

9

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Use the root locus to design cascade compensators to improve the steady-state error
(Sections 9.1–9.2)

� Use the root locus to design cascade compensators to improve the transient
response (Section 9.3)

� Use the root locus to design cascade compensators to improve both the steady-state
error and the transient response (Section 9.4)

� Use the root locus to design feedback compensators to improve the transient
response (Section 9.5)

� Realize the designed compensators physically (Section 9.6)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to design a cascade compensator to meet transient response and
steady-state error specifications.

� Given the pitch or heading control system for the UFSS vehicle shown on the back
endpapers, you will be able to design a cascade or feedback compensator to meet
transient response specifications.
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9.1 Introduction

In Chapter 8, we saw that the root locus graphically displayed both transient response
and stability information. The locus can be sketched quickly to get a general idea of the
changes in transient response generated by changes in gain. Specific points on the
locus also can be found accurately to give quantitative design information.

The root locus typically allows us to choose the proper loop gain to meet a
transient response specification. As the gain is varied, we move through different
regions of response. Setting the gain at a particular value yields the transient
response dictated by the poles at that point on the root locus. Thus, we are limited
to those responses that exist along the root locus.

Improving Transient Response
Flexibility in the design of a desired transient response can be increased if we can
design for transient responses that are not on the root locus. Figure 9.1(a) illustrates
the concept. Assume that the desired transient response, defined by percent over-
shoot and settling time, is represented by point B. Unfortunately, on the current root
locus at the specified percent overshoot, we only can obtain the settling time
represented by point A after a simple gain adjustment. Thus, our goal is to speed
up the response at A to that of B, without affecting the percent overshoot. This
increase in speed cannot be accomplished by a simple gain adjustment, since point B
does not lie on the root locus. Figure 9.1(b) illustrates the improvement in the
transient response we seek: The faster response has the same percent overshoot as
the slower response.

FIGURE 9.1 a. Sample root
locus, showing possible design
point via gain adjustment (A)
and desired design point that
cannot be met via simple gain
adjustment (B); b. responses
from poles at A and B

s-plane
A

B

(a)

(b)

jω

σ

c(t)

t

Poles at B
Poles at A

 = Closed-loop pole
 = Open-loop pole
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One way to solve our problem is to replace the existing system with a system
whose root locus intersects the desired design point, B. Unfortunately, this replace-
ment is expensive and counterproductive. Most systems are chosen for character-
istics other than transient response. For example, an elevator cage and motor are
chosen for speed and power. Components chosen for their transient response may
not necessarily meet, for example, power requirements.

Rather than change the existing system, we augment, or compensate, the
system with additional poles and zeros, so that the compensated system has a root
locus that goes through the desired pole location for some value of gain. One of the
advantages of compensating a system in this way is that additional poles and zeros
can be added at the low-power end of the system before the plant. Addition of
compensating poles and zeros need not interfere with the power output require-
ments of the system or present additional load or design problems. The compensat-
ing poles and zeros can be generated with a passive or an active network.

A possible disadvantage of compensating a system with additional open-loop
poles and zeros is that the system order can increase, with a subsequent effect on the
desired response. In Chapters 4 and 8, we discussed the effect of additional closed-
loop poles and zeros on the transient response. At the beginning of the design
process discussed in this chapter, we determine the proper location of additional
open-loop poles and zeros to yield the desired second-order closed-loop poles.
However, we do not know the location of the higher-order closed-loop poles until the
end of the design. Thus, we should evaluate the transient response through simula-
tion after the design is complete to be sure the requirements have been met.

In Chapter 12, when we discuss state-space design, the disadvantage of finding
the location of higher-order closed-loop poles after the design will be eliminated by
techniques that allow the designer to specify and design the location of all the closed-
loop poles at the beginning of the design process.

One method of compensating for transient response that will be discussed later
is to insert a differentiator in the forward path in parallel with the gain. We can
visualize the operation of the differentiator with the following example. Assuming a
position control with a step input, we note that the error undergoes an initial large
change. Differentiating this rapid change yields a large signal that drives the plant.
The output from the differentiator is much larger than the output from the pure gain.
This large, initial input to the plant produces a faster response. As the error
approaches its final value, its derivative approaches zero, and the output from
the differentiator becomes negligible compared to the output from the gain.

Improving Steady-State Error
Compensators are not only used to improve the transient response of a system; they
are also used independently to improve the steady-state error characteristics.
Previously, when the system gain was adjusted to meet the transient response
specification, steady-state error performance deteriorated, since both the transient
response and the static error constant were related to the gain. The higher the gain,
the smaller the steady-state error, but the larger the percent overshoot. On the other
hand, reducing gain to reduce overshoot increased the steady-state error. If we use
dynamic compensators, compensating networks can be designed that will allow us to
meet transient and steady-state error specifications simultaneously.1 We no longer

1 The word dynamic describes compensators with noninstantaneous transient response. The transfer
functions of such compensators are functions of the Laplace variable, s, rather than pure gain.
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need to compromise between transient response and steady-state error, as long as
the system operates in its linear range.

In Chapter 7, we learned that steady-state error can be improved by adding an
open-loop pole at the origin in the forward path, thus increasing the system type and
driving the associated steady-state error to zero. This additional pole at the origin
requires an integrator for its realization.

In summary, then, transient response is improved with the addition of differ-
entiation, and steady-state error is improved with the addition of integration in the
forward path.

Configurations
Two configurations of compensation are covered in this chapter: cascade compen-
sation and feedback compensation. These methods are modeled in Figure 9.2. With
cascade compensation, the compensating network, G1(s), is placed at the low-power
end of the forward path in cascade with the plant. If feedback compensation is used,
the compensator, H1(s), is placed in the feedback path. Both methods change the
open-loop poles and zeros, thereby creating a new root locus that goes through the
desired closed-loop pole location.

Compensators
Compensators that use pure integration for improving steady-state error or pure
differentiation for improving transient response are defined as ideal compensators.
Ideal compensators must be implemented with active networks, which, in the case of
electric networks, require the use of active amplifiers and possible additional power
sources. An advantage of ideal integral compensators is that steady-state error is
reduced to zero. Electromechanical ideal compensators, such as tachometers, are
often used to improve transient response, since they can be conveniently interfaced
with the plant.

Other design techniques that preclude the use of active devices for compen-
sation can be adopted. These compensators, which can be implemented with passive
elements such as resistors and capacitors, do not use pure integration and differen-
tiation and are not ideal compensators. Advantages of passive networks are that they

FIGURE 9.2 Compensation
techniques: a. cascade;
b. feedback

R(s) C(s)
G1(s)

Cascade
compensator Plant

(a)

(b)

R(s) C(s)
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Original
controller Plant
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are less expensive and do not require additional power sources for their operation.
Their disadvantage is that the steady-state error is not driven to zero in cases where
ideal compensators yield zero error.

Thus, the choice between an active or a passive compensator revolves around
cost, weight, desired performance, transfer function, and the interface between the
compensator and other hardware. In Sections 9.2, 9.3, and 9.4, we first discuss
cascade compensator design using ideal compensation and follow with cascade
compensation using compensators that are not implemented with pure integration
and differentiation.

9.2 Improving Steady-State Error
via Cascade Compensation

In this section, we discuss two ways to improve the steady-state error of a feedback
control system using cascade compensation. One objective of this design is to
improve the steady-state error without appreciably affecting the transient response.

The first technique is ideal integral compensation, which uses a pure integrator
to place an open-loop, forward-path pole at the origin, thus increasing the system
type and reducing the error to zero. The second technique does not use pure
integration. This compensation technique places the pole near the origin, and
although it does not drive the steady-state error to zero, it does yield a measurable
reduction in steady-state error.

While the first technique reduces the steady-state error to zero, the compen-
sator must be implemented with active networks, such as amplifiers. The second
technique, although it does not reduce the error to zero, does have the advantage
that it can be implemented with a less expensive passive network that does not
require additional power sources.

The names associated with the compensators come either from the method of
implementing the compensator or from the compensator’s characteristics. Systems
that feed the error forward to the plant are called proportional control systems.
Systems that feed the integral of the error to the plant are called integral control
systems. Finally, systems that feed the derivative of the error to the plant are called
derivative control systems. Thus, in this section we call the ideal integral compensator
a proportional-plus-integral (PI) controller, since the implementation, as we will see,
consists of feeding the error (proportional) plus the integral of the error forward to
the plant. The second technique uses what we call a lag compensator. The name of
this compensator comes from its frequency response characteristics, which will be
discussed in Chapter 11. Thus, we use the name PI controller interchangeably with
ideal integral compensator, and we use the name lag compensator when the cascade
compensator does not employ pure integration.

Ideal Integral Compensation (PI)
Steady-state error can be improved by placing an open-loop pole at the origin,
because this increases the system type by one. For example, a Type 0 system
responding to a step input with a finite error responds with zero error if the system
type is increased by one. Active circuits can be used to place poles at the origin. Later
in this chapter, we show how to build an integrator with active electronic circuits.

To see how to improve the steady-state error without affecting the transient
response, look at Figure 9.3(a). Here we have a system operating with a desirable
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transient response generated by the closed-loop poles at A. If we add a pole at the
origin to increase the system type, the angular contribution of the open-loop poles at
point A is no longer 180�, and the root locus no longer goes through point A, as
shown in Figure 9.3(b).

To solve the problem, we also add a zero close to the pole at the origin, as shown
in Figure 9.3(c). Now the angular contribution of the compensator zero and compen-
sator pole cancel out, point A is still on the root locus, and the system type has been
increased. Furthermore, the required gain at the dominant pole is about the same as
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FIGURE 9.3 Pole atA is a. on the root locus without compensator; b. not on the root locus with
compensator pole added; c. approximately on the root locus with compensator pole and zero
added
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before compensation, since the ratio of lengths from the compensator pole and the
compensator zero is approximately unity. Thus, we have improved the steady-state
error without appreciably affecting the transient response. A compensator with a pole
at the origin and a zero close to the pole is called an ideal integral compensator.

In the example that follows, we demonstrate the effect of ideal integral compen-
sation. An open-loop pole will be placed at the origin to increase the system type and
drive the steady-state error to zero. An open-loop zero will be placed very close to the
open-loop pole at the origin so that the original closed-loop poles on the original root
locus still remain at approximately the same points on the compensated root locus.

Example 9.1

Effect of an Ideal Integral Compensator

PROBLEM: Given the system of Figure 9.4(a), operating with a damping ratio of
0.174, show that the addition of the ideal integral compensator shown in Figure 9.4(b)
reduces the steady-state error to zero for a step input without appreciably affecting
transient response. The compensating network is chosen with a pole at the origin
to increase the system type and a zero at �0:1, close to the compensator pole, so that
the angular contribution of the compensator evaluated at the original, dominant,
second-order poles is approximately zero. Thus, the original, dominant, second-order
closed-loop poles are still approximately on the new root locus.

SOLUTION: We first analyze the uncompensated system and determine the loca-
tion of the dominant, second-order poles. Next we evaluate the uncompensated
steady-state error for a unit step input. The root locus for the uncompensated
system is shown in Figure 9.5.

A damping ratio of 0.174 is represented by a radial line drawn on the s-plane at
100:02�. Searching along this line with the root locus program discussed in Appendix
H at www.wiley.com/college/nise, we find that the dominant poles are 0:694 � j3:926
for a gain, K, of 164.6. Now look for the third pole on the root locus beyond �10 on
the real axis. Using the root locus program and searching for the same gain as that of
the dominant pair,K ¼ 164:6, we find that the third pole is approximately at�11:61.
This gain yields Kp ¼ 8:23. Hence, the steady-state error is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ 8:23
¼ 0:108 ð9:1Þ

(a)

(b)

R(s) E(s) C(s)

Plant

–
s

Compensator

K(s+0.1)+

1R(s) E(s) C(s)

Plant

–

Gain

(s+1)(s+2)(s+10)
+

K

1
(s+1)(s+2)(s+10)

FIGURE 9.4 Closed-loop
system for Example 9.1:
a. before compensation;
b. after ideal integral
compensation
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Adding an ideal integral compensator with a zero at �0:1, as shown in Figure
9.4(b), we obtain the root locus shown in Figure 9.6. The dominant second-order
poles, the third pole beyond �10, and the gain are approximately the same as for
the uncompensated system. Another section of the compensated root locus is
between the origin and �0:1. Searching this region for the same gain at the
dominant pair, K ¼ 158:2, the fourth closed-loop pole is found at �0:0902, close
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FIGURE 9.5 Root locus for uncompensated system of Figure 9.4(a)
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FIGURE 9.6 Root locus for compensated system of Figure 9.4(b)
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enough to the zero to cause pole-zero cancellation. Thus, the compensated
system’s closed-loop poles and gain are approximately the same as the un-
compensated system’s closed-loop poles and gain, which indicates that the
transient response of the compensated system is about the same as the un-
compensated system. However, the compensated system, with its pole at the
origin, is a Type 1 system; unlike the uncompensated system, it will respond to a
step input with zero error.

Figure 9.7 compares the uncompensated response with the ideal integral
compensated response. The step response of the ideal integral compensated system
approaches unity in the steady state, while the uncompensated system approaches
0.892. Thus, the ideal integral compensated system responds with zero steady-state
error. The transient response of both the uncompensated and the ideal integral
compensated systems is the same up to approximately 3 seconds. After that time the
integrator in the compensator, shown in Figure 9.4(b), slowly compensates for the
error until zero error is finally reached. The simulation shows that it takes 18 seconds
for the compensated system to reach to within �2% of the final value of unity, while
the uncompensated system takes about 6 seconds to settle to within �2% of its final
value of 0.892. The compensation at first may appear to yield deterioration in the
settling time. However, notice that the compensated system reaches the un-
compensated system’s final value in about the same time. The remaining time is
used to improve the steady-state error over that of the uncompensated system.

A method of implementing an ideal integral compensator is shown in Figure 9.8.
The compensating network precedes G(s) and is an ideal integral compensator since

GcðsÞ ¼ K1 þK2

s
¼

K1 sþ K2
K1

� �

s
ð9:2Þ

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0
0

5 10 15 20

c(
t)

Ideal integral
compensated

Uncompensated

Time (seconds)

FIGURE 9.7 Ideal integral
compensated system response
and the uncompensated system
response of Example 9.1
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K2
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FIGURE 9.8 PI controller
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The value of the zero can be adjusted by varying K2=K1. In this implementation, the
error and the integral of the error are fed forward to the plant, G(s). Since Figure 9.8
has both proportional and integral control, the ideal integral controller, or compen-
sator, is given the alternate namePI controller. Later in the chapter we will see how to
implement each block, K1 and K2=s.

Lag Compensation
Ideal integral compensation, with its pole on the origin, requires an active integrator.
If we use passive networks, the pole and zero are moved to the left, close to the
origin, as shown in Figure 9.9(c). One may guess that this placement of the pole,
although it does not increase the system type, does yield an improvement in the static
error constant over an uncompensated system. Without loss of generality, we
demonstrate that this improvement is indeed realized for a Type 1 system.

Assume the uncompensated system shown in Figure 9.9(a). The static error
constant, KvO , for the system is

KvO ¼ K z1 z2 � � �
p1p2 � � �

ð9:3Þ

Assuming the lag compensator shown in Figure 9.9(b) and (c), the new static error
constant is

KvN ¼ ðK z1 z2 � � �ÞðzcÞ
ðp1p2 � � �ÞðpcÞ

ð9:4Þ

What is the effect on the transient response? Figure 9.10 shows the effect on the
root locus of adding the lag compensator. The uncompensated system’s root locus is
shown in Figure 9.10(a), where point P is assumed to be the dominant pole. If the lag
compensator pole and zero are close together, the angular contribution of the

(a)

(b)

(c)

(s + z1)(s + z2)

s(s + p1)(s + p2)

R(s) E(s) C(s)

Plant

–

K(s + zc)

(s + pc)

(s + zc)Gc(s) = 
s-plane

jω

σ
–pc–zc

(s + pc)

Compensator

+

(s + z1)(s + z2)

s(s + p1)(s + p2)

R(s) E(s) C(s)

Plant

–

Gain

+
K

FIGURE 9.9 a. Type 1 uncompensated system; b. Type 1 compensated system; c. compensator
pole-zero plot
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compensator to pointP is approximately zero degrees. Thus, in Figure 9.10(b), where
the compensator has been added, point P is still at approximately the same location
on the compensated root locus.

What is the effect on the required gain, K? After inserting the compensator, we
find that K is virtually the same for the uncompensated and compensated systems,
since the lengths of the vectors drawn from the lag compensator are approximately
equal and all other vectors have not changed appreciably.

Now, what improvement can we expect in the steady-state error? Since we
established that the gain, K, is about the same for the uncompensated and compen-
sated systems, we can substitute Eq. (9.3) into (9.4) and obtain

KvN ¼ KvO

zc
pc

> KvO ð9:5Þ

Equation (9.5) shows that the improvement in the compensated system’s Kv

over the uncompensated system’s Kv is equal to the ratio of the magnitude of the
compensator zero to the compensator pole. In order to keep the transient response
unchanged, we know the compensator pole and zero must be close to each other.
The only way the ratio of zc to pc can be large in order to yield an appreciable
improvement in steady-state error and simultaneously have the compensator’s
pole and zero close to each other to minimize the angular contribution is to place
the compensator’s pole-zero pair close to the origin. For example, the ratio of zc to
pc can be equal to 10 if the pole is at �0:001 and the zero is at �0:01. Thus, the ratio
is 10, yet the pole and zero are very close, and the angular contribution of the
compensator is small.

In conclusion, although the ideal compensator drives the steady-state error
to zero, a lag compensator with a pole that is not at the origin will improve the
static error constant by a factor equal to zc=pc. There also will be a minimal effect
upon the transient response if the pole-zero pair of the compensator is placed
close to the origin. Later in the chapter we show circuit configurations for the lag
compensator. These circuit configurations can be obtained with passive networks
and thus do not require the active amplifiers and possible additional power
supplies that are required by the ideal integral (PI) compensator. In the following
example we design a lag compensator to yield a specified improvement in steady-
state error.

s-plane

ωj

σ σ

(a) (b)

P
s-plane

ωj

P

–zc –pc

FIGURE 9.10 Root locus: a. before lag compensation; b. after lag compensation
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Example 9.2

Lag Compensator Design

PROBLEM: Compensate the system of Figure 9.4(a), whose root locus is shown in
Figure 9.5, to improve the steady-state error by a factor of 10 if the system is
operating with a damping ratio of 0.174.

SOLUTION: The uncompensated system error from Example 9.1 was 0.108 with
Kp ¼ 8:23. A tenfold improvement means a steady-state error of

eð1Þ ¼ 0:108

10
¼ 0:0108 ð9:6Þ

Since

eð1Þ ¼ 1

1 þKp
¼ 0:0108 ð9:7Þ

rearranging and solving for the required Kp yields

Kp ¼ 1 � eð1Þ
eð1Þ ¼ 1 � 0:0108

0:0108
¼ 91:59 ð9:8Þ

The improvement in Kp from the uncompensated system to the compensated
system is the required ratio of the compensator zero to the compensator pole, or

zc
pc

¼ KpN

KpO

¼ 91:59

8:23
¼ 11:13 ð9:9Þ

Arbitrarily selecting
pc ¼ 0:01 ð9:10Þ

we use Eq. (9.9) and find

zc ¼ 11:13pc � 0:111 ð9:11Þ
Let us now compare the compensated system, shown in Figure 9.11, with the

uncompensated system. First sketch the root locus of the compensated system, as
shown in Figure 9.12. Next search along the z ¼ 0:174 line for a multiple of 180� and
find that the second-order dominant poles are at �0:678 � j3:836 with a gain, K, of
158.1. The third and fourth closed-loop poles are at �11:55 and �0:101, respec-
tively, and are found by searching the real axis for a gain equal to that of the
dominant poles. All transient and steady-state results for both the uncompensated
and the compensated systems are shown in Table 9.1.

The fourth pole of the compensated system cancels its zero. This leaves the
remaining three closed-loop poles of the compensated system very close in value to
the three closed-loop poles of the uncompensated system. Hence, the transient

FIGURE 9.11 Compensated
system for Example 9.2

1R(s) E(s) C(s)

Plant

–
(s + 0.01)

Compensator

(s + 1)(s + 2)(s + 10)
K(s + 0.111)+
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response of both systems is approximately the same, as is the system gain, but notice
that the steady-state error of the compensated system is 1/9.818 that of the un-
compensated system and is close to the design specification of a tenfold improvement.

Figure 9.13 shows the effect of the lag compensator in the time domain. Even
though the transient responses of the uncompensated and lag-compensated sys-
tems are the same, the lag-compensated system exhibits less steady-state error by
approaching unity more closely than the uncompensated system.

We now examine another design possibility for the lag compensator and
compare the response to Figure 9.13. Let us assume a lag compensator whose pole
and zero are 10 times as close to the origin as in the previous design. The results are
compared in Figure 9.14. Even though both responses will eventually reach
approximately the same steady-state value, the lag compensator previously de-
signed, GcðsÞ ¼ ðsþ 0:111Þ=ðsþ 0:01Þ, approaches the final value faster than the
proposed lag compensator, GcðsÞ ¼ ðsþ 0:0111Þ=ðsþ 0:001Þ. We can explain this
phenomenon as follows. From Table 9.1, the previously designed lag compensator

s-plane

jω

σ

 = 0.174

K = 158.1
– 0.678 + j3.836

–2 –1 0

–0.111
Fourth closed-loop

pole at  –0.101    = Closed-loop pole
    = Open-loop pole

46–8

–j2

–j4

–10–11.55

j4

j2

100.02°

Compensator pole
at  –0.01

ζ

––

FIGURE 9.12 Root locus for
compensated system of
Figure 9.11

TABLE 9.1 Predicted characteristics of uncompensated and lag-compensated systems for
Example 9.2

Parameter Uncompensated Lag-compensated

Plant and compensator
K

ðsþ 1Þðsþ 2Þðsþ 10Þ
Kðsþ 0:111Þ

ðsþ 1Þðsþ 2Þðsþ 10Þðsþ 0:01Þ
K 164.6 158.1

Kp 8.23 87.75

eð1Þ 0.108 0.011

Dominant second-order poles �0:694 � j3:926 �0:678 � j3:836

Third pole �11:61 �11:55

Fourth pole None �0:101

Zero None �0:111

TryIt 9.1

Use the following MATLAB
and Control System Toolbox
statements to reproduce
Figure 9.13.

Gu=zpk([],...
[-1 -2 -10],164.6);
Gc=zpk([-0.111],...
[-0.01],1);
Gce=Gu*Gc;
Tu=feedback(Gu,1);
Tc=feedback(Gce,1);
step(Tu)
hold
step(Tc)

9.2 Improving Steady-State Error via Cascade Compensation 467



Apago PDF Enhancer

E1C09 11/03/2010 13:29:38 Page 468

has a fourth closed-loop pole at �0:101. Using the same analysis for the new lag
compensator with its open-loop pole 10 times as close to the imaginary axis, we
find its fourth closed-loop pole at �0:01. Thus, the new lag compensator has a
closed-loop pole closer to the imaginary axis than the original lag compensator.
This pole at �0:01 will produce a longer transient response than the original pole
at �0:101, and the steady-state value will not be reached as quickly.

Skill-Assessment Exercise 9.1

PROBLEM: A unity feedback system with the forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 15% overshoot. Do the
following:

a. Evaluate the steady-state error for a unit ramp input.

b. Design a lag compensator to improve the steady-state error by a factor of 20.

FIGURE 9.13 Step responses
of uncompensated and
lag-compensated systems for
Example 9.2
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FIGURE 9.14 Step responses
of the system for Example 9.2
using different lag
compensators
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c. Evaluate the steady-state error for a unit ramp input to your compensated
system.

d. Evaluate how much improvement in steady-state error was realized.

ANSWERS:

a. erampð1Þ ¼ 0:1527

b. GlagðsÞ ¼ sþ 0:2

sþ 0:01

c. erampð1Þ ¼ 0:0078

d. 19.58 times improvement

The complete solution is at www.wiley.com/college/nise.

9.3 Improving Transient Response
via Cascade Compensation

Since we have solved the problem of improving the steady-state error without
affecting the transient response, let us now improve the transient response itself. In
this section, we discuss two ways to improve the transient response of a feedback
control system by using cascade compensation. Typically, the objective is to design a
response that has a desirable percent overshoot and a shorter settling time than the
uncompensated system.

The first technique we will discuss is ideal derivative compensation. With ideal
derivative compensation, a pure differentiator is added to the forward path of the
feedback control system. We will see that the result of adding differentiation is the
addition of a zero to the forward-path transfer function. This type of compensation
requires an active network for its realization. Further, differentiation is a noisy
process; although the level of the noise is low, the frequency of the noise is high
compared to the signal. Thus, differentiating high-frequency noise yields a large,
unwanted signal.

The second technique does not use pure differentiation. Instead, it approx-
imates differentiation with a passive network by adding a zero and a more distant
pole to the forward-path transfer function. The zero approximates pure differentia-
tion as described previously.

As with compensation to improve steady-state error, we introduce names
associated with the implementation of the compensators. We call an ideal deriva-
tive compensator a proportional-plus-derivative (PD) controller, since the imple-
mentation, as we will see, consists of feeding the error (proportional) plus
the derivative of the error forward to the plant. The second technique uses a
passive network called a lead compensator. As with the lag compensator, the name
comes from its frequency response, which is discussed in Chapter 11. Thus, we use
the name PD controller interchangeably with ideal derivative compensator, and
we use the name lead compensator when the cascade compensator does not employ
pure differentiation.
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Ideal Derivative Compensation (PD)
The transient response of a system can be selected by choosing an appropriate
closed-loop pole location on the s-plane. If this point is on the root locus, then a
simple gain adjustment is all that is required in order to meet the transient response
specification. If the closed-loop pole location is not on the root locus, then the root
locus must be reshaped so that the compensated (new) root locus goes through the
selected closed-loop pole location. In order to accomplish the latter task, poles and
zeros can be added in the forward path to produce a new open-loop function whose
root locus goes through the design point on the s-plane. One way to speed up the
original system that generally works is to add a single zero to the forward path.

This zero can be represented by a compensator whose transfer function is

GcðsÞ ¼ sþ zc ð9:12Þ
This function, the sum of a differentiator and a pure gain, is called an ideal derivative,
or PD controller. Judicious choice of the position of the compensator zero can
quicken the response over the uncompensated system. In summary, transient
responses unattainable by a simple gain adjustment can be obtained by augmenting
the system’s poles and zeros with an ideal derivative compensator.

We now show that ideal derivative compensation speeds up the response of a
system. Several simple examples are shown in Figure 9.15, where the uncompensated
system of Figure 9.15(a), operating with a damping ratio of 0.4, becomes a compensated
system by the addition of a compensating zero at�2,�3, and�4 in Figures 9.15(b), (c),
and (d), respectively. In each design, the zero is moved to a different position, and the
root locus is shown. For each compensated case, the dominant, second-order poles are
farther out along the 0.4 damping ratio line than the uncompensated system.

Each of the compensated cases has dominant poles with the same damping
ratio as the uncompensated case. Thus, we predict that the percent overshoot will be
the same for each case.

Also, the compensated, dominant, closed-loop poles have more negative real
parts than the uncompensated, dominant, closed-loop poles. Hence, we predict that
the settling times for the compensated cases will be shorter than for the
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FIGURE 9.15 Using ideal derivative compensation: a. uncompensated; b. compensator zero at �2; (figure continues)
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uncompensated case. The compensated, dominant, closed-loop poles with the more
negative real parts will have the shorter settling times. The system in Figure 9.15(b)
will have the shortest settling time.

All of the compensated systems will have smaller peak times than the
uncompensated system, since the imaginary parts of the compensated systems
are larger. The system of Figure 9.15(b) will have the smallest peak time.

Also notice that as the zero is placed farther from the dominant poles,
the closed-loop, compensated dominant poles move closer to the origin and
to the uncompensated, dominant closed-loop poles. Table 9.2 summarizes the
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Third
pole

–

FIGURE 9.15 (Continued ) c. compensator zero at �3; d. compensator zero at �4.

TABLE 9.2 Predicted characteristics for the systems of Figure 9.15

Uncompensated Compensation b Compensation c Compensation d

Plant and compensator
K

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 2Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 3Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 4Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Dom, poles �0:939 � j2:151 �3 � j6:874 �2:437 � j5:583 �1:869 � j4:282

K 23.72 51.25 35.34 20.76

z 0.4 0.4 0.4 0.4

vn 2.347 7.5 6.091 4.673

%OS 25.38 25.38 25.38 25.38

Ts 4.26 1.33 1.64 2.14

Tp 1.46 0.46 0.56 0.733

Kp 2.372 10.25 10.6 8.304

eð1Þ 0.297 0.089 0.086 0.107

Third pole �6:123 None �3:127 �4:262

Zero None None �3 �4

Comments Second-order
approx. OK

Pure
second-order

Second-order
approx. OK

Second-order
approx. OK
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results obtained from the root locus of each of the design cases shown in
Figure 9.15.

In summary, although compensation methods c and d yield slower responses
than method b, the addition of ideal derivative compensation shortened the response
time in each case while keeping the percent overshoot the same. This change can best
be seen in the settling time and peak time, where there is at least a doubling of speed
across all of the cases of compensation. An added benefit is the improvement in the
steady-state error, even though lag compensation was not used. Here the steady-state
error of the compensated system is at least one-third that of the uncompensated
system, as seen by eð1Þ and Kp. All systems in Table 9.2 are Type 0, and some steady-
state error is expected. The reader must not assume that, in general, improvement in
transient response always yields an improvement in steady-state error.

The time response of each case in Table 9.2 is shown in Figure 9.16. We see that
the compensated responses are faster and exhibit less error than the uncompensated
response.

Now that we have seen what ideal derivative compensation can do, we are
ready to design our own ideal derivative compensator to meet a transient response
specification. Basically, we will evaluate the sum of angles from the open-loop poles
and zeros to a design point that is the closed-loop pole that yields the desired
transient response. The difference between 180� and the calculated angle must be the
angular contribution of the compensator zero. Trigonometry is then used to locate
the position of the zero to yield the required difference in angle.

Example 9.3

Ideal Derivative Compensator Design

PROBLEM: Given the system of Figure 9.17, design an ideal derivative compen-
sator to yield a 16% overshoot, with a threefold reduction in settling time.

SOLUTION: Let us first evaluate the performance of the un-
compensated system operating with 16% overshoot. The root locus
for the uncompensated system is shown in Figure 9.18. Since 16%
overshoot is equivalent to z ¼ 0:504, we search along that damping
ratio line for an odd multiple of 180� and find that the dominant,
second-order pair of poles is at �1:205 � j2:064. Thus, the settling

FIGURE 9.16 Uncompensated
system and ideal derivative
compensation solutions from
Table 9.2
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FIGURE 9.17 Feedback control system for
Example 9.3
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time of the uncompensated system is

Ts ¼ 4

zvn
¼ 4

1:205
¼ 3:320 ð9:13Þ

Since our evaluation of percent overshoot and settling time is based upon a
second-order approximation, we must check the assumption by finding the third
pole and justifying the second-order approximation. Searching beyond �6 on
the real axis for a gain equal to the gain of the dominant, second-order pair,
43.35, we find a third pole at �7:59, which is over six times as far from the jv-axis
as the dominant, second-order pair. We conclude that our approximation is
valid. The transient and steady-state error characteristics of the uncompensated
system are summarized in Table 9.3.

s-plane

jω

σ

K = 43.35

–1.205 + j2.064

ζ  = 0.504

    = Closed-loop pole
    = Open-loop pole

j1

–1 0–2–34–56–7

j2

j3

–7.59

120.26°

––

FIGURE 9.18 Root locus for uncompensated system shown in Figure 9.17

TABLE 9.3 Uncompensated and compensated system characteristic of Example 9.3

Uncompensated Simulation Compensated Simulation

Plant and compensator
K

sðsþ 4Þðsþ 6Þ
Kðsþ 3:006Þ
sðsþ 4Þðsþ 6Þ

Dominant poles �1:205 � j2:064 �3:613 � j6:193

K 43.35 47.45

z 0.504 0.504

vn 2.39 7.17

%OS 16 14.8 16 11.8

Ts 3.320 3.6 1.107 1.2

Tp 1.522 1.7 0.507 0.5

Kv 1.806 5.94

eð1Þ 0.554 0.168

Third pole �7:591 �2:775

Zero None �3:006

Comments Second-order
approx. OK

Pole-zero
not canceling

Virtual Experiment 9.1
PD Controller Design

Put theory into practice and
use root-locus to design a PD
controller for the Quanser Ball
and Beam using LabVIEW.
The Ball and Beam is an un-
stable system, similar to exo-
thermic chemical processes
that have to be stabilized to
avoid overheating.

Virtual experiments are found
on WileyPLUS.
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Now we proceed to compensate the system. First we find the location of the
compensated system’s dominant poles. In order to have a threefold reduction in the
settling time, the compensated system’s settling time will be one-third of Eq. (9.13).
The new settling time will be 1.107. Therefore, the real part of the compensated
system’s dominant, second-order pole is

s ¼ 4

Ts
¼ 4

1:107
¼ 3:613 ð9:14Þ

Figure 9.19 shows the designed dominant, second-order pole, with a real part equal
to �3:613 and an imaginary part of

vd ¼ 3:613 tanð180� � 120:26�Þ ¼ 6:193 ð9:15Þ
Next we design the location of the compensator zero. Input the uncompensated

system’s poles and zeros in the root locus program as well as the design point
�3:613 � j6:193 as a test point. The result is the sum of the angles to the design
point of all the poles and zeros of the compensated system except for those of
the compensator zero itself. The difference between the result obtained and
180� is the angular contribution required of the compensator zero. Using the
open-loop poles shown in Figure 9.19 and the test point, �3:613 þ j6:193, which
is the desired dominant second-order pole, we obtain the sum of the angles as
�275:6�. Hence, the angular contribution required from the compensator zero
for the test point to be on the root locus is þ275:6� � 180� ¼ 95:6�. The geom-
etry is shown in Figure 9.20, where we now must solve for �s, the location of
the compensator zero.

From the figure,

6:193

3:613 � s
¼ tanð180� � 95:6�Þ ð9:16Þ

Thus, s ¼ 3:006. The complete root locus for the compensated system is shown in
Figure 9.21.

Table 9.3 summarizes the results for both the uncompensated system and the
compensated system. For the uncompensated system, the estimate of the transient

FIGURE 9.19 Compensated
dominant pole superimposed
over the uncompensated root
locus for Example 9.3
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response is accurate since the third pole is at least five times the real part of the
dominant, second-order pair. The second-order approximation for the compen-
sated system, however, may be invalid because there is no approximate closed-
loop third-pole and zero cancellation between the closed-loop pole at �2:775 and
the closed-loop zero at �3:006. A simulation or a partial-fraction expansion of the
closed-loop response to compare the residue of the pole at �2:775 to the residues
of the dominant poles at �3:613 � j6:193 is required. The results of a simulation
are shown in the table’s second column for the uncompensated system and the
fourth column for the compensated system. The simulation results can be
obtained using MATLAB (discussed at the end of this example) or a program
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–3.613 + j6.193

= 0.504

K = 47.45

s-plane
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= Closed-loop pole
= Open-loop pole
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ω
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FIGURE 9.21 Root locus for
the compensated system of
Example 9.3
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FIGURE 9.20 Evaluating the
location of the compensating
zero for Example 9.3
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like the state-space step-response program described in Appendix H.1 at www.
wiley.com/college/nise. The percent overshoot differs by 3% between the un-
compensated and compensated systems, while there is approximately a threefold
improvement in speed as evaluated from the settling time.

The final results are displayed in Figure 9.22, which compares the un-
compensated system and the faster compensated system.

Students who are using MATLAB should now run ch9p1 in Appendix B.
MATLAB will be used to design a PD controller. You will input the
desired percent overshoot from the keyboard. MATLAB will plot the
root locus of the uncompensated system and the percent overshoot
line. You will interactively select the gain, after which MATLAB
will display the performance characteristics of the un-
compensated system and plot its step response. Using these char-
acteristics, you will input the desired settling time. MATLAB
will design the PD controller, enumerate its performance char-
acteristics, and plot a step response. This exercise solves Exam-
ple 9.3 using MATLAB.

Once we decide on the location of the compensating zero,
how do we implement the ideal derivative, or PD controller? The
ideal integral compensator that improved steady-state error was
implemented with a proportional-plus-integral (PI) controller.
The ideal derivative compensator used to improve the transient
response is implemented with a proportional-plus-derivative
(PD) controller. For example, in Figure 9.23 the transfer function
of the controller is

GcðsÞ ¼ K2sþK1 ¼ K2 sþK1

K2

� �
ð9:17Þ

Hence, K1=K2 is chosen to equal the negative of the compensator zero, and K2 is
chosen to contribute to the required loop-gain value. Later in the chapter, we will
study circuits that can be used to approximate differentiation and produce gain.

While the ideal derivative compensator can improve the transient response of
the system, it has two drawbacks. First, it requires an active circuit to perform the

FIGURE 9.22 Uncompensated
and compensated system step
responses of Example 9.3
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differentiation. Second, as previously mentioned, differentiation is a noisy process:
The level of the noise is low, but the frequency of the noise is high compared to the
signal. Differentiation of high frequencies can lead to large unwanted signals or
saturation of amplifiers and other components. The lead compensator is a passive
network used to overcome the disadvantages of ideal differentiation and still retain
the ability to improve the transient response.

Lead Compensation
Just as the active ideal integral compensator can be approximated with a passive lag
network, an active ideal derivative compensator can be approximated with a passive
lead compensator. When passive networks are used, a single zero cannot be
produced; rather, a compensator zero and a pole result. However, if the pole is
farther from the imaginary axis than the zero, the angular contribution of the
compensator is still positive and thus approximates an equivalent single zero. In
other words, the angular contribution of the compensator pole subtracts from the
angular contribution of the zero but does not preclude the use of the compensator to
improve transient response, since the net angular contribution is positive, just as for a
single PD controller zero.

The advantages of a passive lead network over an active PD controller are that
(1) no additional power supplies are required and (2) noise due to differentiation is
reduced. The disadvantage is that the additional pole does not reduce the number of
branches of the root locus that cross the imaginary axis into the right–half-plane,
while the addition of the single zero of the PD controller tends to reduce the number
of branches of the root locus that cross into the right half-plane.

Let us first look at the concept behind lead compensation. If we select a desired
dominant, second-order pole on the s-plane, the sum of the angles from the
uncompensated system’s poles and zeros to the design point can be found. The
difference between 180� and the sum of the angles must be the angular contribution
required of the compensator.

For example, looking at Figure 9.24, we see that

u2 � u1 � u3 � u4 þ u5 ¼ ð2kþ 1Þ180� ð9:18Þ
where ðu2 � u1Þ ¼ uc is the angular contribution of the lead compensator. From
Figure 9.24 we see that uc is the angle of a ray extending from the design point and
intersecting the real axis at the pole value and zero value of the compensator. Now
visualize this ray rotating about the desired closed-loop pole location and

TryIt 9.2

Use MATLAB, the Control Sys-
tem Toobox, and the following
steps to use SISOTOOL to per-
form the design of Example 9.3.

1. Type SISOTOOL in the
MATLAB Command
Window.

2. Select Import in the File
menu of the SISO Design
for SISO Design Task
Window.

3. In theData field for G, type
zpk([],[0,-4,-6],1)
and hit ENTER on the
keyboard. Click OK.

4. On the Edit menu choose
SISO Tool Preferences . . .
and select Zero/pole/gain:

under the Options tab.
Click OK.

5. Right-click on the root locus
white space and choose De-
signRequirements/New . . .

6. Choose Percent overshoot
and type in 16. Click OK.

7. Right-click on the root locus
white space and choose De-
signRequirements/New . . .

8. Choose Settling time and
click OK.

9. Drag the settling time ver-
tical line to the intersection
of the root locus and 16%
overshoot radial line.

10. Read the settling time at
the bottom of the window.

11. Drag the settling time ver-
tical line to a settling time
that is 1/3 of the value
found in Step 9.

12. Click on a redzero icon in the
menu bar. Place the zero on
the root locus real axis by
clickingagainontherealaxis.

13. Left-click on the real-axis
zero and drag it along the
real axis until the root locus
intersects the settling time
and percent overshoot lines.

14. Drag a red square along the
root locus until it is at the
intersection of the root lo-
cus, settling time line, and
the percent overshoot line.

15. Click the Compensator Ed-
itor tab of the Control and
Estimation Tools Manager
window to see the resulting
compensator, including the
gain.
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FIGURE 9.24 Geometry of lead compensation
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intersecting the real axis at the compensator pole and zero, as illustrated in Figure
9.25. We realize that an infinite number of lead compensators could be used to meet
the transient response requirement.

How do the possible lead compensators differ? The differences are in the
values of static error constants, the gain required to reach the design point on the
compensated root locus, the difficulty in justifying a second-order approximation
when the design is complete, and the ensuing transient response.

For design, we arbitrarily select either a lead compensator pole or zero and find
the angular contribution at the design point of this pole or zero along with the system’s
open-loop poles and zeros. The difference between this angle and 180� is the required
contribution of the remaining compensator pole or zero. Let us look at an example.

Example 9.4

Lead Compensator Design

PROBLEM: Design three lead compensators for the system of Figure 9.17 that will
reduce the settling time by a factor of 2 while maintaining 30% overshoot. Compare

the system characteristics between the three designs.

SOLUTION: First determine the characteristics of the
uncompensated system operating at 30% overshoot to
see what the uncompensated settling time is. Since 30%
overshoot is equivalent to a damping ratio of 0.358, we
search along the z ¼ 0:358 line for the uncompensated
dominant poles on the root locus, as shown in Figure
9.26. From the pole’s real part, we calculate the un-
compensated settling time as Ts ¼ 4=1:007 ¼ 3:972
seconds. The remaining characteristics of the un-
compensated system are summarized in Table 9.4.

Next we find the design point. A twofold reduc-
tion in settling time yields Ts ¼ 3:972=2 ¼ 1:986 sec-
onds, from which the real part of the desired pole
location is �zvn ¼ �4=Ts ¼ �2:014. The imaginary
part is vd ¼ �2:014 tanð110:98�Þ ¼ 5:252.

We continue by designing the lead compensator.
Arbitrarily assume a compensator zero at �5 on the
real axis as a possible solution. Using the root locus
program, sum the angles from both this zero and the

FIGURE 9.25 Three of the
infinite possible lead
compensator solutions
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FIGURE 9.26 Lead compensator design, showing evaluation
of uncompensated and compensated dominant poles for
Example 9.4
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uncompensated system’s poles and zeros, using the design point as a test point. The
resulting angle is �172:69�. The difference between this angle and 180� is the angular
contribution required from the compensator pole in order to place the design point on
the root locus. Hence, an angular contribution of �7:31� is required from the
compensator pole.

The geometry shown in Figure 9.27 is used to calculate the location of the
compensator pole. From the figure,

5:252

pc � 2:014
¼ tan 7:31� ð9:19Þ

from which the compensator pole is found to be

pc ¼ 42:96 ð9:20Þ
The compensated system root locus is sketched in Figure 9.28.

TABLE 9.4 Comparison of lead compensation designs for Example 9.4

Uncompensated Compensation a Compensation b Compensation c

Plant and
compensator

K

sðsþ 4Þðsþ 6Þ
Kðsþ 5Þ

sðsþ 4Þðsþ 6Þðsþ 42:96Þ
Kðsþ 4Þ

sðsþ 4Þðsþ 6Þðsþ 20:09Þ
Kðsþ 2Þ

sðsþ 4Þðsþ 6Þðsþ 8:971Þ

Dominant poles �1:007 � j2:627 �2:014 � j5:252 �2:014 � j5:252 �2:014 � j5:252

K 63.21 1423 698.1 345.6

z 0.358 0.358 0.358 0.358

vn 2.813 5.625 5.625 5.625

%OS� 30 (28) 30 (30.7) 30 (28.2) 30 (14.5)

Ts
� 3.972 (4) 1.986 (2) 1.986 (2) 1.986 (1.7)

Tp
� 1.196 (1.3) 0.598 (0.6) 0.598 (0.6) 0.598 (0.7)

Kv 2.634 6.9 5.791 3.21

eð1Þ 0.380 0.145 0.173 0.312

Other poles �7:986 �43.8, �5:134 �22:06 �13:3, �1:642

Zero None �5 None �2

Comments Second-order
approx. OK

Second-order
approx. OK

Second-order
approx. OK

No pole-zero
cancellation

�
Simulation results are shown in parentheses.

jω

s-plane

j5.252

–2.014–pc

Desired
compensated

dominant pole

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

7.31°
σ

FIGURE 9.27 s-plane picture
used to calculate the location
of the compensator pole for
Example 9.4
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FIGURE 9.28 Compensated
system root locus
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In order to justify our estimates of percent overshoot and settling time, we
must show that the second-order approximation is valid. To perform this validity
check, we search for the third and fourth closed-loop poles found beyond �42:96
and between �5 and �6 in Figure 9.28. Searching these regions for the gain equal to
that of the compensated dominant pole, 1423, we find that the third and fourth
poles are at �43:8 and �5:134, respectively. Since �43:8 is more than 20 times the
real part of the dominant pole, the effect of the third closed-loop pole is negligible.
Since the closed-loop pole at �5:134 is close to the zero at �5, we have pole-zero
cancellation, and the second-order approximation is valid.

All results for this design and two other designs, which place the compensator
zero arbitrarily at �2 and �4 and follow similar design techniques, are summarized
in Table 9.4. Each design should be verified by a simulation, which could consist of
using MATLAB (discussed at the end of this example) or the state-space model
and the step-response program discussed in Appendix H.1 at www.wiley.com/
college/nise. We have performed a simulation for this design problem, and the
results are shown by parenthetical entries next to the estimated values in the table.
The only design that disagrees with the simulation is the case where the compen-
sator zero is at �2. For this case the closed-loop pole and zero do not cancel.

A sketch of the root locus, which you should generate, shows why the effect of
the zero is pronounced, causing the response to be different from that predicted.
Placing the zero to the right of the pole at �4 creates a portion of the root locus that
is between the origin and the zero. In other words, there is a closed-loop pole closer
to the origin than the dominant poles, with little chance of pole-zero cancellation
except at high gain. Thus, a quick sketch of the root locus gives us information from
which we can make better design decisions. For this example, we want to place the
zero on, or to the left of, the pole at �4, which gives a better chance for pole-zero
cancellation and for a higher-order pole that is to the left of the dominant poles and
subsequently faster. This is verified by the fact that our results show good second-
order approximations for the cases where the zero was placed at �4 and �5. Again,
decisions about where to place the zero are based on simple rules of thumb and
must be verified by simulations at the end of the design.

Let us now summarize the results shown in Table 9.4. First we notice
differences in the following:

1. The position of the arbitrarily selected zero

2. The amount of improvement in the steady-state error

3. The amount of required gain, K

4. The position of the third and fourth poles and their relative effect upon the
second-order approximation. This effect is measured by their distance from the
dominant poles or the degree of cancellation with the closed-loop zero.

Once a simulation verifies desired performance, the choice of compensation
can be based upon the amount of gain required or the improvement in steady-state
error that can be obtained without a lag compensator.

The results of Table 9.4 are supported by simulations of the step response,
shown in Figure 9.29 for the uncompensated system and the three lead compensa-
tion solutions.

Students who are using MATLAB should now run ch9p2 in Appendix B.
MATLAB will be used to design a lead compensator. You will input
the desired percent overshoot from the keyboard. MATLAB
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will plot the root locus of the uncompensated system and the
percent overshoot line. You will interactively select the gain,
after which MATLAB will display the performance characteris-
tics of the uncompensated system and plot its step response.
Using these characteristics,you will input the desired set-
tling time and a zero value for the lead compensator.You will
then interactively select a value for the compensator pole.
MATLAB will respond with a root locus.You can then continue
selecting pole values until the root locus goes through the
desired point.MATLAB will display the lead compensator,enu-
merate its performance characteristics,and plot a step re-
sponse.This exercise solves Example 9.4 using MATLAB.

Skill-Assessment Exercise 9.2

PROBLEM: A unity feedback system with the forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 15% overshoot. Do the
following:

a. Evaluate the settling time.

b. Design a lead compensator to decrease the settling time by three times.
Choose the compensator’s zero to be at �10.

ANSWERS:

a. Ts ¼ 1:143 s

b. GleadðsÞ ¼ sþ 10

sþ 25:52
; K ¼ 476:3

The complete solution is at www.wiley.com/college/nise.

Compensation c
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t)

Time (seconds)
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FIGURE 9.29 Uncompensated
system and lead compensation
responses for Example 9.4
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9.4 Improving Steady-State Error and Transient Response

We now combine the design techniques covered in Sections 9.2 and 9.3 to obtain
improvement in steady-state error and transient response independently. Basically,
we first improve the transient response by using the methods of Section 9.3. Then we
improve the steady-state error of this compensated system by applying the methods
of Section 9.2. A disadvantage of this approach is the slight decrease in the speed of
the response when the steady-state error is improved.

As an alternative, we can improve the steady-state error first and then follow
with the design to improve the transient response. A disadvantage of this approach is
that the improvement in transient response in some cases yields deterioration in the
improvement of the steady-state error, which was designed first. In other cases,
the improvement in transient response yields further improvement in steady-state
errors. Thus, a system can be overdesigned with respect to steady-state errors.
Overdesign is usually not a problem unless it affects cost or produces other design
problems. In this textbook, we first design for transient response and then design for
steady-state error.

The design can use either active or passive compensators, as previously
described. If we design an active PD controller followed by an active PI controller,
the resulting compensator is called a proportional-plus-integral-plus-derivative
(PID) controller. If we first design a passive lead compensator and then design a
passive lag compensator, the resulting compensator is called a lag-lead compensator.

PID Controller Design
A PID controller is shown in Figure 9.30. Its transfer function is

GcðsÞ ¼ K1 þK2

s
þK3s ¼ K1sþK2 þK3s2

s
¼

K3 s2 þK1

K3
sþK2

K3

� �

s
ð9:21Þ

which has two zeros plus a pole at the origin. One zero and the pole at the origin can
be designed as the ideal integral compensator; the other zero can be designed as the
ideal derivative compensator.

The design technique, which is demonstrated in Example 9.5, consists of the
following steps:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the PD controller to meet the transient response specifications. The
design includes the zero location and the loop gain.

FIGURE 9.30 PID controller
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3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Design the PI controller to yield the required steady-state error.

6. Determine the gains, K1, K2, and K3, in Figure 9.30.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if simulation shows that requirements have not been met.

Example 9.5

PID Controller Design

PROBLEM: Given the system of Figure 9.31, design a PID
controller so that the system can operate with a peak time
that is two-thirds that of the uncompensated system at 20%
overshoot and with zero steady-state error for a step input.

SOLUTION: Note that our solution follows the eight-step pro-
cedure described earlier.

Step 1 Let us first evaluate the uncompensated system operating at 20% over-
shoot. Searching along the 20% overshoot line ðz ¼ 0:456Þ in Figure 9.32,
we find the dominant poles to be �5:415 � j10:57 with a gain of 121.5. A
third pole, which exists at �8:169, is found by searching the region

K(s + 8)

(s + 3)(s + 6)(s + 10)

R(s) C(s)

–

+ E(s)

FIGURE 9.31 Uncompensated feedback control
system for Example 9.5
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FIGURE 9.32 Root locus for the uncompensated system of Example 9.5
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between�8 and�10 for a gain equivalent to that at the dominant poles. The
complete performance of the uncompensated system is shown in the first
column of Table 9.5, where we compare the calculated values to those
obtained through simulation (Figure 9.35). We estimate that the un-
compensated system has a peak time of 0.297 second at 20% overshoot.

Step 2 To compensate the system to reduce the peak time to two-thirds of that of the
uncompensated system, we must first find the compensated system’s domi-
nant pole location. The imaginary part of the compensated dominant pole is

vd ¼ p

Tp
¼ p

ð2=3Þð0:297Þ ¼ 15:87 ð9:22Þ

Thus, the real part of the compensated dominant pole is

s ¼ vd

tan 117:13� ¼ �8:13 ð9:23Þ
Next we design the compensator. Using the geometry shown in Figure 9.33,

we calculate the compensating zero’s location. Using the root locus program,
we find the sum of angles from the uncompensated system’s poles and zeros to
the desired compensated dominant pole to be�198:37�. Thus, the contribution
required from the compensator zero is 198:37� � 180� ¼ 18:37�. Assume that
the compensator zero is located at �zc, as shown in Figure 9.33. Since

15:87

zc � 8:13
¼ tan 18:37� ð9:24Þ

then

zc ¼ 55:92 ð9:25Þ
Thus, the PD controller is

GPDðsÞ ¼ ðsþ 55:92Þ ð9:26Þ

TABLE 9.5 Predicted characteristics of uncompensated, PD-, and PID-compensated systems of Example 9.5

Uncompensated PD-compensated PID-compensated

Plant and compensator
Kðsþ 8Þ

ðsþ 3Þðsþ 6Þðsþ 10Þ
Kðsþ 8Þðsþ 55:92Þ
ðsþ 3Þðsþ 6Þðsþ 10Þ

Kðsþ 8Þðsþ 55:92Þðsþ 0:5Þ
ðsþ 3Þðsþ 6Þðsþ 10Þs

Dominant poles �5:415 � j10:57 �8:13 � j15:87 �7:516 � j14:67

K 121.5 5.34 4.6

z 0.456 0.456 0.456

vn 11.88 17.83 16.49

%OS 20 20 20

Ts 0.739 0.492 0.532

Tp 0.297 0.198 0.214

Kp 5.4 13.27 1
eð1Þ 0.156 0.070 0

Other poles �8:169 �8:079 �8:099, �0:468

Zeros �8 �8, �55:92 �8, �55:92, �0:5

Comments Second-order
approx. OK

Second-order
approx. OK

Zeros at �55:92
and �0:5 not canceled

–zc
–8.13

j15.87

s-plane

σ

PD-compensated
dominant pole

ωj

Note: This figure is not drawn to scale.

 = Closed-loop pole

18.37°

FIGURE 9.33 Calculating the
PD compensator zero for
Example 9.5
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The complete root locus for the PD-compensated system is sketched in
Figure 9.34. Using a root locus program, the gain at the design point is 5.34.
Complete specifications for ideal derivative compensation are shown in
the third column of Table 9.5.

Steps 3 and 4 We simulate the PD-compensated system, as shown in Figure 9.35.
We see the reduction in peak time and the improvement in steady-state
error over the uncompensated system.

Step 5 After we design the PD controller, we design the ideal integral compen-
sator to reduce the steady-state error to zero for a step input. Any ideal
integral compensator zero will work, as long as the zero is placed close to
the origin. Choosing the ideal integral compensator to be

GPIðsÞ ¼ sþ 0:5

s
ð9:27Þ

–10 –8 –6 –3 0

117.13°

j

K = 5.34

ζ = 0.456

–55.92
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–8.13 + j15.87

–106

s-plane

PD-compensated
dominant pole

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

FIGURE 9.34 Root locus for PD-compensated system of Example 9.5
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we sketch the root locus for the PID-compensated system, as shown in
Figure 9.36. Searching the 0.456 damping ratio line, we find the dominant,
second-order poles to be �7:516 � j14:67, with an associated gain of 4.6.
The remaining characteristics for the PID-compensated system are
summarized in the fourth column of Table 9.5.

Step 6 Now we determine the gains, K1,K2, and K3, in Figure 9.30. From Eqs.
(9.26) and (9.27), the product of the gain and the PID controller is

GPIDðsÞ ¼ Kðsþ 55:92Þðsþ 0:5Þ
s

¼ 4:6ðsþ 55:92Þðsþ 0:5Þ
s

¼ 4:6ðs2 þ 56:42sþ 27:96Þ
s

ð9:28Þ

Matching Eqs. (9.21) and (9.28), K1 ¼ 259:5, K2 ¼ 128:6, and K3 ¼ 4:6

Steps 7 and 8 Returning to Figure 9.35, we summarize the results of our design. PD
compensation improved the transient response by decreasing the time re-
quired to reach the first peak as well as yielding some improvement in the
steady-state error. The complete PID controller further improved the steady-
state error without appreciably changing the transient response designed with
the PD controller. As we have mentioned before, the PID controller exhibits a
slower response, reaching the final value of unity at approximately 3 seconds. If
this is undesirable, the speed of the system must be increased by redesigning
the ideal derivative compensator or moving the PI controller zero farther from
the origin. Simulation plays an important role in this type of design since our
derived equation for settling time is not applicable for this part of the response,
where there is a slow correction of the steady-state error.

–10 –8 –6 –3 0

117.13°

–0.5

s-plane

j

K = 4.6

ζ = 0.456

–55.92

ω

σ

–7.516 + j14.67

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

PID-compensated
dominant pole

–106

FIGURE 9.36 Root locus for PID-compensated system of Example 9.5
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Lag-Lead Compensator Design
In the previous example, we serially combined the concepts of ideal derivative and
ideal integral compensation to arrive at the design of a PID controller that improved
both the transient response and the steady-state error performance. In the next
example, we improve both transient response and the steady-state error by using a
lead compensator and a lag compensator rather than the ideal PID. Our compensa-
tor is called a lag-lead compensator.

We first design the lead compensator to improve the transient response. Next
we evaluate the improvement in steady-state error still required. Finally, we design
the lag compensator to meet the steady-state error requirement. Later in the chapter
we show circuit designs for the passive network. The following steps summarize the
design procedure:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the lead compensator to meet the transient response specifications. The
design includes the zero location, pole location, and the loop gain.

3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Evaluate the steady-state error performance for the lead-compensated system to
determine how much more improvement in steady-state error is required.

6. Design the lag compensator to yield the required steady-state error.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if the simulation shows that requirements have not been met.

Example 9.6

Lag-Lead Compensator Design

PROBLEM: Design a lag-lead compensator for the system of Fig-
ure 9.37 so that the system will operate with 20% overshoot and a
twofold reduction in settling time. Further, the compensated system
will exhibit a tenfold improvement in steady-state error for a ramp
input.

SOLUTION: Again, our solution follows the steps just described.

Step 1 First we evaluate the performance of the uncompensated sys-
tem. Searching along the 20% overshoot line ðz ¼ 0:456Þ in
Figure 9.38,we findthe dominant polesat�1:794 � j3:501, withagainof 192.1.
The performance of the uncompensated system is summarized in Table 9.6.

Step 2 Next we begin the lead compensator design by selecting the location of the
compensated system’s dominant poles. In order to realize a twofold reduction
in settling time, the real part of the dominant pole must be increased by a factor
of 2, since the settling time is inversely proportional to the real part. Thus,

�zvn ¼ �2ð1:794Þ ¼ �3:588 ð9:29Þ
The imaginary part of the design point is

vd ¼ zvn tan 117:13� ¼ 3:588 tan 117:13� ¼ 7:003 ð9:30Þ

K
s(s + 6)(s + 10)

E(s)R(s) C(s)

–

+

FIGURE 9.37 Uncompensated system for
Example 9.6
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Now we design the lead compensator. Arbitrarily select a location
for the lead compensator zero. For this example, we select the location of
the compensator zero coincident with the open-loop pole at �6. This
choice will eliminate a zero and leave the lead-compensated system with
three poles, the same number that the uncompensated system has.

We complete the design by finding the location of the compensator
pole. Using the root locus program, sum the angles to the design point from
the uncompensated system’s poles and zeros and the compensator zero
and get �164:65�. The difference between 180� and this quantity is the
angular contribution required from the compensator pole, or �15:35�.
Using the geometry shown in Figure 9.39,

7:003

pc � 3:588
¼ tan 15:35� ð9:31Þ

from which the location of the compensator pole, pc, is found to be �29:1.

FIGURE 9.38 Root locus for
uncompensated system of
Example 9.6
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117.13°

jω
ζ = 0.456
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s-plane

–12.41

K = 192.1
–1.794 + j3.501

j1

j2

j3

j4

 = Closed-loop pole
 = Open-loop pole

Uncompensated dominant pole

TABLE 9.6 Predicted characteristics of uncompensated, lead-compensated, and lag-lead-compensated systems of
Example 9.6

Uncompensated Lead-compensated Lag-lead-compensated

Plant and compensator
K

sðsþ 6Þðsþ 10Þ
K

sðsþ 10Þðsþ 29:1Þ
Kðsþ 0:04713Þ

sðsþ 10Þðsþ 29:1Þðsþ 0:01Þ
Dominant poles �1:794 � j3:501 �3:588 � j7:003 �3:574 � j6:976

K 192.1 1977 1971

z 0.456 0.456 0.456

vn 3.934 7.869 7.838

%OS 20 20 20

Ts 2.230 1.115 1.119

Tp 0.897 0.449 0.450

Kv 3.202 6.794 31.92

eð1Þ 0.312 0.147 0.0313

Third pole �12:41 �31:92 �31:91, �0:0474

Zero None None �0:04713

Comments Second-order approx. OK Second-order approx. OK Second-order approx. OK
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The complete root locus for the lead-compensated system is sketched
in Figure 9.40. The gain setting at the design point is found to be 1977.

Steps 3 and 4 Check the design with a simulation. (The result for the lead-
compensated system is shown in Figure 9.42 and is satisfactory.)

Step 5 Continue by designing the lag compensator to improve the steady-state
error. Since the uncompensated system’s open-loop transfer function is

GðsÞ ¼ 192:1

sðsþ 6Þðsþ 10Þ ð9:32Þ

the static error constant, Kv, which is inversely proportional to the steady-
state error, is 3.201. Since the open-loop transfer function of the lead-
compensated system is

GLCðsÞ ¼ 1977

sðsþ 10Þðsþ 29:1Þ ð9:33Þ

the static error constant, Kv, which is inversely proportional to the steady-
state error, is 6.794. Thus, the addition of lead compensation has improved
the steady-state error by a factor of 2.122. Since the requirements of the
problem specified a tenfold improvement, the lag compensator must be
designed to improve the steady-state error by a factor of 4.713 ð10=2:122 ¼
4:713Þ over the lead-compensated system.

j7.003

–3.588–pc

σ

ωj

s-plane

15.35°

 = Closed-loop pole
 = Open-loop pole

FIGURE 9.39 Evaluating the compensator pole for Example 9.6

–33 –30 –27 –24 –21 –18 –15 –12 –9 –6 –3 0

117.13°

jω
= 0.456
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j3
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Compensated dominant pole

ζ

FIGURE 9.40 Root locus for lead-compensated system of Example 9.6
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Step 6 We arbitrarily choose the lag compensator pole at 0.01, which then places
the lag compensator zero at 0.04713, yielding

GlagðsÞ ¼ ðsþ 0:04713Þ
ðsþ 0:01Þ ð9:34Þ

as the lag compensator. The lag-lead-compensated system’s open-loop
transfer function is

GLLCðsÞ ¼ Kðsþ 0:04713Þ
sðsþ 10Þðsþ 29:1Þðsþ 0:01Þ ð9:35Þ

where the uncompensated system pole at �6 canceled the lead compen-
sator zero at �6. By drawing the complete root locus for the lag-lead-
compensated system and by searching along the 0.456 damping ratio line,
we find the dominant, closed-loop poles to be at �3:574 � j6:976, with a
gain of 1971. The lag-lead-compensated root locus is shown in Figure 9.41.

A summary of our design is shown in Table 9.6. Notice that the
lag-lead compensation has indeed increased the speed of the system, as
witnessed by the settling time or the peak time. The steady-state error
for a ramp input has also decreased by about 10 times, as seen
from eð1Þ.

Step 7 The final proof of our designs is shown by the simulations of Figures 9.42
and 9.43. The improvement in the transient response is shown in Figure
9.42, where we see the peak time occurring sooner in the lag-lead-
compensated system. Improvement in the steady-state error for a ramp
input is seen in Figure 9.43, where each step of our design yields more
improvement. The improvement for the lead-compensated system is
shown in Figure 9.43(a), and the final improvement due to the addition
of the lag is shown in Figure 9.43(b).

ζ = 0.456

σ

s-plane

–29.1

–31.91

–10 0

jω

–0.0474 –0.01

0.04713

K = 1971
–3.574 + j6.976

117.13°

Compensated
dominant pole

 = Closed-loop pole
 = Open-loop pole  

Note: This figure is not drawn to scale.

FIGURE 9.41 Root locus for lag-lead-compensated system of Example 9.6
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In the previous example, we canceled the system pole at �6 with the lead
compensator zero. The design technique is the same if you place the lead compen-
sator zero at a different location. Placing a zero at a different location and not
canceling the open-loop pole yields a system with one more pole than the example.
This increased complexity could make it more difficult to justify a second-order
approximation. In any case, simulations should be used at each step to verify
performance.

Uncompensated

0

1.25

1.00

0.75

0.50

0.25

0
0 1 4 5

c(
t)

2 3

Lead- and lag-lead-compensated

Time (seconds)

FIGURE 9.42 Improvement in
step response for lag-lead-
compensated system of
Example 9.6
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FIGURE 9.43 Improvement
in ramp response error for
the system of Example 9.6:
a. lead-compensated;
b. lag-lead-compensated
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Notch Filter
If a plant, such as a mechanical system, has high-frequency vibration modes, then a
desired closed-loop response may be difficult to obtain. These high-frequency
vibration modes can be modeled as part of the plant’s transfer function by pairs
of complex poles near the imaginary axis. In a closed-loop configuration, these poles
can move closer to the imaginary axis or even cross into the right half-plane, as
shown in Figure 9.44(a). Instability or high-frequency oscillations superimposed
over the desired response can result (see Figure 9.44(b)).

One way of eliminating the high-frequency oscillations is to cascade a notch
filter2 with the plant (Kuo, 1995), as shown in Figure 9.44(c). The notch filter has

jω

σ

s-plane

Plant’s high-frequency poles
Plant’s poles

(a)

R
es

po
ns

e

Time

(b)

σ

s-plane

jω

(c)

jω

σ

s-plane

Notch filter zeros and
plant high-frequency poles

Plant’s poles

Notch filter poles

(d)

FIGURE9.44 a.Root locus before cascading notch filter;b. typical closed-loop step response before cascading notch filter; c.pole-
zero plot of a notch filter; d. root locus after cascading notch filter; (figure continues)

2 The name of this filter comes from the shape of its magnitude frequency response characteristics, which
shows a dip near the damped frequency of the high-frequency poles. Magnitude frequency response is
discussed in Chapter 10.
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9.4 Improving Steady-State Error and Transient Response 493

zeros close to the low-damping-ratio poles of the plant as well as two real poles.
Figure 9.44(d) shows that the root locus branch from the high-frequency poles now
goes a short distance from the high-frequency pole to the notch filter’s zero. The
high-frequency response will now be negligible because of the pole-zero cancellation
(see Figure 9.44(e)). Other cascade compensators can now be designed to yield a
desired response. The notch filter will be applied to Progressive Analysis and Design
Problem 55 near the end of this chapter.

Skill-Assessment Exercise 9.3

PROBLEM: A unity feedback system with forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 20% overshoot. Do the
following:

a. Evaluate the settling time.

b. Evaluate the steady-state error for a unit ramp input.

c. Design a lag-lead compensator to decrease the settling time by 2 times and
decrease the steady-state error for a unit ramp input by 10 times. Place the
lead zero at �3.

ANSWERS:

a. Ts ¼ 1:143 s

b. erampð1Þ ¼ 0:1189

c. GcðsÞ ¼ ðsþ 3Þðsþ 0:092Þ
ðsþ 9:61Þðsþ 0:01Þ ; K ¼ 205:4

The complete solution is at www.wiley.com/college/nise.

Before concluding this section, let us briefly summarize our discussion of
cascade compensation. In Sections 9.2, 9.3, and 9.4, we used cascade compensators to
improve transient response and steady-state error. Table 9.7 itemizes the types,
functions, and characteristics of these compensators.

R
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Time

(e)

FIGURE 9.44 (Continued)
e. closed-loop step response
after cascading notch filter

www.wiley.com/college/nise
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TABLE 9.7 Types of cascade compensators

Function Compensator Transfer function Characteristics

Improve steady-state error PI K
sþ zc

s
1. Increases system type.

2. Error becomes zero.

3. Zero at �zc is small and negative.

4. Active circuits are required to implement.

Improve steady-state error Lag K
sþ zc
sþ pc

1. Error is improved but not driven to zero.

2. Pole at �pc is small and negative.

3. Zero at �zc is close to, and to the left of, the
pole at �pc.

4. Active circuits are not required to implement.

Improve transient response PD Kðsþ zcÞ 1. Zero at �zc is selected to put design point on
root locus.

2. Active circuits are required to implement.

3. Can cause noise and saturation; implement
with rate feedback or with a pole (lead).

Improve transient response Lead K
sþ zc
sþ pc

1. Zero at �zc and pole at �pc are selected to put
design point on root locus.

2. Pole at �pc is more negative than zero at �zc.

3. Active circuits are not required to implement.

Improve steady-state error and
transient response

PID K
ðsþ zlagÞðsþ zleadÞ

s
1. Lag zero at �zlag and pole at origin improve

steady-state error.

2. Lead zero at �zlead improves transient
response.

3. Lag zero at �zlag is close to, and to the left of,
the origin.

4. Lead zero at �zlead is selected to put design
point on root locus.

5. Active circuits required to implement.

6. Can cause noise and saturation; implement
with rate feedback or with an additional pole.

Improve steady-state error and
transient response

Lag-lead K
ðsþ zlagÞðsþ zleadÞ
ðsþ plagÞðsþ pleadÞ

1. Lag pole at �plag and lag zero at �zlag are used
to improve steady-state error.

2. Lead pole at �plead and lead zero at �zlead are
used to improve transient response.

3. Lag pole at �plag is small and negative.

4. Lag zero at �zlag is close to, and to the left of,
lag pole at �plag.

5. Lead zero at �zlead and lead pole at �plead are
selected to put design point on root locus.

6. Lead pole at �plead is more negative than lead
zero at �zlead.

7. Active circuits are not required to implement.
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9.5 Feedback Compensation

In Section 9.4, we used cascade compensation as a way to improve transient response
and steady-state response independently. Cascading a compensator with the plant is
not the only way to reshape the root locus to intersect the closed-loop s-plane poles
that yield a desired transient response. Transfer functions designed to be placed in a
feedback path can also reshape the root locus. Figure 9.45 is a generic configuration
showing a compensator, Hc(s), placed in the minor loop of a feedback control
system. Other configurations arise if we consider K unity, G2(s) unity, or both unity.

The design procedures for feedback compensation can be more complicated
than for cascade compensation. On the other hand, feedback compensation can yield
faster responses. Thus, the engineer has the luxury of designing faster responses into
portions of a control loop in order to provide isolation. For example, the transient
response of the ailerons and rudder control systems of an aircraft can be designed
separately to be fast in order to reduce the effect of their dynamic response on the
steering control loop. Feedback compensation can be used in cases where noise
problems preclude the use of cascade compensation. Also, feedback compensation
may not require additional amplification, since the signal passing through the
compensator originates at the high-level output of the forward path and is delivered
to a low-level input in the forward path. For example, letK andG2(s) in Figure 9.45 be
unity. The input to the feedback compensator,KfHc(s), is from the high-level output of
G1(s), while the output ofKfHc(s) is one of the low-level inputs intoK1. Thus, there is a
reduction in level through KfHc(s), and amplification is usually not required.

A popular feedback compensator is a rate sensor that acts as a differentiator. In
aircraft and ship applications, the rate sensor can be a rate gyro that responds with an
output voltage proportional to the input angular velocity. In many other systems this
rate sensor is implemented with a tachometer. A tachometer is a voltage generator
that yields a voltage output proportional to input rotational speed. This compensator
can easily be geared to the position output of a system. Figure 9.46 is a position

R(s)
K

Minor loop

K1
C(s)

G1(s) G2(s)

  Hc (s)

–

+

–

+

Major loop

Kf
FIGURE 9.45 Generic control
system with feedback
compensation.

Inertia Motor

Input
potentiometerTachometer

Output
potentiometer

FIGURE 9.46 A position
control system that uses a
tachometer as a differentiator
in the feedback path. Can you
see the similarity between this
system and the schematic on
the front endpapers?
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control system showing the gearing of the tachometer to the motor. You can see the
input and output potentiometers as well as the motor and inertial load. The block
diagram representation of a tachometer is shown in Figure 9.47(a), and its typical
position within a control loop is shown in Figure 9.47(b).

While this section shows methods for designing systems using rate feedback, it
also sets the stage for compensation techniques in Chapter 12, where not only rate but
all states including position will be fed back for proper control system performance.

We now discuss design procedures. Typically, the design of feedback compen-
sation consists of finding the gains, such as K, K1, and Kf in Figure 9.45, after
establishing a dynamic form for Hc(s). There are two approaches. The first is similar
to cascade compensation. Assume a typical feedback system, where G(s) is the
forward path and H(s) is the feedback. Now consider that a root locus is plotted from
G(s)H(s). With cascade compensation we added poles and zeros to G(s). With
feedback compensation, poles and zeros are added via H(s).

With the second approach, we design a specified performance for the minor
loop, shown in Figure 9.45, followed by a design of the major loop. Thus, the minor
loop, such as ailerons on an aircraft, can be designed with its own performance
specifications and operate within the major loop.

Approach 1
The first approach consists of reducing Figure 9.45 to Figure 9.48 by pushing K
to the right past the summing junction, pushing G2(s) to the left past the pickoff
point, and then adding the two feedback paths. Figure 9.48 shows that the loop
gain, G(s)H(s), is

GðsÞHðsÞ ¼ K1G1ðsÞ½KfHcðsÞ þKG2ðsÞ	 ð9:36Þ
Without feedback, KfHc(s), the loop gain is

GðsÞHðsÞ ¼ KK1G1ðsÞG2ðsÞ ð9:37Þ
Thus, the effect of adding feedback is to replace the poles and zeros of G2(s) with the
poles and zeros of ½KfHcðsÞ þKG2ðsÞ	. Hence, this method is similar to cascade
compensation in that we add new poles and zeros via H(s) to reshape the root locus
to go through the design point. However, one must remember that zeros of the
equivalent feedback shown in Figure 9.48, HðsÞ ¼ ½KfHcðsÞ þKG2ðsÞ	=KG2ðsÞ, are
not closed-loop zeros.

R(s)
K

Tachometer

C(s)

θ i(s)

(a)

(b)

Vo(s)

K1 G1(s)
–

+

–

+

Kf s

Kf s

FIGURE 9.47 a. Transfer function of a tachometer; b. tachometer feed-back compensation

KK1G1(s)G2(s)

KfHc(s) + KG2(s)

KG2(s)

R(s) C(s)

–

+

FIGURE 9.48 Equivalent block
diagram of Figure 9.45
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For example, if G2ðsÞ ¼ 1 and the minor-loop feedback, KfHc(s), is a rate
sensor, KfHcðsÞ ¼ Kf s, then from Eq. (9.36) the loop gain is

GðsÞHðsÞ ¼ KfK1G1ðsÞ sþ K

Kf

� �
ð9:38Þ

Thus, a zero at �K=Kf is added to the existing open-loop poles and zeros. This zero
reshapes the root locus to go through the desired design point. A final adjustment of
the gain, K1, yields the desired response. Again, you should verify that this zero is not
a closed-loop zero. Let us look at a numerical example.

Example 9.7

Compensating Zero via Rate Feedback

PROBLEM: Given the system of Figure 9.49(a), design rate feedback compensa-
tion, as shown in Figure 9.49(b), to reduce the settling time by a factor of 4 while
continuing to operate the system with 20% overshoot.

SOLUTION: First design a PD compensator. For the uncompensated system, search
along the 20% overshoot line ðz ¼ 0:456Þ and find that the dominant poles are at
�1:809 � j3:531, as shown in Figure 9.50. The estimated specifications for the

–

+ K1

s(s + 5)(s + 15)

E(s) C(s)R(s)

(a)

(b)

(c)

(d)
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+
s(s + 5)(s + 15)

C(s)R(s)

–

+
s(s + 5)(s + 15)

C(s)R(s)

–

+
s[s2 + 20s + (75 + K1Kf)]

E(s) C(s)R(s)

Kf s

–

+
1

Kf  s +    1Kf
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K1

FIGURE 9.49 a. System for Example 9.7; b. system with rate
feedback compensation; c. equivalent compensated system;
d. equivalent compensated system showing unity feedback
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FIGURE 9.50 Root locus for uncompensated system of
Example 9.7
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uncompensated system are shown in Table 9.8, and the step response is shown in
Figure 9.51. The settling time is 2.21 seconds and must be reduced by a factor of 4
to 0.55 second.

Next determine the location of the dominant poles for the compensated
system. To achieve a fourfold decrease in the settling time, the real part of the pole
must be increased by a factor of 4. Thus, the compensated pole has a real part of
4ð�1:809Þ ¼ �7:236. The imaginary part is then

vd ¼ �7:236 tan 117:13� ¼ 14:12 ð9:39Þ
where 117:13� is the angle of the 20% overshoot line.

0 0.5 1.0 1.5 2.0 2.5
Time (seconds)

0.2

0

0.4

0.6

0.8

1.0

1.2

c(
t)

3.0

FIGURE 9.51 Step response for uncompensated system of Example 9.7

TABLE 9.8 Predicted characteristics of uncompensated and compensated systems of Example 9.7

Uncompensated Compensated

Plant and compensator
K1

sðsþ 5Þðsþ 15Þ
K1

sðsþ 5Þðsþ 15Þ
Feedback 1 0:185ðsþ 5:42Þ
Dominant poles �1:809 � j3:531 �7:236 � j14:12

K1 257.8 1388

z 0.456 0.456

vn 3.97 15.87

%OS 20 20

Ts 2.21 0.55

Tp 0.89 0.22

Kv 3.44 4.18

eð1Þ (ramp) 0.29 0.24

Other poles �16:4 �5:53

Zero None None

Comments Second-order approx. OK Simulate
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Using the compensated dominant pole position of
�7:236 � j14:12, we sum the angles from the uncompensated sys-
tem’s poles and obtain �277:33�. This angle requires a compensator
zero contribution of þ97:33� to yield 180� at the design point. The
geometry shown in Figure 9.52 leads to the calculation of the
compensator’s zero location. Hence,

14:12

7:236 � zc ¼ tanð180� � 97:33�Þ ð9:40Þ

from which zc ¼ 5:42.
The root locus for the equivalent compensated system of Figure

9.49(c) is shown in Figure 9.53. The gain at the design point, which is
K1Kf from Figure 9.49(c), is found to be 256.7. Since Kf is the
reciprocal of the compensator zero, Kf ¼ 0:185. Thus, K1 ¼ 1388.

In order to evaluate the steady-state error characteristic, Kv is
found from Figure 9.49(d) to be

Kv ¼ K1

75 þK1Kf
¼ 4:18 ð9:41Þ

Predicted performance for the compensated system is shown in
Table 9.8. Notice that the higher-order pole is not far enough away
from the dominant poles and thus cannot be neglected. Further, from
Figure 9.49(d), we see that the closed-loop transfer function is

TðsÞ ¼ GðsÞ
1 þGðsÞHðsÞ ¼

K1

s3 þ 20s2 þ ð75 þK1Kf ÞsþK1
ð9:42Þ

Thus, as predicted, the open-loop zero is not a closed-loop zero, and
there is no pole-zero cancellation. Hence, the design must be checked
by simulation.

The results of the simulation are shown in Figure 9.54 and show
an over-damped response with a settling time of 0.75 second, com-
pared to the uncompensated system’s settling time of approximately

–7.236
σ

–zc

j14.12

Compensator
zero

jω

s-plane
97.33°

    = Closed-loop pole

FIGURE 9.52 Finding the compensator zero
in Example 9.7

0.5

0

1.0

c(
t)

0 0.5 1.0 1.5 2.0 2.5
Time (seconds)

3.0

FIGURE 9.54 Step response for the compensated system of Example 9.7

–j20

–j10

j10

j20
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j

s-plane

–7.236 + j14.12

K1 = 1388

117.13°

= 0.456

    = Closed-loop pole
    = Open-loop pole

σ

ω

ζ

FIGURE 9.53 Root locus for the
compensated system of Example 9.7
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2.2 seconds. Although not meeting the design requirements, the response still
represents an improvement over the uncompensated system of Figure 9.51.
Typically, less overshoot is acceptable. The system should be redesigned for
further reduction in settling time.

You may want to do Problem 8 at the end of this chapter, where you can
repeat this example using PD cascade compensation. You will see that the
compensator zero for cascade compensation is a closed-loop zero, yielding the
possibility of pole-zero cancellation. However, PD compensation is usually noisy
and not always practical.

Approach 2
The second approach allows us to use feedback compensation to design a minor
loop’s transient response separately from the closed-loop system response. In the
case of an aircraft, the minor loop may control the position of the aerosurfaces, while
the entire closed-loop system may control the entire aircraft’s pitch angle.

We will see that the minor loop of Figure 9.45 basically represents a forward-
path transfer function whose poles can be adjusted with the minor-loop gain. These
poles then become the open-loop poles for the entire control system. In other words,
rather than reshaping the root locus with additional poles and zeros, as in cascade
compensation, we can actually change the plant’s poles through a gain adjustment.
Finally, the closed-loop poles are set by the loop gain, as in cascade compensation.

Example 9.8

Minor-Loop Feedback Compensation

PROBLEM: For the system of Figure 9.55(a), design minor-loop feedback com-
pensation, as shown in Figure 9.55(b), to yield a damping ratio of 0.8 for the minor
loop and a damping ratio of 0.6 for the closed-loop system.

s(s + 5)(s + 15)

R(s) +

–
K

+

–

C(s)1
s(s + 5)(s + 15)

(a)

(b)

R(s) + C(s)KE(s)

Kf s

–

FIGURE 9.55 a. Uncompensated system and b. feedback-compensated system for
Example 9.8
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SOLUTION: The minor loop is defined as the loop containing the plant,
1=½sðsþ 5Þðsþ 15Þ	, and the feedback compensator, Kf s. The value of Kf will be
adjusted to set the location of the minor-loop poles, and then K will be adjusted to
yield the desired closed-loop response.

The transfer function of the minor loop, GML(S), is

GMLðsÞ ¼ 1

s½s2 þ 20sþ ð75 þKf Þ	 ð9:43Þ

The poles of GML(s) can be found analytically or via the root locus. The root locus
for the minor loop, where Kf s=½sðsþ 5Þðsþ 15Þ	 is the open-loop transfer function,
is shown in Figure 9.56. Since the zero at the origin comes from the feedback
transfer function of the minor loop, this zero is not a zero of the closed-loop transfer
function of the minor loop. Hence, the pole at the origin appears to remain
stationary, and there is no pole-zero cancellation at the origin. Eq. (9.43) also
shows this phenomenon. We see a stationary pole at the origin and two complex
poles that change with gain. Notice that the compensator gain, Kf, varies the
natural frequency, vn, of the minor-loop poles as seen from Eq. (9.43). Since the
real parts of the complex poles are constant at zvn ¼ �10, the damping ratio must
also be varying to keep 2zvn ¼ 20, a constant. Drawing the z ¼ 0:8 line in Figure
9.56 yields the complex poles at �10 � j7:5. The gain, Kf, which equals 81.25, places
the minor-loop poles in a position to meet the specifications. The poles just found,
�10 � j7:5, as well as the pole at the origin (Eq. (9.43)), act as open-loop poles that
generate a root locus for variations of the gain, K.

The final root locus for the system is shown in Figure 9.57. The z ¼ 0:6
damping ratio line is drawn and searched. The closed-loop complex poles are found
to be �4:535 � j6:046, with a required gain of 624.3. A third pole is at �10:93.

–j20

–j10

–20

j10

j20

= 0.8

j

10 20–15 –5 0

s-plane

–10 + j7.5
Kf = 81.25

 = Closed-loop pole (minor loop)
 = Open-loop pole

143.13°
σ

ω

ζ

–10

FIGURE 9.56 Root locus for
minor loop of Example 9.8

Virtual Experiment 9.2
Improving Transient

Response and
Steady-State Error

Using Rate Feedback
and PD Control

Put theory into practice and
design a compensator in
LabVIEW that controls the
ball position in the Quanser
Magnetic Levitation system.
Magnetic Levitation
technology is used for modern
transportation systems that
suspend, such as the high
speed Magnetic Levitation
train.

Virtual experiments are found
on WileyPLUS.
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The results are summarized in Table 9.9. We see that the compensated system,
although having the same damping ratio as the uncompensated system, is much
faster and also has a smaller steady-state error. The results, however, are predicted
results and must be simulated to verify percent overshoot, settling time, and peak
time, since the third pole is not far enough from the dominant poles. The step
response is shown in Figure 9.58 and closely matches the predicted performance.

FIGURE 9.57 Root locus for
closed-loop system of
Example 9.8

= 0.6ζ

jω

–20 –10 10 20

–j5

0

j15

j20

–j15

–j20

– 4.535 + j6.046
K = 624.3

 = Closed-loop pole
 = Open-loop pole

s-plane

126.87°
j5

–10.93

–j10

j10

σ

TABLE 9.9 Predicted characteristics of the uncompensated and compensated systems of
Example 9.8

Uncompensated Compensated

Plant and compensator
K1

sðsþ 5Þðsþ 15Þ
K

sðs2 þ 20sþ 156:25Þ
Feedback 1 1

Dominant poles �1:997 � j2:662 �4:535 � j6:046

K 177.3 624.3

z 0.6 0.6

vn 3.328 7.558

%OS 9.48 9.48

Ts 2 0.882

Tp 1.18 0.52

Kv 2.364 3.996

eð1Þ(ramp) 0.423 0.25

Other poles �16 �10:93

Zero None None

Comments Second-order approx. OK Simulate
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Skill-Assessment Exercise 9.4

PROBLEM: For the system of Figure 9.59, design minor-loop rate feedback com-
pensation to yield a damping ratio of 0.7 for the minor loop’s dominant poles and a
damping ratio of 0.5 for the closed-loop system’s dominant poles.

ANSWER: The system is configured similar to Figure 9.55(b) with Kf ¼ 77:42 and
K ¼ 626:3.

The complete solution is at www.wiley.com/college/nise.

Our discussion of compensation methods is now complete. We studied both
cascade and feedback compensation and compared and contrasted them. We are now
ready to show how to physically realize the controllers and compensators we designed.

9.6 Physical Realization of
Compensation

In this chapter, we derived compensation to improve transient response and steady-
state error in feedback control systems. Transfer functions of compensators used in
cascade with the plant or in the feedback path were derived. These compensators
were defined by their pole-zero configurations. They were either active PI, PD, or
PID controllers or passive lag, lead, or lag-lead compensators. In this section, we
show how to implement the active controllers and the passive compensators.

0
0

0.2 0.4 0.8 1.0 1.20.6
Time (seconds)

c(
t)

0.2

0.4

0.6

0.8

1.0

1.2

FIGURE 9.58 Step response simulation for Example 9.8

–
K

C(s)+R(s)

s(s + 7)(s + 10)
1

FIGURE 9.59 System for Skill-Assessment Exercise 9.4
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Active-Circuit Realization
In Chapter 2, we derived

VoðsÞ
ViðsÞ ¼ �Z2ðsÞ

Z1ðsÞ ð9:44Þ

as the transfer function of an inverting operational amplifier whose
configuration is repeated here in Figure 9.60. By judicious choice of Z1(s)
and Z2(s), this circuit can be used as a building block to implement the
compensators and controllers, such as PID controllers, discussed in this
chapter. Table 9.10 summarizes the realization of PI, PD, and PID
controllers as well as lag, lead, and lag-lead compensators using opera-
tional amplifiers. You can verify the table by using the methods of
Chapter 2 to find the impedances.

+

–

Z1(s)

Z2(s)

I1(s)

V1(s)
Vo(s)

Vi(s)

Ia(s)

I2(s)

FIGURE 9.60 Operational amplifier
configured for transfer function realization

TABLE 9.10 Active realization of controllers and compensators, using an operational amplifier

Function Z1ðsÞ Z2ðsÞ GcðsÞ ¼ � Z2ðsÞ
Z1ðsÞ

Gain
R1 R2

�R2

R1

Integration
R C

�
1

RC
s

Differentiation

C R

�RCs

PI controller
R1 CR2

�R2

R1

sþ 1

R2C

� �

s

PD controller

C

R1

R2

�R2C sþ 1

R1C

� �

PID controller

C1

R1

C2R2

� R2

R1
þ C1

C2

� �
þ R2C1sþ

1

R1C2

s

2
664

3
775

Lag compensation

C1

R1

C2

R2
�C1

C2

sþ 1

R1C1

� �

sþ 1

R2C2

� �

where R2C2 > R1C1

Lead compensation

C1

R1

C2

R2

�C1

C2

sþ 1

R1C1

� �

sþ 1

R2C2

� �

where R1C1 > R2C2

504 Chapter 9 Design via Root Locus



Apago PDF Enhancer

E1C09 11/03/2010 13:29:57 Page 505

Other compensators can be realized by cascading compensators shown in the
table. For example, a lag-lead compensator can be formed by cascading the lag
compensator with the lead compensator, as shown in Figure 9.61. As an example, let
us implement one of the controllers we designed earlier in the chapter.

Example 9.9

Implementing a PID Controller

PROBLEM: Implement the PID controller of Example 9.5.

SOLUTION: The transfer function of the PID controller is

GcðsÞ ¼ ðsþ 55:92Þðsþ 0:5Þ
s

ð9:45Þ

which can be put in the form

GcðsÞ ¼ sþ 56:42 þ 27:96

s
ð9:46Þ

Comparing the PID controller in Table 9.10 with Eq. (9.46), we obtain the following
three relationships:

R2

R1
þ C1

C2
¼ 56:42 ð9:47Þ

R2C1 ¼ 1 ð9:48Þ
and

1

R1C2
¼ 27:96 ð9:49Þ

Since there are four unknowns and three equations, we
arbitrarily select a practical value for one of the elements. Selecting
C2 ¼ 0:1 mF, the remaining values are found to be R1 ¼ 357:65 kV,
R2 ¼ 178;891 kV, and C1 ¼ 5:59 mF.

The complete circuit is shown in Figure 9.62, where the
circuit element values have been rounded off.

+

–
vi(t)

vo(t)

R1

C1

R3

C3

R2

C2

Lag compensator
R2C2 > R1C1 Lead compensator

R3C3 > R4C4

+

–

R4

C4

FIGURE 9.61 Lag-lead compensator implemented with operational amplifiers

vi(t)

5.6 Fμ

0.1 Fμ

358 kΩ

179 kΩ

+

–
v1(t)

vo(t)

FIGURE 9.62 PID controller
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Passive-Circuit Realization
Lag, lead, and lag-lead compensators can also be implemented with passive net-
works. Table 9.11 summarizes the networks and their transfer functions. The transfer
functions can be derived with the methods of Chapter 2.

The lag-lead transfer function can be put in the following form:

GcðsÞ ¼
sþ 1

T1

� �
sþ 1

T2

� �

sþ 1

aT1

� �
sþ a

T2

� � ð9:50Þ

where a < 1. Thus, the terms with T1 form the lead compensator, and the terms with T2

form the lag compensator. Equation (9.50) shows a restriction inherent in using this
passive realization. We see that the ratio of the lead compensator zero to the lead
compensator pole must be the same as the ratio of the lag compensator pole to the lag
compensator zero. In Chapter 11 we design a lag-lead compensator with this restriction.

A lag-lead compensator without this restriction can be realized with an active
network as previously shown or with passive networks by cascading the lead and lag
networks shown in Table 9.11. Remember, though, that the two networks must be
isolated to ensure that one network does not load the other. If the networks load
each other, the transfer function will not be the product of the individual transfer
functions. A possible realization using the passive networks uses an operational
amplifier to provide isolation. The circuit is shown in Figure 9.63. Example 9.10
demonstrates the design of a passive compensator.

TABLE 9.11 Passive realization of compensators

Function Network Transfer function,
VoðsÞ
ViðsÞ

Lag compensation
vi(t)

R2

R2

C

vo(t)

+ +

– –

R2

R1 þ R2

sþ 1

R2C

sþ 1

ðR1 þ R2ÞC

Lead compensation

vi(t)

R1

R2
C vo(t)

+ +

– –

sþ 1

R1C

sþ 1

R1C
þ 1

R2C

Lag-lead compensation

vi(t)

R1

R2

C1

C2

vo(t)

+ +

– –

sþ 1

R1C1

� �
sþ 1

R2C2

� �

s2 þ 1

R1C1
þ 1

R2C2
þ 1

R2C1

� �
sþ 1

R1R2C1C2
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Example 9.10

Realizing a Lead Compensator

PROBLEM: Realize the lead compensator designed in Example 9.4 (Compensator b).

SOLUTION: The transfer function of the lead compensator is

GcðsÞ ¼ sþ 4

sþ 20:09
ð9:51Þ

Comparing the transfer function of a lead network shown in Table 9.11 with
Eq. (9.51), we obtain the following two relationships:

1

R1C
¼ 4 ð9:52Þ

and

1

R1C
þ 1

R2C
¼ 20:09 ð9:53Þ

Hence, R1C ¼ 0:25, and R2C ¼ 0:0622. Since there are three network elements and
two equations, we may select one of the element values arbitrarily. Letting
C ¼ 1 mF, then R1 ¼ 250 kV and R2 ¼ 62:2 kV.

Skill-Assessment Exercise 9.5

PROBLEM: Implement the compensators shown in a. and b. below. Choose a
passive realization if possible.

a. GcðsÞ ¼ ðsþ 0:1Þðsþ 5Þ
s

b. GcðsÞ ¼ ðsþ 0:1Þðsþ 2Þ
ðsþ 0:01Þðsþ 20Þ

ANSWERS:

a. Gc(s) is a PID controller and thus requires active realization. Use Figure 9.60
with the PID controller circuits shown in Table 9.10. One possible set of
approximate component values is

C1 ¼ 10 mF; C2 ¼ 100 mF; R1 ¼ 20 kV; R2 ¼ 100 kV

R4

R5
C2

R2

R1 R3

R3

C1

Lag Isolation
gain = –1

Lead

+

–

+

–

vo(t)vi(t)

–

+

FIGURE 9.63 Lag-lead
compensator implemented
with cascaded lag and lead
networks with isolation
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b. Gc(s) is a lag-lead compensator that can be implemented with a passive
network because the ratio of the lead pole to zero is the inverse of the ratio of
the lag pole to zero. Use the lag-lead compensator circuit shown in Table 9.11.
One possible set of approximate component values is

C1 ¼ 100 mF; C2 ¼ 900 mF; R1 ¼ 100 kV; R2 ¼ 560 V

The complete solution is at www.wiley.com.college/nise.

Case Studies

Antenna Control: Lag-Lead Compensation

For the antenna azimuth position control system case study in Chapter 8, we
obtained a 25% overshoot using a simple gain adjustment. Once this percent
overshoot was obtained, the settling time was determined. If we try to improve the
settling time by increasing the gain, the percent overshoot also increases. In this
section, we continue with the antenna azimuth position control by designing a
cascade compensator that yields 25% overshoot at a reduced settling time. Further,
we effect an improvement in the steady-state error performance of the system.

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, design cascade compensation to meet the following
requirements: (1) 25% overshoot, (2) 2-second settling time, and (3) Kv ¼ 20.

SOLUTION: For the case study in Chapter 8, a preamplifier gain of 64.21 yielded 25%
overshoot, with the dominant, second-order poles at �0:833 � j1:888. The settling
time is thus 4=zvn ¼ 4=:833 ¼ 4:8 seconds. The open-loop function for the system as
derived in the case study in Chapter 5 is GðsÞ ¼ 6:63K=½sðsþ 1:71Þðsþ 100Þ	. Hence
Kv ¼ 6:63K=ð1:71 
 100Þ ¼ 2:49. Comparing these values to this example’s problem
statement, we want to improve the settling time by a factor of 2.4, and we want
approximately an eightfold improvement in Kv.

Lead compensator design to improve transient response: First locate the
dominant second-order pole. To obtain a settling time, Ts, of 2 seconds and a
percent overshoot of 25%, the real part of the dominant second-order pole should
be at �4=Ts ¼ �2. Locating the pole on the 113:83� line (z ¼ 0:404, corresponding
to 25% overshoot) yields an imaginary part of 4.529 (see Figure 9.64).

Second, assume a lead compensator zero and find the compensator pole.
Assuming a compensator zero at �2, along with the uncompensated system’s
open-loop poles and zeros, use the root locus program in Appendix H.2 at www
.wiley.com/college/nise to find that there is an angular contribution of �120:14� at
the design point of �2 � j4:529. Therefore, the compensator’s pole must contribute
120:14� � 180� ¼ �59:86� for the design point to be on the compensated system’s
root locus. The geometry is shown in Figure 9.64. To calculate the compensator
pole, we use 4:529=ðpc � 2Þ ¼ tan 59:86� or pc ¼ 4:63.
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Now determine the gain. Using the lead-compensated system’s open-loop
function,

GðsÞ ¼ 6:63Kðsþ 2Þ
sðsþ 1:71Þðsþ 100Þðsþ 4:63Þ ð9:54Þ

and the design point �2 þ j4:529 as the test point in the root locus program, the
gain, 6.63K, is found to be 2549.

Lag compensator design to improve the steady-state error: Kv for the lead-
compensated system is found using Eq. (9.54). Hence,

Kv ¼ 2549ð2Þ
ð1:71Þð100Þð4:63Þ ¼ 6:44 ð9:55Þ

Since we want Kv ¼ 20, the amount of improvement required over the lead-
compensated system is 20=6:44 ¼ 3:1. Choose pc ¼ �0:01 and calculate zc ¼ 0:031,
which is 3.1 times larger.

Determine gain: The complete lag-lead-compensated open-loop function,
GLLC(s), is

GLLCðsÞ ¼ 6:63Kðsþ 2Þðsþ 0:031Þ
sðsþ :01Þðsþ 1:71Þðsþ 4:63Þðsþ 100Þ ð9:56Þ

Using the root locus program in Appendix H.2 at www.wiley.com/college/nise and
the poles and zeros of Eq. (9.56), search along the 25% overshoot line ð113:83�Þ for
the design point. This point has moved slightly with the addition of the lag
compensator to �1:99 � j4:51. The gain at this point equals 2533, which is
6.63K. Solving for K yields K ¼ 382:1.

Realization of the compensator: A realization of the lag-lead compensator is
shown in Figure 9.63. From Table 9.11 the lag portion has the following transfer
function:

GlagðsÞ ¼ R2

R1 þ R2

sþ 1

R2C

sþ 1

ðR1 þ R2ÞC
¼ R2

R1 þ R2

ðsþ 0:031Þ
ðsþ 0:01Þ ð9:57Þ

59.86°

–1.71–2 0–100

113.83°

–2 + j4.529

jω

σ
–pc

s-plane

= Closed-loop pole
= Open-loop pole

Note: This figure is not drawn to scale.

ζ = 0.404

FIGURE 9.64 Locating
compensator pole
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Selecting C ¼ 10 mF, we find R2 ¼ 3:2 MV and R1 ¼ 6:8 MV.
From Table 9.11 the lead compensator portion has the following transfer

function:

GleadðsÞ ¼
sþ 1

R1C

sþ 1

R1C
þ 1

R2C

¼ ðsþ 2Þ
ðsþ 4:63Þ ð9:58Þ

Selecting C ¼ 10 mF, we find R1 ¼ 50 kV and R2 ¼ 38 kV.
The total loop gain required by the system is 2533. Hence,

6:63K
R2

R1 þ R2
¼ 2533 ð9:59Þ

where K is the gain of the preamplifier, and R2=ðR1 þ R2Þ is the gain of the lag
portion. Using the values of R1 and R2 found during the realization of the lag
portion, we find K ¼ 1194.

The final circuit is shown in Figure 9.65, where the preamplifier is implemented
with an operational amplifier whose feedback and input resistor ratio approxi-
mately equals 1194, the required preamplifier gain. The preamplifier isolates the
lag and lead portions of the compensator.

Summary of the design results: Using Eq. (9.56) along with K ¼ 382:1 yields the
compensated value of Kv. Thus,

Kv ¼ lim
s!0

sGLLCðsÞ ¼ 2533ð2Þð0:031Þ
ð0:01Þð1:71Þð4:63Þð100Þ ¼ 19:84 ð9:60Þ

which is an improvement over the gain-compensated system in the case study of
Chapter 8, where Kv ¼ 2:49. This value is calculated from the uncompensated G(s)
by letting K ¼ 64:21, as found in the Case Study of Chapter 8.

Finally, checking the second-order approximation via simulation, we see in
Figure 9.66 the actual transient response. Compare this to the gain-compensated
system response of Figure 8.29 to see the improvement effected by cascade
compensation over simple gain adjustment. The gain-compensated system yielded
25%, with a settling time of about 4 seconds. The lag-lead-compensated system
yields 28% overshoot, with a settling time of about 2 seconds. If the results are not
adequate for the application, the system should be redesigned to reduce the
percent overshoot.

+

–

+

–

vo(t)vi(t)
3.2 MΩ

6.8 MΩ

10 MΩ

50 kΩ8.4 kΩ

38 kΩ
10μF

10μF

–

+

FIGURE 9.65 Realization of lag-lead compensator
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CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. You are given the antenna azimuth position control system shown on
the front endpapers, Configuration 2. In the challenge in Chapter 8, you were asked
to design, via gain adjustment, an 8-second settling time.

a. For your solution to the challenge in Chapter 8, evaluate the percent overshoot
and the value of the appropriate static error constant.

b. Design a cascade compensator to reduce the percent overshoot by a factor of 4
and the settling time by a factor of 2. Also, improve the appropriate static error
constant by a factor of 2.

c. Repeat Part b using MATLAB.

UFSS Vehicle: Lead and Feedback Compensation

As a final look at this case study, we redesign the pitch control loop for the UFSS
vehicle. For the case study in Chapter 8, we saw that rate feedback improved the
transient response. In this chapter’s case study, we replace the rate feedback with a
cascade compensator.

PROBLEM: Given the pitch control loop without rate feedback ðK2 ¼ 0Þ for the
UFSS vehicle shown on the back endpapers, design a compensator to yield 20%
overshoot and a settling time of 4 seconds (Johnson, 1980).

SOLUTION: First determine the location of the dominant closed-loop poles. Using
the required 20% overshoot and a 4-second settling time, a second-order approxi-
mation shows the dominant closed-loop poles are located at �1 � j1:951. From the
uncompensated system analyzed in the Chapter 8 case study, the estimated settling
time was 19.8 seconds for dominant closed-loop poles of �0:202 � j0:394. Hence, a
lead compensator is required to speed up the system.

Arbitrarily assume a lead compensator zero at�1. Using the root locus program in
Appendix H.2 at www.wiley.com/college/nise, we find that this compensator zero,
along with the open-loop poles and zeros of the system, yields an angular contribu-
tion at the design point, �1 þ j1:951, of �178:92�. The difference between this angle
and 180�, or�1:08�, is the angular contribution required from the compensator pole.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2
c(

t)

Time (seconds)
0

0

FIGURE 9.66 Step response of lag-lead-compensated antenna control
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Using the geometry shown in Figure 9.67, where �pc is the
compensator pole location, we find that

1:951

pc � 1
¼ tan 1:08� ð9:61Þ

from which pc ¼ 104:5. The compensated open-loop transfer func-
tion is thus

GðsÞ ¼ 0:25K1ðsþ 0:435Þðsþ 1Þ
ðsþ 1:23Þðsþ 2Þðs2 þ 0:226sþ 0:0169Þðsþ 104:5Þ ð9:62Þ

where the compensator is

GcðsÞ ¼ ðsþ 1Þ
ðsþ 104:5Þ ð9:63Þ

Using all poles and zeros shown in Eq. (9.62), the root locus program shows that
a gain of 516.5 is required at the design point, �1 � j1:951. The root locus of the
compensated system is shown in Figure 9.68.

A test of the second-order approximation shows three more closed-loop poles at
�0:5, �0:9, and �104:5. Since the open-loop zeros are at �0:435 and �1, simulation
is required to see if there is effectively closed-loop pole-zero cancellation with the
closed-loop poles at �0:5 and �0:9, respectively. Further, the closed-loop pole at
�104:5 is more than five times the real part of the dominant closed-loop pole,
�1 � j1:951, and its effect on the transient response is therefore negligible.

The step response of the closed-loop system is shown in Figure 9.69, where we
see a 26% overshoot and a settling time of about 4.5 seconds. Comparing this

1.08°
117.13°

–1    j1.951+

jω

σ
–pc

= Closed-loop pole
= Open-loop pole

Note: This figure is not drawn to scale.

s-plane

ζ = 0.456

0

FIGURE 9.67 Locating compensator
pole

ωj

Additional
open-loop pole

at –104.5
σ

–3 –2 –1 10

j3

j2

j1

–j1

–j2

–j3

2

s-plane

FIGURE 9.68 Root locus for lead-compensated system
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vehicle
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response with Figure 8.31, the response of the uncompensated system, we see
considerable improvement in the settling time and steady-state error. However,
the transient response performance does not meet the design requirements. Thus,
a redesign of the system to reduce the percent overshoot is suggested if required
by the application.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. The heading control system for the UFSS vehicle is shown on the back
endpapers. The minor loop contains the rudder and vehicle dynamics, and the
major loop relates output and input heading (Johnson, 1980).

a. Find the values of K1 and K2 so that the minor-loop dominant poles have a
damping ratio of 0.6 and the major-loop dominant poles have a damping ratio
of 0.5.

b. Repeat,using MATLAB.

Summary

In this chapter, we learned how to design a system to meet transient and steady-state
specifications. These design techniques overcame limitations in the design method-
ology covered in Chapter 8, whereby a transient response could be created only if the
poles generating that response were on the root locus. Subsequent gain adjustment
yielded the desired response. Since this value of gain dictated the amount of steady-
state error in the response, a trade-off was required between the desired transient
response and the desired steady-state error.

Cascade or feedback compensation is used to overcome the disadvantages of
gain adjustment as a compensating technique. In this chapter, we saw that the
transient response and the steady-state error can be designed separately from each
other. No longer was a trade-off between these two specifications required. Further,
we were able to design for a transient response that was not represented on the
original root locus.

The transient response design technique covered in this chapter is based upon
reshaping the root locus to go through a desired transient response point, followed
by a gain adjustment. Typically, the resulting gain is much higher than the original if
the compensated system response is faster than the uncompensated response.

The root locus is reshaped by adding additional poles and zeros via a cascade or
feedback compensator. The additional poles and zeros must be checked to see that
any second-order approximations used in the design are valid. All poles besides the
dominant second-order pair must yield a response that is much faster than the
designed response. Thus, nondominant poles must be at least five times as far from
the imaginary axis as the dominant pair. Further, any zeros of the system must be
close to a nondominant pole for pole-zero cancellation, or far from the dominant
pole pair. The resulting system can then be approximated by two dominant poles.

The steady-state response design technique is based upon placing a pole on or
near the origin in order to increase or nearly increase the system type, and then
placing a zero near this pole so that the effect upon the transient response is
negligible. However, final reduction of steady-state error occurs with a long-time
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constant. The same arguments about other poles yielding fast responses and about
zeros being cancelled in order to validate a second-order approximation also hold
true for this technique. If the second-order approximations cannot be justified, then
a simulation is required to make sure the design is within tolerance.

Steady-state design compensators are implemented via PI controllers or lag
compensators. PI controllers add a pole at the origin, thereby increasing the system
type. Lag compensators, usually implemented with passive networks, place the pole
off the origin but near it. Both methods add a zero very close to the pole in order not
to affect the transient response.

The transient response design compensators are implemented through PD
controllers or lead compensators. PD controllers add a zero to compensate the
transient response; they are considered ideal. Lead compensators, on the other hand,
are not ideal since they add a pole along with the zero. Lead compensators are
usually passive networks.

We can correct both transient response and steady-state error with a PID or
lag-lead compensator. Both of these are simply combinations of the previously
described compensators. Table 9.7 summarized the types of cascade compensators.

Feedback compensation can also be used to improve the transient response.
Here the compensator is placed in the feedback path. The feedback gain is used to
change the compensator zero or the system’s open-loop poles, giving the designer a
wide choice of various root loci. The system gain is then varied to move along the
selected root locus to the design point. An advantage of feedback compensation is
the ability to design a fast response into a subsystem independently of the system’s
total response.

In the next chapter, we look at another method of design, frequency response,
which is an alternate method to the root locus.

Review Questions

1. Briefly distinguish between the design techniques in Chapter 8 and Chapter 9.

2. Name two major advantages of the design techniques of Chapter 9 over the
design techniques of Chapter 8.

3. What kind of compensation improves the steady-state error?

4. What kind of compensation improves transient response?

5. What kind of compensation improves both steady-state error and transient
response?

6. Cascade compensation to improve the steady-state error is based upon what
pole-zero placement of the compensator? Also, state the reasons for this
placement.

7. Cascade compensation to improve the transient response is based upon what
pole-zero placement of the compensator? Also, state the reasons for this
placement.

8. What difference on the s-plane is noted between using a PD controller or using a
lead network to improve the transient response?

9. In order to speed up a system without changing the percent overshoot, where
must the compensated system’s poles on the s-plane be located in comparison to
the uncompensated system’s poles?
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10. Why is there more improvement in steady-state error if a PI controller is used
instead of a lag network?

11. When compensating for steady-state error, what effect is sometimes noted in the
transient response?

12. A lag compensator with the zero 25 times as far from the imaginary axis as the
compensator pole will yield approximately how much improvement in steady-
state error?

13. If the zero of a feedback compensator is at �3 and a closed-loop system pole is at
�3:001, can you say there will be pole-zero cancellation? Why?

14. Name two advantages of feedback compensation.

Problems

1. Design a PI controller to drive the
step response error to zero for
the unity feedback system shown
in Figure P9.1, where

GðsÞ ¼ K

ðsþ 1Þðsþ 3Þðsþ 10Þ
The system operates with a damping ratio of 0.5.
Compare the specifications of the uncompensated
and compensated systems. [Section: 9.2]

R(s) + C(s)E(s)
G(s)

–

FIGURE P9.1

2. Consider the unity feedback system shown in Figure
P9.1, where

GðsÞ ¼ K

sðsþ 3Þðsþ 6Þ
a. Design a PI controller to drive the ramp response

error to zero for any K that yields stability.
[Section: 9.2]

b. Use MATLAB to simulate your
design for K ¼ 1. Show both
the input ramp and the out-
put response on the same plot.

3. The unity feedback system shown in Figure P9.1 with

GðsÞ ¼ K

ðsþ 2Þðsþ 3Þðsþ 7Þ
is operating with 10% overshoot. [Section: 9.2]

a. What is the value of the appropriate static error
constant?

b. Find the transfer function of a lag network so that
the appropriate static error constant equals 4
without appreciably changing the dominant
poles of the uncompensated system.

c. Use MATLAB or any other computer
program to simulate the system
to see the effect of your compensator.

4. Repeat Problem 3 for GðsÞ ¼ K

sðsþ 3Þðsþ 7Þ.[Section: 9.2]

5. Consider the unity feedback system shown in Figure
P9.1 with

GðsÞ ¼ K

ðsþ 3Þðsþ 5Þðsþ 7Þ
a. Design a compensator that will yield Kp ¼ 20

without appreciably changing the dominant pole
location that yields a 10% overshoot for the
uncompensated system. [Section: 9.2]

b. Use MATLAB or any other computer
program to simulate the un-
compensated and compensated systems.

c. Use MATLAB or any other computer
program to determine how much
time it takes the slow response of the
lag compensator to bring the output to
within2%ofitsfinalcompensatedvalue.

6. The unity feedback system shown Figure
P9.1 with

GðsÞ ¼ Kðsþ 6Þ
ðsþ 2Þðsþ 3Þðsþ 5Þ
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is operating with a dominant-pole damping ratio
of 0.707. Design a PD controller so that the
settling time is reduced by a factor of 2. Compare
the transient and steady-state performance of
the uncompensated and compensated systems.
Describe any problems with your design.
[Section: 9.3]

7. Redo Problem 6 using MATLAB in
the following way:

a. MATLAB will generate the root locus
for the uncompensated system along
with the 0.707 damping ratio line.
You will interactively select the op-
erating point. MATLAB will then in-
form you of the coordinates of the
operating point,the gain at the oper-
ating point, as well as the estimated
%OS, Ts, Tp,z, vn, and Kp represented by
a second-order approximation at the
operating point.

b. MATLAB will display the step response
of the uncompensated system.

c. Without further input,MATLAB will
calculate the compensated design
point and will then ask you to input
a value for the PD compensator zero
from the keyboard. MATLAB will re-
spond with a plot of the root locus
showing the compensated design point.
MATLAB will then allow you to keep
changing the PD compensator value
from the keyboard until a root locus
is plotted that goes through the de-
sign point.

d. Forthecompensatedsystem,MATLABwill
inform you of the coordinates of the
operatingpoint,thegainattheoperat-
ing point,as well as the estimated
%OS, Ts, Tp,z, vn,and Kp represented by
a second-order approximation at the
operating point.

e. MATLAB will then display the step
response of the compensated system.

8. Design a PD controller for the system shown in
Figure P9.2 to reduce the settling time by a factor of
4 while continuing to operate the system with 20%
overshoot. Compare your performance to that ob-
tained in Example 9.7.

R(s) C(s)

–

+ K
s(s + 10)(s + 20)

FIGURE P9.2

9. Consider the unity feedback system shown in Figure
P9.1 with [Section: 9.3]

GðsÞ ¼ K

ðsþ 4Þ3

a. Find the location of the dominant poles to yield a
1.6 second settling time and an overshoot of 25%.

b. If a compensator with a zero at �1 is used to
achieve the conditions of Part a, what must the
angular contribution of the compensator pole be?

c. Find the location of the compensator pole.

d. Find the gain required to meet the requirements
stated in Part a.

e. Find the location of other closed-loop poles for
the compensated system.

f. Discuss the validity of your second-order
approximation.

g. Use MATLAB or any other computer
program to simulate the compen-
sated system to check your design.

10. The unity feedback system shown in
Figure P9.1 with

GðsÞ ¼ K

s2

is to be designed for a settling time of 1.667 seconds
and a 16.3% overshoot. If the compensator zero is
placed at �1, do the following: [Section: 9.3]

a. Find the coordinates of the dominant poles.

b. Find the compensator pole.

c. Find the system gain.

d. Find the location of all nondominant poles.

e. Estimate the accuracy of your second-order
approximation.

f. Evaluate the steady-state error characteristics.

g. Use MATLAB or any other computer
program to simulate the system
and evaluate the actual tran-
sient response characteristics for a
step input.
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11. Given the unity feedback system of Figure P9.1,
with

GðsÞ ¼ Kðsþ 6Þ
ðsþ 3Þðsþ 4Þðsþ 7Þðsþ 9Þ

do the following: [Section: 9.3]

a. Sketch the root locus.

b. Find the coordinates of the dominant poles for
which z ¼ 0:8.

c. Find the gain for which z ¼ 0:8.

d. If the system is to be cascade-compensated so
that Ts ¼ 1 second and z ¼ 0:8, find the compen-
sator pole if the compensator zero is at �4:5.

e. Discuss the validity of your second-order
approximation.

f. Use MATLAB or any other computer
program to simulate the compen-
sated and uncompensated systems and
compare the results to those expected.

12. Redo Problem 11 using MATLAB in
the following way:

a. MATLAB will generate the root locus for
theuncompensatedsystemalongwiththe
0.8 damping ratio line. You will inter-
actively select the operating point.
MATLAB will then inform you of the coor-
dinatesoftheoperatingpoint,thegain
at the operating point,as well as the
estimated %OS,Ts,Tp,z,vn,and Kp repre-
sented by a second-order approximation
at the operating point.

b. MATLAB will display the step response
of the uncompensated system.

c. Without further input, MATLAB will
calculate the compensated design
point and will then ask you to input a
value for the lead compensator pole
from the keyboard. MATLAB will respond
with a plot of the root locus showing
the compensated design point. MATLAB
willthenallowyoutokeepchangingthe
lead compensator pole value from the
keyboard until a root locus is plotted
that goes through the design point.

d. For the compensated system, MATLAB
will inform you of the coordinates

of the operating point,the gain at
the operating point,as well as the
estimated %OS, Ts, Tp, z, vn,and Kp rep-
resented by a second-order approxima-
tion at the operating point.

e. MATLAB will then display the step re-
sponse of the compensated system.

f. Change the compensator’s zero location
a few times and collect data on the com-
pensated system to see if any other
choices of compensator zero yield
advantages over the original design.

13. Consider the unity feedback system of Figure P9.1
with

GðsÞ ¼ K

sðsþ 20Þðsþ 40Þ
The system is operating at 20% overshoot. Design a
compensator to decrease the settling time by a
factor of 2 without affecting the percent overshoot
and do the following: [Section: 9.3]

a. Evaluate the uncompensated system’s dominant
poles, gain, and settling time.

b. Evaluate the compensated system’s dominant
poles and settling time.

c. Evaluate the compensator’s pole and zero. Find
the required gain.

d. Use MATLAB or any other computer
program to simulate the compen-
sated and uncompensated
systems’step response.

14. The unity feedback system shown in Figure P9.1 with

GðsÞ ¼ K

ðsþ 15Þðs2 þ 6sþ 13Þ
is operating with 30% overshoot. [Section: 9.3]

a. Find the transfer function of a cascade compen-
sator, the system gain, and the dominant pole
location that will cut the settling time in half if
the compensator zero is at �7.

b. Find other poles and zeros and discuss your
second-order approximation.

c. Use MATLAB or any other computer
program to simulate both the un-
compensated and compensated systems to
see the effect of your compensator.
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15. For the unity feedback system of Figure P9.1 with

GðsÞ ¼ K

sðsþ 1Þðs2 þ 10sþ 26Þ
do the following: [Section: 9.3]

a. Find the settling time for the system if it is
operating with 15% overshoot.

b. Find the zero of a compensator and the gain, K,
so that the settling time is 7 seconds. Assume that
the pole of the compensator is located at �15.

c. Use MATLAB or any other computer
program to simulate the system’s
step response to test the compensator.

16. A unity feedback control system has
the following forward transfer func-
tion: [Section: 9.3]

GðsÞ ¼ K

s2ðsþ 4Þðsþ 12Þ
a. Design a lead compensator to yield a closed-loop

step response with 20.5% overshoot and a set-
tling time of 3 seconds. Be sure to specify the
value of K.

b. Is your second-order approximation valid?

c. Use MATLAB or any other computer
program to simulate and compare
the transient response of the compen-
satedsystemtothepredictedtransient
response.

17. For the unity feedback system of Figure P9.1, with

GðsÞ ¼ K

ðs2 þ 20sþ 101Þðsþ 20Þ
the damping ratio for the dominant poles is to be
0.4, and the settling time is to be 0.5 second. [Sec-
tion: 9.3]

a. Find the coordinates of the dominant poles.

b. Find the location of the compensator zero if the
compensator pole is at �15.

c. Find the required system gain.

d. Compare the performance of the uncompensated
and compensated systems.

e. Use MATLAB or any other computer
program to simulate the system
to check your design. Redesign
if necessary.

18. Consider the unity feedback system of Figure P9.1,
with

GðsÞ ¼ K

ðsþ 3Þðsþ 5Þ
a. Show that the system cannot operate with a

settling time of 2/3 second and a percent over-
shoot of 1.5 % with a simple gain adjustment.

b. Design a lead compensator so that the system
meets the transient response characteristics of
Part a. Specify the compensator’s pole, zero, and
the required gain.

19. Given the unity feedback system of Figure P9.1 with

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þðsþ 8Þ
Find the transfer function of a lag-lead compensator
that will yield a settling time 0.5 second shorter than
that of the uncompensated system, with a damping
ratio of 0.5, and improve the steady-state error by a
factor of 30. The compensator zero is at �5. Also,
find the compensated system’s gain. Justify any
second-order approximations or verify the design
through simulation. [Section: 9.4]

20. Redo Problem 19 using a lag-lead
compensator and MATLAB in the
following way:

a. MATLAB will generate the root locus for
the uncompensated system along with the
0.5 damping-ratio line. You will inter-
actively select the operating point.
MATLAB will then proceed to inform you
of the coordinates of the operating
point,the gain at the operating point,
aswellastheestimated%OS,Ts,Tp,z,vn,
and Kp represented by a second-order ap-
proximation at the operating point.

b. MATLAB will display the step response
of the uncompensated system.

c. Without further input, MATLAB will
calculate the compensated design point
andwillthenaskyoutoinputavaluefor
the lead compensator pole from the key-
board. MATLAB will respond with a plot
of the root locus showing the compen-
sated design point. MATLAB will then
allow you to keep changing the lead com-
pensator pole value from the keyboard
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until a root locus is plotted that goes
through the design point.

d. For the compensated system, MATLAB
will inform you of the coordinates of
the operating point,the gain at the op-
erating point,as well as the estimated
%OS,Ts,Tp,z,vn,and Kp represented by a
second-order approximation at the op-
erating point.

e. MATLAB will then display the step re-
sponse of the compensated system.

f. Change the compensator’s zero location
a few times and collect data on the com-
pensated system to see if any other
choices of the compensator zero yield
advantages over the original design.

g. Using the steady-state error of the un-
compensated system, add a lag compensa-
tor to yield an improvement of 30 times
over the uncompensated system’s steady-
state error, with minimal effect on the
designed transient response. Have MAT-
LAB plot the step response. Try several
valuesforthelagcompensator’spoleand
see the effect on the step response.

21. Given the uncompensated unity feedback system of
Figure P9.1, with

GðsÞ ¼ K

sðsþ 1Þðsþ 3Þ
do the following: [Section: 9.4]

a. Design a compensator to yield the following
specifications: settling time ¼ 2:86 seconds; per-
cent overshoot ¼ 4:32%; the steady-state error is
to be improved by a factor of 2 over the un-
compensated system.

b. Compare the transient and steady-state error
specifications of the uncompensated and com-
pensated systems.

c. Compare the gains of the uncompensated and
compensated systems.

d. Discuss the validity of your second-order
approximation.

e. Use MATLAB or any other computer
program to simulate the un-
compensated and compensated systems
and verify the specifications.

22. For the unity feedback system given in
Figure P9.1 with

GðsÞ ¼ K

sðsþ 5Þðsþ 11Þ
do the following: [Section: 9.4]

a. Find the gain, K, for the uncompensated system
to operate with 30% overshoot.

b. Find the peak time andKv for the uncompensated
system.

c. Design a lag-lead compensator to decrease the
peak time by a factor of 2, decrease the percent
overshoot by a factor of 2, and improve the
steady-state error by a factor of 30. Specify all
poles, zeros, and gains.

23. The unity feedback system shown in Figure P9.1
with

GðsÞ ¼ K

ðs2 þ 4sþ 8Þðsþ 10Þ
is to be designed to meet the following specifications:

Overshoot: Less than 25%

Settling time: Less than 1 second

Kp ¼ 10

Do the following: [Section: 9.4]

a. Evaluate the performance of the uncompensated
system operating at 10% overshoot.

b. Design a passive compensator to meet the de-
sired specifications.

c. Use MATLAB to simulate the
compensated system. Com-
pare the response with the desired
specifications.

24. Consider the unity feedback system in Figure P9.1,
with

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þ
The system is operated with 4.32% overshoot. In
order to improve the steady-state error, Kp is to be
increased by at least a factor of 5. A lag compensa-
tor of the form

GcðsÞ ¼ ðsþ 0:5Þ
ðsþ 0:1Þ

is to be used. [Section: 9.4]
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a. Find the gain required for both the compensated
and the uncompensated systems.

b. Find the value of Kp for both the compensated
and the uncompensated systems.

c. Estimate the percent overshoot and settling time
for both the compensated and the uncompensated
systems.

d. Discuss the validity of the second-order approxi-
mation used for your results in Part c.

e. UseMATLABoranyothercomputer
program to simulate the step
response for the uncompensated and
compensated systems. What do you no-
tice about the compensated system’s
response?

f. Design a lead compensator that will correct the
objection you notice in Part e.

25. For the unity feedback system in Figure P9.1, with

GðsÞ ¼ K

ðsþ 1Þðsþ 4Þ

design a PID controller that will yield a peak time of
1.047 seconds and a damping ratio of 0.8, with zero
error for a step input. [Section: 9.4]

26. For the unity feedback system in Figure P9.1, with

GðsÞ ¼ K

ðsþ 4Þðsþ 6Þðsþ 10Þ
do the following:

a. Design a controller that will yield no more than
25% overshoot and no more than a 2-second
settling time for a step input and zero steady-
state error for step and ramp inputs.

b. Use MATLAB and verify your
design.

27. Redo Problem 26 using MATLAB in
the following way:

a. MATLAB will ask for the desired per-
cent over shoot, settling time, and PI
compensator zero.

b. MATLAB will design the PD controller’s
zero.

c. MATLAB will display the root locus of
the PID-compensated system with the
desired percent overshoot line.

d. The user will interactively select
the intersection of the root locus

and the desired percent over shoot
line.

e. MATLAB will display the gain and tran-
sient response characteristics of the
PID-compensated system.

f. MATLAB will display the step response
of the PID-compensated system.

g. MATLAB will display the ramp response
of the PID-compensated system.

28. If the system of Figure P9.3 operates with a damp-
ing ratio of 0.517 for the dominant second-order
poles, find the location of all closed-loop poles and
zeros.

R(s) +

–

C(s)K

(s2 + 2s + 0.25)

(s + 3)

(s + 2)

FIGURE P9.3

29. For the unity feedback system in Figure P9.1, with

GðsÞ ¼ K

sðsþ 2Þðsþ 4Þðsþ 6Þ
do the following: [Section: 9.5]

a. Design rate feedback to yield a step response
with no more than 15% overshoot and no
more than 3 seconds settling time. Use
Approach 1.

b. Use MATLAB and simulate your
compensated system.

30. Given the system of Figure P9.4: [Section: 9.5]

R(s) C(s)

–

+ K1
s(s + 4)(s + 9)K

s + a

–

+

FIGURE P9.4

a. Design the value ofK1, as well as a in the feedback
path of the minor loop, to yield a settling time of 1
second with 5% overshoot for the step response.

b. Design the value of K to yield a major-loop
response with 10% overshoot for a step input.
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c. Use MATLAB or any other computer
program to simulate the step re-
sponse to the entire closed-
loop system.

d. Add a PI compensator to reduce
the major-loop steady-state
error to zero and simulate the step
response using MATLAB or any other
computer program.

31. Identify and realize the following controllers with
operational amplifiers. [Section: 9.6]

a.
sþ 0:01

s
b. sþ 2

32. Identify and realize the following
compensators with passive net-
works. [Section: 9.6]

a.
sþ 0:1

sþ 0:01

b.
sþ 2

sþ 5

c.
sþ 0:1

sþ 0:01

� �
sþ 1

sþ 10

� �

33. Repeat Problem 32 using operational amplifiers.
[Section: 9.6]

DESIGN PROBLEMS
34. The room temperature of an 11 m2 room is to be

controlled by varying the power of an indoor radia-
tor. For this specific room the open-loop transfer
function from radiator power, _QðsÞ, to temperature,
T(s), is (Thomas, 2005)

GðsÞ ¼ TðsÞ
_QðsÞ ¼

ð1 
 10�6Þs2 þ ð1:314 
 10�9Þsþ ð2:66 
 10�13Þ
s3 þ 0:00163s2 þ ð5:272 
 10�7Þsþ ð3:538 
 10�11Þ

The system is assumed to be in the closed-loop
configuration shown in Figure P9.1.

a. For a unit step input, calculate the steady-state
error of the system.

b. Try using the procedure of Section 9.2 to design a PI
controller to obtain zero steady-state error for step
inputs without appreciably changing the transient
response. Thenexplainwhy it isnotpossible todoso.

c. Design a PI controller of the form GcðsÞ ¼
Kðsþ zÞ

s
that will reduce the step-response error

to zero while not changing significantly the tran-
sient response. (Hint: Place the zero of the

compensator in a position where the closed-
loop poles of the uncompensated root locus
will not be affected significantly.)

d. Use Simulink to simulate the
systems of Parts b and c and to
verify the correctness of your design
in Part c.

35. Figure P9.5 shows a two-tank system. The liquid inflow
to the upper tank can be controlled using a valve and is
represented byF0. The upper tank’s outflow equals the
lower tank’s inflow and is represented by F1. The
outflow of the lower tank is F2. The objective of
the design is to control the liquid level, y(t), in the
lower tank. The open-loop transmission for this system

is
YðsÞ
FoðsÞ ¼

a2a3

s2 þ ða1 þ a4Þsþ a1a4
(Romagnoli, 2006).

The system will be controlled in a loop analogous to
that of Figure P9.1, where the lower liquid level will be
measured and compared to a set point. The resulting
error will be fed to a controller, which in turn will open
or close the valve feeding the upper tank.

a. Assuminga1 ¼ 0:04; a2 ¼ 0:0187;a3 ¼ 1;anda4 ¼
0:227, design a lag compensator to obtain a step-
responsesteady-stateerrorof10% withoutaffecting
the system’s transient response appreciably.

b. Verify your design through
MATLAB simulations.

F0

F1

F2

FIGURE P9.5

36. Figure P9.6(a) shows a heat-exchanger process
whose purpose is to maintain the temperature of
a liquid at a prescribed temperature.

The temperature is measured using a sensor and a
transmitter, TT 22, that sends the measurement to a
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corresponding controller, TC 22, that compares the
actual temperature with a desired temperature set
point, SP. The controller automatically opens or closes
a valve to allow or prevent the flow of steam to change
the temperature in the tank. The corresponding block
diagram for this system is shown in Figure P9.6(b)
(Smith2002). Assume the following transfer functions:

GvðsÞ ¼ 0:02

4sþ 1
; G1ðsÞ ¼ 70

50sþ 1
; HðsÞ ¼ 1

12sþ 1
:

a. Assuming GcðsÞ ¼ K, find the value of K that will
result in a dominant pole with z ¼ 0:7. Obtain the
corresponding Ts.

b. Design a PD controller to obtain the same damping
factor as Part a but with a settling time 20% smaller.

c. Verify your results through
MATLAB simulation.

37. Repeat Problem 36, Parts b and c, using a lead
compensator.

38. a. Find the transfer function of a motor whose torque-
speed curve and load are given in Figure P9.7.

b. Design a tachometer compensator to yield a
damping ratio of 0.5 for a position control

SP

T

T(t)Ti(t)

Steam

Process
fluid

Condensate
return

TC
22

TT
22

(a)

+

–
Gc(s) Gv(s) Gp(s)

H(s)

Compensator Valve 

Sensor

Heat exchanger

TSP(s) T(s)

(b)

FIGURE P9.6 a. Heat-exchanger process (Reprinted with permission of John Wiley & Sons, Inc.); b. block diagram

RPM

Torque

0.5 N-m

5V

60,0000
0

π2

Motor

4 4

10 5 kg-m2

1 N-m-s/rad

1

FIGURE P9.7
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employing a power amplifier of gain 1 and a
preamplifier of gain 5000.

c. Compare the transient and steady-state charac-
teristics of the uncompensated system and the
compensated system.

39. You are given the motor whose transfer
function is shown in Figure P9.8(a).

R(s) +

–

+

–

Kfs

Tachometer

C(s)E(s)
K1

25
s(s + 1)

MotorAmplifier

25
s(s + 1)

Ea(s) θo(s)

(a)

(b)

FIGURE P9.8

a. If this motor were the forward transfer function of a
unity feedback system, calculate the percent over-
shoot and settling time that could be expected.

b. You want to improve the closed-loop response.
Since the motor constants cannot be changed and
you cannot use a different motor, an amplifier
and tachometer are inserted into the loop as
shown in Figure P9.8(b). Find the values of K1

and Kf to yield a percent overshoot of 25% and a
settling time of 0.2 second.

c. Evaluate the steady-state error specifications for
both the uncompensated and the compensated
systems.

40. A position control is to be designed with a 20%
overshoot and a settling time of 2 seconds. You
have on hand an amplifier and a power amplifier
whose cascaded transfer function is K1=ðsþ 20Þ
with which to drive the motor. Two 10-turn pots
are available to convert shaft position into volt-
age. A voltage of �5p volts is placed across the
pots. A dc motor whose transfer function is of the
form

uoðsÞ
EaðsÞ ¼

K

sðsþ aÞ

is also available. The transfer function of the
motor is found experimentally as follows. The
motor and geared load are driven open-loop by
applying a large, short, rectangular pulse to the
armature. An oscillo-gram of the response shows
that the motor reached 63% of its final output
value at 1/2 second after the application of the
pulse. Further, with a constant 10 volts dc applied
to the armature, the constant output speed was
100 rad/s.

a. Draw a complete block diagram of the system,
specifying the transfer function of each compo-
nent when the system is operating with 20%
overshoot.

b. What will the steady-state error be for a unit
ramp input?

c. Determine the transient response characteristics.

d. If tachometer feedback is used around the motor,
as shown in Figure P9.9, find the tachometer and
the amplifier gain to meet the original specifica-
tions. Summarize the transient and steady-state
characteristics.

R(s) +

–

+

–

Kf

Tachometer

C(s)
K1

Amplifier

Pot Motor
Power
amp

Pot

s

FIGURE P9.9
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41. A position control is to be designed with a 10% over-
shoot, a settling time of 1 second, and Kv ¼ 1000. You
have on hand an amplifier and a power amplifier
whose cascaded transfer function is K1=ðsþ 40Þ
with which to drive the motor. Two 10-turn pots are
available to convert shaft position into voltage. A
voltage of �20p volts is placed across the pots. A dc
motor whose transfer function is of the form

uoðsÞ
EaðsÞ ¼

K

sðsþ aÞ
is also available. The following data are observed from
a dynamometer test at 50 V. At 25 N-m of torque, the
motor turns at 1433 rpm. At 75 N-m of torque, the
motor turns at 478 rpm. The speed measured at the load
is 0.1 that of the motor. The equivalent inertia, includ-
ing the load, at the motor armature is 100 kg-m2, and
the equivalent viscous damping, including the load, at
the motor armature is 50 N-m-s/rad.

a. Draw a complete block diagram of the system,
specifying the transfer function of each
component.

b. Design a passive compensator to meet the re-
quirements in the problem statement.

c. Draw the schematic of the compensator showing
all component values. Use an operational ampli-
fier for isolation where necessary.

d. Use MATLAB or any other computer
program to simulate your system
and showthatallrequirements havebeen
met.

42. Given the system shown in Figure P9.10, find the
values of K and Kf so that the closed-loop dominant
poles will have a damping ratio of 0.5 and the under-
damped poles of the minor loop will have a damping
ratio of 0.8.

R(s) +

–
K

+

–

Kf s

Tachometer

C(s)E(s) 1

(s + 1)2(s + 5)

Amplifier

Power amplifier
and

plant

FIGURE P9.10

43. Given the system in Figure P9.11, find the values of
K and Kf so that the closed-loop system will have a
4.32% overshoot and the minor loop will have
a damping ratio of 0.8. Compare the expected
performance of the system without tachometer
compensation to the expected performance with
tachometer compensation.

R(s) +

–
K

+

–

Kf s

Tachometer

C(s)E(s) 1

(s + 1)(s + 5)(s + 10)

Amplifier

Power amplifier
and

plant

FIGURE P9.11

44. In Problem 57 of Chapter 8, a head-position con-
trol system for a floppy disk drive was designed to
yield a settling time of 0.1 second through gain
adjustment alone. Design a lead compensator to
decrease the settling time to 0.05 second without
changing the percent overshoot. Also, find the
required loop gain.

45. Consider the temperature control system
for a chemical process shown in Figure
P9.12. The uncompensated system is op-
erating with a rise time approximately the same as a
second-order system with a peak time of 16 seconds and
5% overshoot. There is also considerable steady-state
error. Design a PID controller so that the compensated
system will have a rise time approximately equivalent
to a second-order system with a peak time of 8 seconds
and 5% overshoot, and zero steady-state error for a
step input.

46. Steam-driven power generators rotate at a
constant speed via a governor that maintains con-
stant steam pressure in the turbine. In addition,
automatic generation control (AGC) or load
frequency control (LFC) is added to ensure reli-
ability and consistency despite load variations
or other disturbances that can affect the distribu-
tion line frequency output. A specific turbine-
governor system can be described only using
the block diagram of Figure P9.1 in which
GðsÞ ¼ GcðsÞGgðsÞGtðsÞGmðsÞ, where (Khoda-
bakhshian, 2005)
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GgðsÞ ¼ 1

0:2sþ 1
is the governor’s transfer function

GtðsÞ ¼ 1

0:5sþ 1
is the turbine transfer function

GmðsÞ ¼ 1

10sþ 0:8
represents the machine and load
transfer functions

Gc(s) is the LFC compensation to be designed

a. Assuming GcðsÞ ¼ K, find the value of K that will
result in a dominant pole with z ¼ 0:7. Obtain the
corresponding Ts .

b. Design a PID controller to obtain the same
damping factor as in Part a, but with a settling
time of 2 seconds and zero steady-state error to
step input commands.

c. Verify your results using a
MATLAB simuation.

47. Repeat Problem 46 using a lag-lead compensator
instead of a PID controller. Design for a steady-
state error of 1% for a step input command.

48. Digital versatile disc (DVD) players incorporate
several control systems for their operations. The
control tasks include (1) keeping the laser beam
focused on the disc surface, (2) fast track selection,
(3) disc rotation speed control, and (4) following a
track accurately. In order to follow a track, the
pickup-head radial position is controlled via a volt-
age that operates a voice coil embedded in a magnet
configuration. For a specific DVD player, the trans-
fer function is given by

PðsÞ ¼ XðsÞ
VðsÞ

¼ 0:63

1 þ 0:36

305:4
sþ s2

305:42

� �
1 þ 0:04

248:2
sþ s2

248:22

� �

where xðtÞ ¼ radial pickup position and vðtÞ ¼ the
coil input voltage (Bittanti, 2002).

a. Assume that the system will be controlled in a
closed-loop configuration, such as the one shown
in Figure P9.1. Assuming that the plant, P(s), is
cascaded with a proportional compensator,
GcðsÞ ¼ K, plot the root locus of the system.

b. Repeat Part a using MATLAB if
your root locus plot was cre-
ated by any other tool.

c. Find the range of K for closed-loop stability, the
resulting damping factor range, and the smallest
settling time.

d. Design a notch filter compensator so that the sys-
tem’s dominant poles have a damping factor of z ¼
0:7 with a closed-loop settling time of 0.1 second.

e. Simulate the system’s step
response for Part c using
MATLAB.

f. Add a PI compensator to the system to achieve
zero steady-state error for a step input without
appreciably affecting the transient response
achieved in Part b.

g. Simulate the system’s step
response for Part e using
MATLAB.

49. A coordinate measuring machine (CMM) measures
coordinates on three-dimensional objects. The ac-
curacy of CMMs is affected by temperature changes
as well as by mechanical resonances due to joint
elasticity. These resonances are more pronounced
when the machine has to go over abrupt changes of
dimension, such as sharp corners at high speed.
Each of the machine links can be controlled in a
closed-loop configuration, such as the one shown in

s2 + 1.7s + 0.25

Desired
temperature

set point +

Actual
temperature0.7

–

Gc(s) K
s + 0.4

1

s + 0.5

0.5

PID
controller Amplifier

Actuator
and

valve

Chemical
heat

process

Temperature sensor

FIGURE P9.12 Chemical process temperature control system
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Figure P9.13 for a specific machine with prismatic
(sliding) links. In the figure, Xref(s) is the com-
manded position and X(s) is the actual position.
The minor loop uses a tachometer generator to
obtain the joint speed, while the main loop controls
the joint’s position ( €Ozel, 2003).

a. Find the value of K that will result in a minor
loop with z ¼ 0:5.

b. Use a notch filter compensator, Gc(s), for the
external loop so that it results in a closed-loop
damping factor of z ¼ 0:7 with Ts � 4 seconds.

c. Use MATLAB to simulate the
compensated system’s closed-
loop step response.

50. Magnetic levitation systems are now used to elevate
and propel trains along tracks. A diagram of a

demonstration magnetic levitation system is shown
in Figure P9.14(a). Action between a permanent
magnet attached to the Ping-Pong ball, the object to
be levitated, and an electromagnet provides the lift.
The amount of elevation can be controlled through
Va applied to the electromagnet as shown in Figure
P9.14(a). The elevation is controlled by using a
photo-detector pair to detect the elevation of the
Ping-Pong ball. Assume that the elevation control
system is represented by Figure P9.14(b) and do the
following (Cho, 1993):

a. Design a compensator, Gc(s), to yield a settling
time of 0.1 second or less if the step response is to
have no more than 1% overshoot. Specify the
compensator’s poles, zeros, and gain.

b. Cascade another compensator to minimize the
steady-state error and have the total settling time

+

–

+

–

Tachometer generator

Compensator

s(s2 + 14.24 s + 3447.91)

0.0466 s(s2 + 1.15 s + 0.33)

Plant

Xref (s)
Gc(s) K

574.98 X(s)

FIGURE P9.13

Amplifier
circuit Analog

I/O
board

Control
computer

 Photodetector Vd

Vc
Va

Permanent magnet

Ping-Pong ball

Datum line

Photo
emitter

Electromagnet

z

(a)

FIGURE P9.14 a. Magnetic levitation system (# 1993 IEEE); (figure continues)
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not exceed 0.5 second. This compensator should
not appreciably affect the transient response
designed in Part a. Specify the poles and zeros
of this compensator.

c. Use MATLAB or any other computer
program to simulate the system
to check your design.

51. The transfer function for an AFTI/F-16 aircraft
relating angle of attack, a(t), to elevator deflection,
deðtÞ, is given by

GðsÞ¼ aðsÞ
deðsÞ

¼ 0:072
ðsþ 23Þðs2 þ 0:05sþ 0:04Þ

ðs� 0:7Þðsþ 1:7Þðs2 þ 0:08sþ 0:04Þ

Assume the block diagram shown in Figure P9.15
for controlling the angle of attack, a, and do the
following (Monahemi, 1992):

a. Find the range of K for stability.

b. Plot or sketch a root locus.

c. Design a cascade compensator to yield zero
steady-state error, a settling time of about 0.05
second, and a percent overshoot not greater than
20%.

d. Use MATLAB or any other computer
program to simulate the system
to check your design.

αc(s) (s)

–

+
K G(s)

Controller Aircraft

Commanded
angle of
attack

Actual 
angle of
attack

α α

FIGURE P9.15 Simplified block diagram for angle of attack
control

52. Figure P9.16 is a simplified block diagram of a self-
guiding vehicle’s bearing angle control. Design a
lead compensator to yield a closed-loop step re-
sponse with 10% overshoot and a settling time of 1.5
seconds.

53. An X-4 quadrotor flyer is designed as a small-sized
unmanned autonomous vehicle (UAV) that flies
mainly indoors and can help in search and recogni-
zance missions. To minimize mechanical problems
and for simplicity, this aircraft uses fixed pitch rotors
with specially designed blades. Therefore, for thrust
it is necessary to add a fifth propeller. A simplified
design of the thrust control design can be modeled

Desired
bearing angle

Actual
bearing angle+

–

K
50

s2 + 10s + 50

1

s(s + 5)

Controller Steering
Vehicle

dynamics

FIGURE P9.16 Simplified block diagram of a self-guiding vehicle’s bearing angle control

Zactual(s)

10

–

+
Gc(s)

105

(s2 – 4551)(s + 286)
10

Zdesired (s)

 Compensator Plant

Photocell

Vd(s)

Vc(s)

(b)

FIGURE P9.14 (Continued) b. block diagram
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as in Figure 9.1 with GðsÞ ¼ GcðsÞPðsÞ where

PðsÞ ¼
1:90978

�
s

0:43
þ 1

�
�

s

9:6
þ 1

��
s

0:54
þ 1

�

represents the dynamics of the thruster rotor gain,
the motor, and the battery dynamics. Initially, the
system is designed using a proportional compensa-
tor given by GcðsÞ ¼ 3 (Pounds, 2009).

a. Calculate the resulting steady-state error for a
unit step input.

b. Design a lag compensator to yield half the
steady-state error of the proportional compensa-
tor, without appreciably affecting the system’s
transient response.

c. Use MATLAB to simulate the
original design and the
lag compensated design. Verify your
results.

54. Problem 8.56 described an ac/dc conversion and
power distribution system for which droop control
is implemented through the use of a proportional
controller to stabilize the dc-bus voltage. For sim-
plification, a system with only one source converter
and one load converter was considered. The param-
eters and design considerations presented in that
problem, along with some solution results, allow us
to represent the block-diagram of that system as
shown in the Figure P9.17.

H (s)

Ev(s)
GC(s)

+

_

Vdc–ref (s)

VS–lp(s)

(s3 +1225s2 + 5030000s + 62500000)

125(s2 + 1225s + 2530000)

200
s + 200

Is–ref (s)

GP (s)

Vs (s)

FIGURE P9.17

Here Gc(s) is the transfer function of the controller,
Gp(s) represents the forward path of the controlled
plant (a conversion and power distribution unit),
and H(s) is the transfer function of the feedback
low-pass filter (Karlsson, 2003).

Prepare a table, such as Table 9.5, where the
first column, headed Uncompensated, is filled in
with your results from the proportional design of

Problem 8.56, assuming an input step,
vdc�ref ðtÞ ¼ 750 uðtÞ.

Follow Steps 2–8 as described in Section 9.4
(Example 9.5), to design a proportional-plus-
integral-plus-derivative (PID) controller so that the
system can operate with a percent overshoot�4.4 %,
a peak time 20% smaller than that of the un-
compensated system, and zero steady-state error,
eVstepð1Þ ¼ 0. Fill in the remaining two columns of
your table, PD-compensated and PID-compensated.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
55. High-speed rail pantograph. Problem 21 in Chap-

ter 1 discusses the active control of a pantograph
mechanism for high-speed rail systems. In Problem
79(b), Chapter 5, you found the block diagram for
the active pantograph control system. In Chapter 8,
Problem 72, you designed the gain to yield a closed-
loop step response with 38% overshoot. A plot of
the step response should have shown a settling time
greater than 0.5 second as well as a high-frequency
oscillation superimposed over the step response
(O’Conner, 1997). We want to reduce the settling
time to about 0.3 second, reduce the step response
steady-state error to zero, and eliminate the high-
frequency oscillation. Away of eliminating the high-
frequency oscillation is to cascade a notch filter with
the plant. Using the notch filter,

GnðsÞ ¼ s2 þ 16sþ 9200

ðsþ 60Þ2

do the following:

a. Design a PD controller to yield a settling time of
approximately 0.3 second with no more then
60% overshoot.

b. Add a PI controller to yield zero steady-state
error for step inputs.

c. Use MATLAB to plot the PID/
notch-compensated closed-
loop step response.

56. Control of HIV/AIDS. It was shown in Chapter 6,
Problem 68, that when the virus levels in an HIV/
AIDS patient are controlled using RTIs the linear-
ized plant model is

PðsÞ ¼ YðsÞ
U1ðsÞ ¼

�520s� 10:3844

s3 þ 2:6817s2 þ 0:11sþ 0:0126
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Assume that the system is embedded in a configu-
ration, such as the one shown in Figure P9.1, where
GðsÞ ¼ GcðsÞ PðsÞ. Here, Gc(s) is a cascade compen-
sator. For simplicity in this problem, choose the dc
gain of Gc(s) less than zero to obtain a negative-
feedback system (the negative signs of Gc(s) and
P(s) cancel out) (Craig, I. K., 2004).

a. Consider the uncompensated system with
GcðsÞ ¼ �K. Find the value of K that will place
all closed-loop poles on the real axis.

b. Use MATLAB to simulate the unit
step response of the gain-com-
pensated system. Note the %OS and the Ts
from the simulation.

c. Design a PI compensator so that the steady-state
error for step inputs is zero. Choose a gain value
to make all poles real.

d. UseMATLABtosimulatethedesign
in Part c for a unit step input.
Compare the simulation to Part b.

57. Hybrid vehicle. In the previous chapter, we used
the root locus to design a proportional controller
for the speed control of an HEV. We rearranged
the block diagram to be a unity feedback system,
as shown in the block diagram of Figure P7.34
(Preitl, 2007). The plant and compensator re-
sulted in

GðsÞ ¼ Kðsþ 0:60Þ
ðsþ 0:5858Þðsþ 0:0163Þ

and we found that K¼ 0.78 resulted in a critically
damped system.

a. Use this design to itemize the performance
specifications by filling in a table, similar to
Table 9.5, under the column Uncompensated.
Take advantage of the results from Chapter 8
or use MATLAB to find the entries. Plot c(t)
for r(t) ¼ 4 u(t) volts.

b. Now assume that the system
specifications require
zero steady-state error for step
inputs,a steady-state error for ramp
inputs�2%,a%OS�4.32%,andasettling
time �4 sec. It should be evident
thatthisisnotaccomplishedwithapro-
portional controller. Thus, start by
designing a PI controller to meet the

requirements. If necessary add a PD
mode to get a PID controller. Simulate
your final design using MATLAB. Fill in
the results of this design in the second
column of your table with the heading
Compensated.

c. Now note the following limitations of linear
control system modeling:

(1) No limit is set on system variables. For
example, vehicle acceleration as well as mo-
tor and power amplifier current, torque or
power do not have upper limits.

(2) It is assumed that to improve the speed of
response in Part b, we could place the PI
controller’s zero on top of the pole closest
to the origin. Realistically, such pole-zero
cancellation is not always possible to
maintain.

If you do not expand your
model beyond the described
limitations if required for accu-
racy, unrealistic response charac-
teristics, such as rise and settling
times could result. Look at your
design results including response
curves. Are they realistic? If not,
revise your Simulink model,which
you developed for Problem 5.81,as
follows:

i. Represent the motor armature as a
first-order system with a unity
steady-state gain and a time con-
stant of 50 ms,which avoids the
creation of internal algebraic
closed-loops and shouldhavenegli-
gible effect on system response;

ii. Add a saturation element at the out-
put of the motor armature and set it
to an upper limit of 250 A;

iii. Use the following PI settings. The
PI settings of the speed controller
are P¼61 and I¼0.795. The PI set-
tings of the torque controller are
P¼10 and I¼6;

iv. Run the modified model and comment
on the graphs obtained for motor
current, car acceleration, and
speed.
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Cyber Exploration Laboratory

Experiment 9.1

Objectives To perform a trade-off study for lead compensation. To design a PI
controller and see its effect upon steady-state error.

Minimum Required Software Packages MATLAB, and the Control Sys-
tem Toolbox

Prelab

1. How many lead compensator designs will meet the transient response specifica-
tions of a system?

2. What differences do the lead compensators of Prelab 1 make?

3. Design a lead compensator for a unity negative feedback system with a forward

transfer function of GðsÞ ¼ K

sðsþ 3Þðsþ 6Þ to meet the following specifications:

percent overshoot ¼ 20%; settling time ¼ 2 seconds. Specify the required gain,
K. Estimate the validity of the second-order approximation.

4. What is the total angular contribution of the lead compensator of Prelab 3?

5. Determine the pole and zero of two more lead compensators that will meet the
requirements of Prelab 3.

6. What is the expected steady-state error for a step input for each of the lead-
compensated systems?

7. What is the expected steady-state error for a ramp input for each of the lead-
compensated systems?

8. Select one of the lead compensator designs and specify a PI controller that can be
cascaded with the lead compensator that will produce a system with zero steady-
state error for both step and ramp inputs.

Lab

1. Using the SISO Design Tool, create the design in Prelab 3 and plot the root locus,
step response, and ramp response. Take data to determine the percent overshoot,
settling time, and step and ramp steady-state errors. Record the gain, K.

2. Repeat Lab 1 for each of the designs in Prelab 5.

3. For the design selected in Prelab 8, use the SISO Design Tool and insert the PI
controller. Plot the step response and measure the percent overshoot, settling
time, and steady-state error. Also, plot the ramp response for the design and
measure the steady-state error.

4. Plot the step and ramp responses for two more values of the PI controller zero.

Postlab

1. Make a table showing calculated and actual values for percent overshoot, settling
time, gain, K, steady-state error for step inputs, and steady-state error for ramp
inputs. Use the three systems without the PI controller and the single system with
the PI controller from Lab 3.

2. Itemize the benefits of each system without the PI controller.

3. Choose a final design and discuss the reasons for your choice.
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Experiment 9.2

Objective To design a PID controller via LabVIEW

Minimum Required Software Packages LabVIEW with the Control De-
sign and Simulation Module

Prelab

1. Perform Cyber Exploration Laboratory Experiment 8.3.

2. Use the system described in Cyber Exploration Laboratory Experiment 8.3 and
replace the controller described there, GcðsÞ ¼ KDsþKP, with a PID controller.

3. Design the controller to meet the following requirements: (1) shorten the settling
time found in the design of Cyber Exploration Laboratory Experiment 8.3 to less
than 1 sec., and (2) limit the percent overshoot to no more than 5%.

4. Design a LabVIEW VI to test your design. The front panel inputs will be the PID
gains and the numerator and denominator of the plant. The indicators will be the
transfer functions of the plant, PID controller, and closed-loop system. Finally,
provide an indicator for the step-response graph.

Lab Run your LabVIEW VI and obtain the step response of the closed-loop
system.

Postlab Compare the transient and steady-state error performance between the
closed-loop step responses of Cyber Exploration Laboratory Experiment 8.3 and
this experiment.

Bibliography
Bittanti, S., Dell’Orto, F., Di Carlo, A., and Savaresi, S. M. Notch Filtering and Multirate

Control for Radial Tracking in High Speed DVD-Players. IEEE Transactions on Consumer
Electronics, vol. 48, 2002, pp. 56–62.

Budak, A. Passive and Active Network Analysis and Synthesis. Houghton Mifflin, Boston,
MA, 1974.

Cho, D., Kato, Y., and Spilman, D. Sliding Mode and Classical Controllers in Magnetic
Levitation Systems. IEEE Control Systems, February 1993, pp. 42–48.

Craig, I. K., Xia, X., and Venter, J. W. Introducing HIV/AIDS Education into the Electrical
Engineering Curriculum at the University of Pretoria. IEEE Transactions on Education,
vol. 47, no. 1, February 2004, pp. 65–73.

Craig, J. J. Introduction to Robotics. Mechanics and Control, 3d ed. Prentice Hall, Upper
Saddle River, NJ, 2005.

D’Azzo, J. J., and Houpis, C. H. Feedback Control System Analysis and Synthesis, 2d ed.
McGraw-Hill, New York, 1966.

Dorf, R. C. Modern Control Systems, 5th ed. Addison-Wesley, Reading, MA, 1989.

Hostetter, G. H., Savant, C. J., Jr., and Stefani, R. T. Design of Feedback Control Systems,
2d ed. Saunders College Publishing, New York, 1989.

Johnson, H. et al. Unmanned Free-Swimming Submersible (UFSS) System Description. NRL
Memorandum Report 4393. Naval Research Laboratory, Washington, D.C., 1980.

Karlsson, P., and Svensson, J. DC Bus Voltage Control for a Distributed Power System, IEEE
Trans. on Power Electronics, vol. 18, no. 6, 2003, pp. 1405–1412.

Bibliography 531



Apago PDF Enhancer

E1C09 11/03/2010 13:30:21 Page 532

Khodabakhshian, A., and Golbon, N. Design of a New Load Frequency PID Controller Using
QFT. Proceedings of the 13thMediterranean Conference on Control and Automation, 2005,
pp. 970–975.

Kuo, B. C. Automatic Control Systems, 7th ed. Prentice Hall, Upper Saddle River, NJ, 1995.

Monahemi, M. M., Barlow, J. B., and O’Leary, D. P. Design of Reduced-Order Observers with
Precise Loop Transfer Recovery. Journal of Guidance, Control, andDynamics, vol. 15, no. 6,
November–December 1992, pp. 1320–1326.

O’Connor, D. N., Eppinger, S. D., Seering, W. P., and Wormly, D. N. Active Control of a High-
Speed Pantograph. Journal of Dynamic Systems, Measurements, and Control, vol. 119,
March 1997, pp. 1–4.

Ogata, K. Modern Control Engineering, 2d ed. Prentice Hall, Upper Saddle River, NJ, 1990.
€Ozel, T. Precision Tracking Control of a Horizontal Arm Coordinate Measuring Machine.
Proceedings of the IEEE Conference on Control Applications, 2003, pp. 103–108.

Pounds, P. E. I., Mahony, R. E., and Corke, P. I.; Design of a Static Thruster for Microair
Vehicle Rotorcraft. Journal of Aerospace Engineering, vol. 22, no. 1, 2009, pp. 85–94.

Preitl, Z., Bauer, P., and Bokor, J. A Simple Control Solution for Traction Motor Used in
Hybrid Vehicles. Fourth International Symposium on Applied Computational Intelligence
and Informatics. IEEE. 2007.

Romagnoli, J. A., and Palazoglu, A. Introduction to Process Control. CRC Press, Boca Raton,
FL, 2006.

Smith, C. A. Automated Continuous Process Control. Wiley, New York, 2002.

Thomas, B., Soleimani-Mosheni, M., and Fahl�en, P. Feed-forward in Temperature Control of
Buildings. Energy and Buildings, vol. 37, 2005, pp. 755–761.

Van de Vegte, J. Feedback Control Systems, 2d ed. Prentice Hall, Upper Saddle River, NJ, 1990.

532 Chapter 9 Design via Root Locus



Apago PDF Enhancer

E1C10 10/27/2010 17:21:8 Page 533

Frequency Response Techniques

10

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Define and plot the frequency response of a system (Section 10.1)

� Plot asymptotic approximations to the frequency response of a system (Section 10.2)

� Sketch a Nyquist diagram (Section 10.3–10.4)

� Use the Nyquist criterion to determine the stability of a system (Section 10.5)

� Find stability and gain and phase margins using Nyquist diagrams and Bode plots
(Sections 10.6–10.7)

� Find the bandwidth, peak magnitude, and peak frequency of a closed-loop fre-
quency response given the closed-loop time response parameters of peak time,
settling time, and percent overshoot (Section 10.8)

� Find the closed-loop frequency response given the open-loop frequency response
(Section 10.9)

� Find the closed-loop time response parameters of peak time, settling time, and
percent overshoot given the open-loop frequency response (Section 10.10)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with a case
study as follows:

� Given the antenna azimuth position control system shown on the front endpapers
and using frequency response methods, you will be able to find the range of gain, K,
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for stability. You will also be able to find percent overshoot, settling time, peak time,
and rise time, given K.

10.1 Introduction

The root locus method for transient design, steady-state design, and stability was
covered in Chapters 8 and 9. In Chapter 8, we covered the simple case of design
through gain adjustment, where a trade-off was made between a desired transient
response and a desired steady-state error. In Chapter 9, the need for this trade-off
was eliminated by using compensation networks so that transient and steady-state
errors could be separately specified and designed. Further, a desired transient
response no longer had to be on the original system’s root locus.

This chapter and Chapter 11 present the design of feedback control systems
through gain adjustment and compensation networks from another perspective—
that of frequency response. The results of frequency response compensation tech-
niques are not new or different from the results of root locus techniques.

Frequency response methods, developed by Nyquist and Bode in the 1930s, are
older than the root locus method, which was discovered by Evans in 1948 (Nyquist,
1932; Bode, 1945). The older method, which is covered in this chapter, is not as
intuitive as the root locus. However, frequency response yields a new vantage point
from which to view feedback control systems. This technique has distinct advantages
in the following situations:

1. When modeling transfer functions from physical data, as shown in Figure 10.1

2. When designing lead compensators to meet a steady-state error requirement and
a transient response requirement

3. When finding the stability of nonlinear systems

4. In settling ambiguities when sketching a root locus

FIGURE 10.1 National
Instruments PXI, Compact
RIO, Compact DAQ, and USB
hardware plantforms (shown
from left to right) couple with
NI LabVIEW software to
provide stimulus and acquire
signals from physical systems.
NI LabVIEW can then be used
to analyze data, determine the
mathematical model, and
prototype and deploy a
controller for the
physical system (Courtesy National
Instruments # 2010).
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We first discuss the concept of frequency response, define frequency response,
derive analytical expressions for the frequency response, plot the frequency re-
sponse, develop ways of sketching the frequency response, and then apply the
concept to control system analysis and design.

The Concept of Frequency Response
In the steady state, sinusoidal inputs to a linear system generate sinusoidal responses
of the same frequency. Even though these responses are of the same frequency as the
input, they differ in amplitude and phase angle from the input. These differences are
functions of frequency.

Before defining frequency response, let us look at a convenient representation
of sinusoids. Sinusoids can be represented as complex numbers called phasors. The
magnitude of the complex number is the amplitude of the sinusoid, and the angle of
the complex number is the phase angle of the sinusoid. Thus, M1 cos ðvt þ f1Þ can be
represented as M1—f1 where the frequency, v, is implicit.

Since a system causes both the amplitude and phase angle of the input to be
changed, we can think of the system itself as represented by a complex number,
defined so that the product of the input phasor and the system function yields the
phasor representation of the output.

Consider the mechanical system of Figure 10.2(a). If the input force, f(t), is
sinusoidal, the steady-state output response, x(t), of the system is also sinusoidal and at
the same frequency as the input. In Figure 10.2(b) the input and output sinusoids are
represented by complex numbers, or phasors,MiðvÞ—fiðvÞ and MoðvÞ—foðvÞ, respec-
tively. Here theM’s are the amplitudes of the sinusoids, and the f’s are the phase angles

f(t) = Mi cos(   t+   i)

ωo(  )
(  )

 Mass

Viscous damper

Spring

(a)

Input

t

x(t)

(c)

∠ 

ω φ

ωMi(  ) φ

φ

ωi(  )
∠ ωM(  ) φ ω

∠ Mo(  )

Mo = Mi M

f(t)

φ i

φo =
φ φ  i  +

φ

Mi

t

Output

(b)

ω

x (t) =Mo cos(ω +   o) 

FIGURE 10.2 Sinusoidal
frequency response: a. system;
b. transfer function; c. input and
output waveforms
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of the sinusoids as shown in Figure 10.2(c). Assume that the system is represented by the
complex number,MðvÞ—fðvÞ. The output steady-state sinusoid is found by multiplying
the complex number representation of the input by the complex number representation
of the system. Thus, the steady-state output sinusoid is

MoðvÞ—foðvÞ ¼ MiðvÞMðvÞ—½fiðvÞ þ fðvÞ� ð10:1Þ

From Eq. (10.1) we see that the system function is given by

MðvÞ ¼ MoðvÞ
MiðvÞ ð10:2Þ

and

fðvÞ ¼ foðvÞ � fiðvÞ ð10:3Þ

Equations (10.2) and (10.3) form our definition of frequency response. We call MðvÞ
the magnitude frequency response and fðvÞ the phase frequency response. The
combination of the magnitude and phase frequency responses is called the frequency
response and is MðvÞ—fðvÞ.

In other words, we define the magnitude frequency response to be the ratio of
the output sinusoid’s magnitude to the input sinusoid’s magnitude. We define the
phase response to be the difference in phase angle between the output and the input
sinusoids. Both responses are a function of frequency and apply only to the steady-
state sinusoidal response of the system.

Analytical Expressions for Frequency Response
Now that we have defined frequency response, let us obtain the analytical expression
for it (Nilsson, 1990). Later in the chapter, we will use this analytical expression to
determine stability, transient response, and steady-state error. Figure 10.3 shows a

system, G(s), with the Laplace transform of a general sinusoid, rðtÞ ¼ A cos vt þ
B sin vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos ½vt � tan� 1ðB=AÞ� as the input. We can represent the input

as a phasor in three ways: (1) in polar form, Mi—fi, where Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and fi ¼ � tan� 1ðB=AÞ; (2) in rectangular form, A� jB; and (3) using Euler’s
formula, Miejfi .

We now solve for the forced response portion of C(s), from which we evaluate
the frequency response. From Figure 10.3,

CðsÞ ¼ Asþ Bv

ðs2 þ v2ÞGðsÞ ð10:4Þ

We separate the forced solution from the transient solution by performing a partial-
fraction expansion on Eq. (10.4). Thus,

CðsÞ ¼ Asþ Bv

ðsþ jvÞðs� jvÞGðsÞ

¼ K1

sþ jv
þ K2

s� jv
þ Partial fraction terms from GðsÞ

ð10:5Þ

ω
As + B
s2 +    2

G(s) 
C(s) R(s) = ω

FIGURE 10.3 System with
sinusoidal input
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where

K1 ¼ Asþ Bv

s� jv
GðsÞ

����
s!�jv

¼ 1

2
ðAþ jBÞGð�jvÞ ¼ 1

2
Mie

�jfiMGe
�jfG

¼ MiMG

2
e�jðfiþfGÞ

ð10:6aÞ

K2 ¼ Asþ Bv

sþ jv
GðsÞ

����
s!þjv

¼ 1

2
ðA� jBÞGðjvÞ ¼ 1

2
Mie

jfiMGe
jfG

¼ MiMG

2
ejðfiþfGÞ ¼ K�

1

ð10:6bÞ

For Eqs. (10.6), K�
1 is the complex conjugate of K1,

MG ¼ jGðjvÞj ð10:7Þ
and

fG ¼ angle of GðjvÞ ð10:8Þ
The steady-state response is that portion of the partial-fraction expansion that

comes from the input waveform’s poles, or just the first two terms of Eq. (10.5).
Hence, the sinusoidal steady-state output, Css(s), is

CssðsÞ ¼ K1

sþ jv
þ K2

s� jv
ð10:9Þ

Substituting Eqs. (10.6) into Eq. (10.9), we obtain

CssðsÞ ¼
MiMG

2
e�jðfiþfGÞ

sþ jv
þ
MiMG

2
ejðfiþfGÞ

s� jv
ð10:10Þ

Taking the inverse Laplace transformation, we obtain

cðtÞ ¼ MiMG
e�jðvtþfiþfGÞ þ ejðvtþfiþfGÞ

2

� �

¼ MiMG cos ðvt þ fi þ fGÞ
ð10:11Þ

which can be represented in phasor form as Mo—fo ¼ ðM1—f1ÞðMG—fGÞ, where
MG—fG is the frequency response function. But from Eqs. (10.7) and (10.8),
MG—fG ¼ GðjvÞ. In other words, the frequency response of a system whose transfer
function is G(s) is

Gð jvÞ ¼ GðsÞjs!jv ð10:12Þ

Plotting Frequency Response
GðjvÞ ¼ MGðvÞ < fGðvÞ can be plotted in several ways; two of them are (1) as a
function of frequency, with separate magnitude and phase plots; and (2) as a polar plot,
where the phasor length is the magnitude and the phasor angle is the phase. When
plotting separate magnitude and phase plots, the magnitude curve can be plotted in
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decibels (dB) vs. log v, where dB ¼ 20 log M.1 The phase curve is plotted as phase
angle vs. log v. The motivation for these plots is shown in Section 10.2.

Using the concepts covered in Section 8.1, data for the plots also can be
obtained using vectors on the s-plane drawn from the poles and zeros of G(s) to the
imaginary axis. Here the magnitude response at a particular frequency is the product
of the vector lengths from the zeros of G(s) divided by the product of the vector
lengths from the poles of G(s) drawn to points on the imaginary axis. The phase
response is the sum of the angles from the zeros of G(s) minus the sum of the angles
from the poles of G(s) drawn to points on the imaginary axis. Performing this
operation for successive points along the imaginary axis yields the data for the
frequency response. Remember, each point is equivalent to substituting that point,
s ¼ jv1, into G(s) and evaluating its value.

Theplotsalsocanbemadefromacomputerprogramthatcalculatesthefrequency
response. For example, the root locus program discussed in Appendix H at www.wiley.
com/college/nise can be used with test points that are on the imaginary axis. The
calculatedKvalue at each frequency is thereciprocal of the scaledmagnitude response,
and the calculated angle is, directly, the phase angle response at that frequency.

The following example demonstrates how to obtain an analytical expression
for frequency response and make a plot of the result.

Example 10.1

Frequency Response from The Transfer Function

PROBLEM: Find the analytical expression for the magnitude frequency response
and the phase frequency response for a system GðsÞ ¼ 1=ðsþ 2Þ. Also, plot both the
separate magnitude and phase diagrams and the polar plot.

1 Throughout this book, ‘‘log’’ is used to mean log10, or logarithm to the base 10.
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FIGURE 10.4 Frequency response plots for GðsÞ ¼ 1=ðsþ 2Þ: separate magnitude and phase
diagrams.
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SOLUTION: First substitute s ¼ jv in the system function and obtain
GðjvÞ ¼ 1=ðjvþ 2Þ ¼ ð2 � jvÞ=ðv2 þ 4Þ. The magnitude of this complex number,

jGðjvÞj ¼ MðvÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 þ 4Þ

p
, is the magnitude frequency response. The phase

angle of GðjvÞ; fðvÞ ¼ �tan� 1ðv=2Þ, is the phase frequency response.
GðjvÞ can be plotted in two ways: (1) in separate magnitude and phase plots

and (2) in a polar plot. Figure 10.4 shows separate magnitude and phase diagrams,

where the magnitude diagram is 20 log MðvÞ ¼ 20 log ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4

p Þ vs. log v,
and the phase diagram is fðvÞ ¼ �tan� 1ðv=2Þ vs. log v. The polar plot, shown in

Figure 10.5, is a plot of MðvÞ < fðvÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4

p
< �tan� 1ðv=2Þ for different v.

In the previous example, we plotted the separate magnitude and phase re-
sponses, as well as the polar plot, using the mathematical expression for the frequency
response. Either of these frequency response presentations can also be obtained from
the other. You should practice this conversion by looking at Figure 10.4 and obtaining
Figure 10.5 using successive points. For example, at a frequency of 1 rad/s in Fig-
ure 10.4, the magnitude is approximately �7 dB, or 10�7=20 ¼ 0:447. The phase plot at
1 rad/s tells us that the phase is about �26�. Thus, on the polar plot a point of radius
0.447 at an angle of�26� is plotted and identified as 1 rad/s. Continuing in like manner
for other frequencies in Figure 10.4, you can obtain Figure 10.5.

Similarly, Figure 10.4 can be obtained from Figure 10.5 by selecting a sequence
of points in Figure 10.5 and translating them to separate magnitude and phase values.
For example, drawing a vector from the origin to the point at 2 rad/s in Figure 10.5,
we see that the magnitude is 20 log 0:35 ¼ �9:12 dB and the phase angle is about
�45�. The magnitude and phase angle are then plotted at 2 rad/s in Figure 10.4 on the
separate magnitude and phase curves.

Skill-Assessment Exercise 10.1

PROBLEM:

a. Find analytical expressions for the magnitude and phase responses of

GðsÞ ¼ 1

ðsþ 2Þðsþ 4Þ

0
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FIGURE 10.5 Frequency response plot for GðsÞ ¼ 1=ðsþ 2Þ: polar plot
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b. Make plots of the log-magnitude and the phase, using log-frequency in rad/s
as the ordinate.

c. Make a polar plot of the frequency response.

ANSWERS:

a. MðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8 � v2Þ2 þ ð6vÞ2

q ; for v � ffiffiffi
8

p
: fðvÞ ¼ �arctan

6v

8 � v2

� �
, for

v >
ffiffiffi
8

p
: fðvÞ ¼ � pþ arctan

6v

8 � v2

� �� �

b. See the answer at www.wiley.com/college/nise.

c. See the answer at www.wiley.com/college/nise.

The complete solution is at www.wiley.com/college/nise.

In this section, we defined frequency response and saw how to obtain an
analytical expression for the frequency response of a system simply by substituting
s ¼ jv into G(s). We also saw how to make a plot of GðjvÞ. The next section shows
how to approximate the magnitude and phase plots in order to sketch them
rapidly.

10.2 Asymptotic Approximations: Bode Plots

The log-magnitude and phase frequency response curves as functions of log v are
called Bode plots or Bode diagrams. Sketching Bode plots can be simplified because
they can be approximated as a sequence of straight lines. Straight-line approxima-
tions simplify the evaluation of the magnitude and phase frequency response.

Consider the following transfer function:

GðsÞ ¼ Kðsþ z1Þðsþ z2Þ � � � ðsþ zkÞ
smðsþ p1Þðsþ p2Þ � � � ðsþ pnÞ

ð10:13Þ

The magnitude frequency response is the product of the magnitude frequency
responses of each term, or

jGðjvÞj ¼ Kjðsþ z1Þjjðsþ z2Þj � � � jðsþ zkÞj
jsmjjðsþ p1Þjjðsþ p2Þj � � � jðsþ pnÞj

����
s!jv

ð10:14Þ

Thus, if we know the magnitude response of each pole and zero term, we can find the
total magnitude response. The process can be simplified by working with the
logarithm of the magnitude since the zero terms’ magnitude responses would be
added and the pole terms’ magnitude responses subtracted, rather than, respectively,
multiplied or divided, to yield the logarithm of the total magnitude response.
Converting the magnitude response into dB, we obtain

20 log jGðjvÞj ¼ 20 log K þ 20 log jðsþ z1Þj þ 20 log jðsþ z2Þj
þ � � � � 20 log jsmj � 20 log jðsþ p1Þj � � � � js!jv

ð10:15Þ
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Thus, if we knew the response of each term, the algebraic sum would yield the total
response in dB. Further, if we could make an approximation of each term that would
consist only of straight lines, graphical addition of terms would be greatly simplified.

Before proceeding, let us look at the phase response. From Eq. (10.13), the
phase frequency response is the sum of the phase frequency response curves of the
zero terms minus the sum of the phase frequency response curves of the pole terms.
Again, since the phase response is the sum of individual terms, straight-line
approximations to these individual responses simplify graphical addition.

Let us now show how to approximate the frequency response of simple pole
and zero terms by straight-line approximations. Later we show how to combine these
responses to sketch the frequency response of more complicated functions. In
subsequent sections, after a discussion of the Nyquist stability criterion, we learn
how to use the Bode plots for the analysis and design of stability and transient
response.

Bode Plots for G(s) ¼ (s þ a)
Consider a function, GðsÞ ¼ ðsþ aÞ, for which we want to sketch separate logarith-
mic magnitude and phase response plots. Letting s ¼ jv, we have

Gð jvÞ ¼ ðjvþ aÞ ¼ a j
v

a
þ 1

� 	
ð10:16Þ

At low frequencies when v approaches zero,

Gð jvÞ 	 a ð10:17Þ
The magnitude response in dB is

20 log M ¼ 20 log a ð10:18Þ
where M ¼ jGðjvÞj and is a constant. Eq. (10.18) is shown plotted in Figure 10.6(a)
from v ¼ 0:01a to a.

At high frequencies where v 
 a, Eq. (10.16) becomes

GðjvÞ 	 a
jv

a

� �
¼ a

v

a

� 	
— 90� ¼ v—90� ð10:19Þ

The magnitude response in dB is

20 log M ¼ 20 log aþ 20 log
v

a
¼ 20 log v ð10:20Þ

where a < v < 1. Notice from the middle term that the high-frequency approxi-
mation is equal to the low-frequency approximation when v ¼ a, and increases
for v > a.

If we plot dB, 20 log M, against log v, Eq. (10.20) becomes a straight line:

y ¼ 20x ð10:21Þ
where y ¼ 20 log M; and x ¼ log v. The line has a slope of 20 when plotted as dB vs.
log v.

Since each doubling of frequency causes 20 log v to increase by 6 dB, the line
rises at an equivalent slope of 6 dB/octave, where an octave is a doubling of
frequency. This rise begins at v ¼ a, where the low-frequency approximation equals
the high-frequency approximation.
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We call the straight-line approximations asymptotes. The low-frequency ap-
proximation is called the low-frequency asymptote, and the high-frequency approxi-
mation is called the high-frequency asymptote. The frequency, a, is called the break
frequency because it is the break between the low- and the high-frequency
asymptotes.

Many times it is convenient to draw the line over a decade rather than an
octave, where a decade is 10 times the initial frequency. Over one decade, 20 log v

increases by 20 dB. Thus, a slope of 6 dB/octave is equivalent to a slope of 20 dB/
decade. The plot is shown in Figure 10.6(a) from v ¼ 0:01a to 100a.

Let us now turn to the phase response, which can be drawn as follows. At the
break frequency, a, Eq. (10.16) shows the phase to be 45�. At low frequencies,
Eq. (10.17) shows that the phase is 0�. At high frequencies, Eq. (10.19) shows that the
phase is 90�. To draw the curve, start one decade ð1=10Þ below the break frequency,
0.1a, with 0� phase, and draw a line of slope þ45� /decade passing through 45� at the
break frequency and continuing to 90� one decade above the break frequency, 10a.
The resulting phase diagram is shown in Figure 10.6(b).

It is often convenient to normalize the magnitude and scale the frequency so
that the log-magnitude plot will be 0 dB at a break frequency of unity. Normalizing
and scaling helps in the following applications:

1. When comparing different first- or second-order frequency response plots, each
plot will have the same low-frequency asymptote after normalization and the
same break frequency after scaling.
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FIGURE 10.6 Bode plots of ðsþ aÞ: a. magnitude plot; b. phase plot
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2. When sketching the frequency response of a function such as Eq. (10.13), each
factor in the numerator and denominator will have the same low-frequency
asymptote after normalization. This common low-frequency asymptote makes it
easier to add components to obtain the Bode plot.

To normalize ðsþ aÞ, we factor out the quantity a and form a½ðs=aÞ þ 1�. The
frequency is scaled by defining a new frequency variable, s1 ¼ s=a. Then
the magnitude is divided by the quantity a to yield 0 dB at the break frequency.
Hence, the normalized and scaled function is ðs1 þ 1Þ. To obtain the original
frequency response, the magnitude and frequency are multiplied by the quantity a.

We now use the concepts of normalization and scaling to compare the asymptotic
approximation to the actual magnitude and phase plot for ðsþ aÞ. Table 10.1 shows the
comparison for the normalized and scaled frequency response of ðsþ aÞ. Notice that
the actual magnitude curve is never greater than 3.01 dB from the asymptotes. This
maximum difference occurs at the break frequency. The maximum difference for the
phase curve is 5.71�, which occurs at the decades above and below the break frequency.
For convenience, the data in Table 10.1 is plotted in Figures 10.7 and 10.8.

We now find the Bode plots for other common transfer functions.

TABLE 10.1 Asymptotic and actual normalized and scaled frequency response data
for ðsþ aÞ
Frequency

a
20 log

M

a
(dB) Phase (degrees)

(rad/s) Asymptotic Actual Asymptotic Actual

0.01 0 0.00 0.00 0.57

0.02 0 0.00 0.00 1.15

0.04 0 0.01 0.00 2.29

0.06 0 0.02 0.00 3.43

0.08 0 0.03 0.00 4.57

0.1 0 0.04 0.00 5.71

0.2 0 0.17 13.55 11.31

0.4 0 0.64 27.09 21.80

0.6 0 1.34 35.02 30.96

0.8 0 2.15 40.64 38.66

1 0 3.01 45.00 45.00

2 6 6.99 58.55 63.43

4 12 12.30 72.09 75.96

6 15.56 15.68 80.02 80.54

8 18 18.13 85.64 82.87

10 20 20.04 90.00 84.29

20 26.02 26.03 90.00 87.14

40 32.04 32.04 90.00 88.57

60 35.56 35.56 90.00 89.05

80 38.06 38.06 90.00 89.28

100 40 40.00 90.00 89.43
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Bode Plots for G(s) ¼ 1/(sþa)
Let us find the Bode plots for the transfer function

GðsÞ ¼ 1

ðsþ aÞ ¼
1

a
s

a
þ 1

� 	 ð10:22Þ

Actual

Asymptotic approximation
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FIGURE 10.7 Asymptotic and actual normalized and scaled magnitude response of ðsþ aÞ
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FIGURE 10.8 Asymptotic and actual normalized and scaled phase response of ðsþ aÞ
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This function has a low-frequency asymptote of 20 log ð1=aÞ, which is found by
letting the frequency, s, approach zero. The Bode plot is constant until the break
frequency, a rad/s, is reached. The plot is then approximated by the high-frequency
asymptote found by letting s approach 1. Thus, at high frequencies

GðjvÞ ¼ 1

a
s

a

� 	
����
s!jv

¼ 1

a
jv

a

� � ¼
1

a
v

a

—� 90� ¼ 1

v
—� 90� ð10:23Þ

or, in dB,

20 log M ¼ 20 log
1

a
� 20 log

v

a
¼ �20 log v ð10:24Þ

Notice from the middle term that the high-frequency approximation equals the low-
frequency approximation when v ¼ a, and decreases for v > a. This result is similar
to Eq. (10.20), except the slope is negative rather than positive. The Bode log-
magnitude diagram will decrease at a rate of 20 dB/decade rather than increase at a
rate of 20 dB/decade after the break frequency.

The phase plot is the negative of the previous example since the function is the
inverse. The phase begins at 0� and reaches �90� at high frequencies, going through
�45� at the break frequency. Both the Bode normalized and scaled log-magnitude
and phase plot are shown in Figure 10.9(d).

Bode Plots for G(s)¼ s
Our next function, GðsÞ ¼ s, has only a high-frequency asymptote. Letting s ¼ jv,
the magnitude is 20 log v, which is the same as Eq. (10.20). Hence, the Bode
magnitude plot is a straight line drawn with a þ20 dB=decade slope passing through
zero dB when v ¼ 1. The phase plot, which is a constant þ90�, is shown with the
magnitude plot in Figure 10.9(a).

Bode Plots for G(s)¼1/s
The frequency response of the inverse of the preceding function, GðsÞ ¼ 1=s, is
shown in Figure 10.9(b) and is a straight line with a �20 dB=decade slope passing
through zero dB at v ¼ 1. The Bode phase plot is equal to a constant �90�.

We have covered four functions that have first-order polynomials in s in the
numerator or denominator. Before proceeding to second-order polynomials, let us

FIGURE 10.9 Normalized and
scaled Bode plots for
a.GðsÞ ¼ s;
b.GðsÞ ¼ 1=s;
(figure continues)
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look at an example of drawing the Bode plots for a function that consists of the
product of first-order polynomials in the numerator and denominator. The plots will
be made by adding together the individual frequency response curves.

Example 10.2

Bode Plots for Ratio of First-Order Factors

PROBLEM: Draw the Bode plots for the system shown in Figure 10.10, where
GðsÞ ¼ Kðsþ 3Þ=½sðsþ 1Þðsþ 2Þ�.
SOLUTION: We will make a Bode plot for the open-loop function
GðsÞ ¼ Kðsþ 3Þ=½sðsþ 1Þðsþ 2Þ�. The Bode plot is the sum of the Bode plots for
each first-order term. Thus, it is convenient to use the normalized plot for each of
these terms so that the low-frequency asymptote of each term, except the pole at the
origin, is at 0 dB, making it easier to add the components of the Bode plot. We rewrite
G(s) showing each term normalized to a low-frequency gain of unity. Hence,

GðsÞ ¼
3

2
K

s

3
þ 1

� 	

sðsþ 1Þ s

2
þ 1

� 	 ð10:25Þ

Now determine that the break frequencies are at 1, 2, and 3. The magnitude plot
should begin a decade below the lowest break frequency and extend a decade above
the highest break frequency. Hence, we choose 0.1 radian to 100 radians, or three
decades, as the extent of our plot.

Atv ¼ 0:1 the low-frequency value of the function is found from Eq. (10.25) using
the low-frequency values for all of the ½ðs=aÞ þ 1� terms, (that is, s ¼ 0) and the actual
value for the s term in the denominator. Thus, Gðj0:1Þ 	 3

2K=0:1 ¼ 15 K. The effect of
K is to move the magnitude curve up (increasing K) or down (decreasing K) by the
amount of 20 log K. K has no effect upon the phase curve. If we choose K ¼ 1, the
magnitude plot can be denormalized later for any value ofK that is calculated or known.

R(s) 

–

E(s)
G(s)

C(s)+

FIGURE 10.10 Closed-loop
unity feedback system

FIGURE 10.9 (Continued)
c.GðsÞ ¼ ðsþ aÞ;
d.GðsÞ ¼ 1=ðsþ aÞ
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Figure 10.11(a) shows each component of the Bode log-magnitude frequency
response. Summing the components yields the composite plot shown in Fig-
ure 10.11(b). The results are summarized in Table 10.2, which can be used to
obtain the slopes. Each pole and zero is itemized in the first column. Reading across
the table shows its contribution at each frequency. The last row is the sum of the
slopes and correlates with Figure 10.11(b). The Bode magnitude plot for K ¼ 1
starts atv ¼ 0:1 with a value of 20 log 15 ¼ 23:52 dB, and decreases immediately at a
rate of �20 dB=decade, due to the s term in the denominator. At v ¼ 1, the ðsþ 1Þ
term in the denominator begins its 20 dB=decade downward slope and causes an
additional 20 dB=decade negative slope, or a total of �40 dB=decade. At v ¼ 2, the
term ½ðs=2Þ þ 1� begins its�20 dB=decade slope, adding yet another�20 dB=decade
to the resultant plot, or a total of �60 dB=decade slope that continues until v ¼ 3.
At this frequency, the ½ðs=3Þ þ 1� term in the numerator begins its positive
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FIGURE 10.11
Bode log-magnitude plot for
Example 10.2:
a. components;
b. composite

TABLE 10.2 Bode magnitude plot: slope contribution from each pole and zero in
Example 10.2

Frequency (rad/s)

Description
0.1 (Start:
Pole at 0)

1 (Start:
Pole at �1)

2 (Start:
Pole at �2)

3 (Start:
Zero at �3)

Pole at 0 �20 �20 �20 �20

Pole at �1 0 �20 �20 �20

Pole at �2 0 0 �20 �20

Zero at �3 0 0 0 20

Total slope (dB/dec) �20 �40 �60 �40
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20 dB=decade slope. The resultant magnitude plot, therefore, changes from a slope
of �60 dB=decade to �40 dB=decade at v ¼ 3, and continues at that slope since
there are no other break frequencies.

The slopes are easily drawn by sketching straight-line segments decreasing by
20 dB over a decade. For example, the initial �20 dB=decade slope is drawn from
23.52 dB atv ¼ 0:1, to 3.52 dB (a 20 dB decrease) atv ¼ 1. The�40 dB=decade slope
starting at v ¼ 1 is drawn by sketching a line segment from 3.52 dB at v ¼ 1, to
�36.48 dB (a 40 dB decrease) at v ¼ 10, and using only the portion from v ¼ 1 to
v ¼ 2. The next slope of �60 dB=decade is drawn by first sketching a line segment
from v ¼ 2 to v ¼ 20 (1 decade) that drops down by 60 dB, and using only that
portion of the line from v ¼ 2 to v ¼ 3. The final slope is drawn by sketching a line
segment fromv ¼ 3 tov ¼ 30 (1 decade) that drops by 40 dB. This slope continues to
the end of the plot.

Phase is handled similarly. However, the existence of breaks a decade below
and a decade above the break frequency requires a little more bookkeeping.
Table 10.3 shows the starting and stopping frequencies of the 45�=decade slope for

TABLE 10.3 Bode phase plot: slope contribution from each pole and zero in Example 10.2

Frequency (rad/s)

Description
0.1 (Start:
Pole at �1)

0.2 (Start:
Pole at �2)

0.3 (Start:
Pole at �3)

0 (End:
Pole at �1)

20 (End:
Pole at �2)

30 (End:
Zero at �3)

Pole at �1 �45 �45 �45 0
Pole at �2 �45 �45 �45 0
Zero at �3 45 45 45 0
Total slope (deg/dec) �45 �90 �45 0 45 0

FIGURE 10.12 Bode phase
plot for Example 10.2:
a. components;
b. composite (b)
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each of the poles and zeros. For example, reading across for the pole at �2, we see
that the �45� slope starts at a frequency of 0.2 and ends at 20. Filling in the rows for
each pole and then summing the columns yields the slope portrait of the resulting
phase plot. Looking at the row marked Total slope, we see that the phase plot will
have a slope of �45�=decade from a frequency of 0.1 to 0.2. The slope will then
increase to �90�=decade from 0.2 to 0.3. The slope will return to �45�=decade from
0.3 to 10 rad/s. A slope of 0 ensues from 10 to 20 rad/s, followed by a slope of
þ45�=decade from 20 to 30 rad/s. Finally, from 30 rad/s to infinity, the slope is
0�=decade.

The resulting component and composite phase plots are shown in Fig-
ure 10.12. Since the pole at the origin yields a constant �90� phase shift, the
plot begins at �90� and follows the slope portrait just described.

Bode Plots for G(s)¼ s2 þ 2zvnsþ v2
n

Now that we have covered Bode plots for first-order systems, we turn to the Bode
log-magnitude and phase plots for second-order polynomials in s. The second-order
polynomial is of the form

GðsÞ ¼ s2 þ 2zvnsþ v2
n ¼ v2

n

s2

v2
n

þ 2z
s

vn
þ 1

� �
ð10:26Þ

Unlike the first-order frequency response approximation, the difference between
the asymptotic approximation and the actual frequency response can be great for
some values of z. A correction to the Bode diagrams can be made to improve the
accuracy. We first derive the asymptotic approximation and then show the difference
between the asymptotic approximation and the actual frequency response curves.

At low frequencies, Eq. (10.26) becomes

GðsÞ 	 v2
n ¼ v2

n—0� ð10:27Þ

The magnitude, M, in dB at low frequencies therefore is

20 log M ¼ 20 log jGðjvÞj ¼ 20 log v2
n ð10:28Þ

At high frequencies,

GðsÞ 	 s2 ð10:29Þ

or

GðjvÞ 	 �v2 ¼ v2—180� ð10:30Þ

The log-magnitude is

20 log M ¼ 20 log jGðjvÞj ¼ 20 log v2 ¼ 40 log v ð10:31Þ

Equation (10.31) is a straight line with twice the slope of a first-order term (Eq.
(10.20)). Its slope is 12 dB/octave, or 40 dB/decade.
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The low-frequency asymptote (Eq. (10.27)) and the high-frequency asymptote
(Eq. (10.31)) are equal when v ¼ vn. Thus, vn is the break frequency for the second-
order polynomial.

For convenience in representing systems with different vn, we normalize and
scale our findings before drawing the asymptotes. Using the normalized and scaled
term of Eq. (10.26), we normalize the magnitude, dividing by v2

n, and scale the
frequency, dividing by vn. Thus, we plot Gðs1Þ=v2

n ¼ s2
1 þ 2zs1 þ 1, where

s1 ¼ s=vn. Gðs1Þ has a low-frequency asymptote at 0 dB and a break frequency of
1 rad/s. Figure 10.13(a) shows the asymptotes for the normalized and scaled magnitude
plot.

We now draw the phase plot. It is 0� at low frequencies (Eq. (10.27)) and 180� at
high frequencies (Eq. (10.30)). To find the phase at the natural frequency, first
evaluate GðjvÞ:

GðjvÞ ¼ s2 þ 2zvnsþ v2
njs!jv ¼ ðv2

n � v2Þ þ j2zvnv ð10:32Þ
Then find the function value at the natural frequency by substituting v ¼ vn. Since
the result is j2zv2

n, the phase at the natural frequency is þ90�. Figure 10.13(b) shows
the phase plotted with frequency scaled by vn. The phase plot increases at a rate of
90�=decade from 0.1 to 10 and passes through 90� at 1.

Corrections to Second-Order Bode Plots
Let us now examine the error between the actual response and the asymptotic
approximation of the second-order polynomial. Whereas the first-order polynomial
has a disparity of no more than 3.01 dB magnitude and 5.71� phase, the second-order
function may have a greater disparity, which depends upon the value of z.

FIGURE 10.13
Bode asymptotes for
normalized and scaled
GðsÞ ¼ s2 þ 2zvnsþ v2

n:
a. magnitude; b. phase
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From Eq. (10.32), the actual magnitude and phase for GðsÞ ¼ s2 þ 2zvnsþ v2
n

are, respectively,

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2

n � v2Þ2 þ ð2zvnvÞ2
q

ð10:33Þ

Phase ¼ tan� 1 2zvnv

v2
n � v2 ð10:34Þ

These relationships are tabulated in Table 10.4 for a range of values of z and plotted in
Figures 10.14 and 10.15 along with the asymptotic approximations for normalized

TABLE 10.4 Data for normalized and scaled log-magnitude and phase plots for ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
Freq.
v

vn

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1

Mag (dB)
z ¼ 0:2

Phase (deg)
z ¼ 0:2

Mag (dB)
z ¼ 0:3

Phase (deg)
z ¼ 0:3

0.10 �0.09 1.16 �0.08 2.31 �0.07 3.47

0.20 �0.35 2.39 �0.32 4.76 �0.29 7.13

0.30 �0.80 3.77 �0.74 7.51 �0.65 11.19

0.40 �1.48 5.44 �1.36 10.78 �1.17 15.95

0.50 �2.42 7.59 �2.20 14.93 �1.85 21.80

0.60 �3.73 10.62 �3.30 20.56 �2.68 29.36

0.70 �5.53 15.35 �4.70 28.77 �3.60 39.47

0.80 �8.09 23.96 �6.35 41.63 �4.44 53.13

0.90 �11.64 43.45 �7.81 62.18 �4.85 70.62

1.00 �13.98 90.00 �7.96 90.00 �4.44 90.00

1.10 �10.34 133.67 �6.24 115.51 �3.19 107.65

1.20 �6.00 151.39 �3.73 132.51 �1.48 121.43

1.30 �2.65 159.35 �1.27 143.00 0.35 131.50

1.40 0.00 163.74 0.92 149.74 2.11 138.81

1.50 2.18 166.50 2.84 154.36 3.75 144.25

1.60 4.04 168.41 4.54 157.69 5.26 148.39

1.70 5.67 169.80 6.06 160.21 6.64 151.65

1.80 7.12 170.87 7.43 162.18 7.91 154.26

1.90 8.42 171.72 8.69 163.77 9.09 156.41

2.00 9.62 172.41 9.84 165.07 10.19 158.20

3.00 18.09 175.71 18.16 171.47 18.28 167.32

4.00 23.53 176.95 23.57 173.91 23.63 170.91

5.00 27.61 177.61 27.63 175.24 27.67 172.87

6.00 30.89 178.04 30.90 176.08 30.93 174.13

7.00 33.63 178.33 33.64 176.66 33.66 175.00

8.00 35.99 178.55 36.00 177.09 36.01 175.64

9.00 38.06 178.71 38.07 177.42 38.08 176.14

10.00 39.91 178.84 39.92 177.69 39.93 176.53

(table continues)
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magnitude and scaled frequency. In Figure 10.14, which is normalized to the square of the
natural frequency, the normalized log-magnitude at the scaled natural frequency is
þ20 log 2z. The student should verify that the actual magnitude at the unscaled natural
frequency isþ20 log 2zv2

n. Table 10.4 and Figures 10.14 and 10.15 can be used to improve
accuracy when drawing Bode plots. For example, a magnitude correction of þ20 log 2z
can be made at the natural, or break, frequency on the Bode asymptotic plot.

Bode Plots for G(s) ¼ 1=(s2 þ 2zvnsþ v2
n)

Bode plots for GðsÞ ¼ 1=ðs2 þ 2zvnsþ v2
nÞ can be derived similarly to those for

GðsÞ ¼ s2 þ 2zvnsþ v2
n. We find that the magnitude curve breaks at the natural

frequency and decreases at a rate of �40 dB=decade. The phase plot is 0� at low

0.10 �0.04 5.77 0.00 8.05 0.09 11.42

0.20 �0.17 11.77 0.00 16.26 0.34 22.62

0.30 �0.37 18.25 0.02 24.78 0.75 33.40

0.40 �0.63 25.46 0.08 33.69 1.29 43.60

0.50 �0.90 33.69 0.22 43.03 1.94 53.13

0.60 �1.14 43.15 0.47 52.70 2.67 61.93

0.70 �1.25 53.92 0.87 62.51 3.46 69.98

0.80 �1.14 65.77 1.41 72.18 4.30 77.32

0.90 �0.73 78.08 2.11 81.42 5.15 83.97

1.00 0.00 90.00 2.92 90.00 6.02 90.00

1.10 0.98 100.81 3.83 97.77 6.89 95.45

1.20 2.13 110.14 4.79 104.68 7.75 100.39

1.30 3.36 117.96 5.78 110.76 8.60 104.86

1.40 4.60 124.44 6.78 116.10 9.43 108.92

1.50 5.81 129.81 7.76 120.76 10.24 112.62

1.60 6.98 134.27 8.72 124.85 11.03 115.99

1.70 8.10 138.03 9.66 128.45 11.80 119.07

1.80 9.17 141.22 10.56 131.63 12.55 121.89

1.90 10.18 143.95 11.43 134.46 13.27 124.48

2.00 11.14 146.31 12.26 136.97 13.98 126.87

3.00 18.63 159.44 19.12 152.30 20.00 143.13

4.00 23.82 165.07 24.09 159.53 24.61 151.93

5.00 27.79 168.23 27.96 163.74 28.30 157.38

6.00 31.01 170.27 31.12 166.50 31.36 161.08

7.00 33.72 171.70 33.80 168.46 33.98 163.74

8.00 36.06 172.76 36.12 169.92 36.26 165.75

9.00 38.12 173.58 38.17 171.05 38.28 167.32

10.00 39.96 174.23 40.00 171.95 40.09 168.58

TABLE 10.4 Data for normalized and scaled log-magnitude and phase plots for ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
(Continued)

Freq.
v

vn

Mag (dB)
z ¼ 0:5

Phase (deg)
z ¼ 0:5

Mag (dB)
z ¼ 0:7

Phase (deg)
z ¼ 0:7

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1
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frequencies. At 0:1vn it begins a decrease of �90�=decade and continues until
v ¼ 10vn, where it levels off at �180�.

The exact frequency response also follows the same derivation as that of
GðsÞ ¼ s2 þ 2zvnsþ v2

n. The results are summarized in Table 10.5, as well as Fig-
ures 10.16 and 10.17. The exact magnitude is the reciprocal of Eq. (10.33), and the
exact phase is the negative of Eq. (10.34). The normalized magnitude at the scaled
natural frequency is �20 log 2z, which can be used as a correction at the break
frequency on the Bode asymptotic plot.
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FIGURE 10.14 Normalized and scaled log-magnitude response for ðs2 þ 2zvnsþ v2
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TABLE 10.5 Data for normalized and scaled log-magnitude and phase plots for 1=ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
Freq.
v

vn

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1

Mag (dB)
z ¼ 0:2

Phase (deg)
z ¼ 0:2

Mag (dB)
z ¼ 0:3

Phase (deg)
z ¼ 0:3

0.10 0.09 �1.16 0.08 �2.31 0.07 �3.47

0.20 0.35 �2.39 0.32 �4.76 0.29 �7.13

0.30 0.80 �3.77 0.74 �7.51 0.65 �11.19

0.40 1.48 �5.44 1.36 �10.78 1.17 �15.95

0.50 2.42 �7.59 2.20 �14.93 1.85 �21.80

0.60 3.73 �10.62 3.30 �20.56 2.68 �29.36

0.70 5.53 �15.35 4.70 �28.77 3.60 �39.47

0.80 8.09 �23.96 6.35 �41.63 4.44 �53.13

0.90 11.64 �43.45 7.81 �62.18 4.85 �70.62

1.00 13.98 �90.00 7.96 �90.00 4.44 �90.00

1.10 10.34 �133.67 6.24 �115.51 3.19 �107.65

1.20 6.00 �151.39 3.73 �132.51 1.48 �121.43

1.30 2.65 �159.35 1.27 �143.00 �0.35 �131.50

1.40 0.00 �163.74 �0.92 �149.74 �2.11 �138.81

1.50 �2.18 �166.50 �2.84 �154.36 �3.75 �144.25

1.60 �4.04 �168.41 �4.54 �157.69 �5.26 �148.39

1.70 �5.67 �169.80 �6.06 �160.21 �6.64 �151.65

1.80 �7.12 �170.87 �7.43 �162.18 �7.91 �154.26

1.90 �8.42 �171.72 �8.69 �163.77 �9.09 �156.41

2.00 �9.62 �172.41 �9.84 �165.07 �10.19 �158.20

3.00 �18.09 �175.71 �18.16 �171.47 �18.28 �167.32

4.00 �23.53 �176.95 �23.57 �173.91 �23.63 �170.91

5.00 �27.61 �177.61 �27.63 �175.24 �27.67 �172.87

6.00 �30.89 �178.04 �30.90 �176.08 �30.93 �174.13

7.00 �33.63 �178.33 �33.64 �176.66 �33.66 �175.00

8.00 �35.99 �178.55 �36.00 �177.09 �36.01 �175.64

9.00 �38.06 �178.71 �38.07 �177.42 �38.08 �176.14

10.00 �39.91 �178.84 �39.92 �177.69 �39.93 �176.53

(table continues)
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0.10 0.04 �5.77 0.00 �8.05 �0.09 �11.42

0.20 0.17 �11.77 0.00 �16.26 �0.34 �22.62

0.30 0.37 �18.25 �0.02 �24.78 �0.75 �33.40

0.40 0.63 �25.46 �0.08 �33.69 �1.29 �43.60

0.50 0.90 �33.69 �0.22 �43.03 �1.94 �53.13

0.60 1.14 �43.15 �0.47 �52.70 �2.67 �61.93

0.70 1.25 �53.92 �0.87 �62.51 �3.46 �69.98

0.80 1.14 �65.77 �1.41 �72.18 �4.30 �77.32

0.90 0.73 �78.08 �2.11 �81.42 �5.15 �83.97

1.00 0.00 �90.00 �2.92 �90.00 �6.02 �90.00

1.10 �0.98 �100.81 �3.93 �97.77 �6.89 �95.45

1.20 �2.13 �110.14 �4.79 �104.68 �7.75 �100.39

1.30 �3.36 �117.96 �5.78 �110.76 �8.60 �104.86

1.40 �4.60 �124.44 �6.78 �116.10 �9.43 �108.92

1.50 �5.81 �129.81 �7.76 �120.76 �10.24 �112.62

1.60 �6.98 �134.27 �8.72 �124.85 �11.03 �115.99

1.70 �8.10 �138.03 �9.66 �128.45 �11.80 �119.07

1.80 �9.17 �141.22 �10.56 �131.63 �12.55 �121.89

1.90 �10.18 �143.95 �11.43 �134.46 �13.27 �124.48

2.00 �11.14 �146.31 �12.26 �136.97 �13.98 �126.87

3.00 �18.63 �159.44 �19.12 �152.30 �20.00 �143.13

4.00 �23.82 �165.07 �24.09 �159.53 �24.61 �151.93

5.00 �27.79 �168.23 �27.96 �163.74 �28.30 �157.38

6.00 �31.01 �170.27 �31.12 �166.50 �31.36 �161.08

7.00 �33.72 �171.70 �33.80 �168.46 �33.98 �163.74

8.00 �36.06 �172.76 �36.12 �169.92 �36.26 �165.75

9.00 �38.12 �173.58 �38.17 �171.05 �38.28 �167.32

10.00 �39.96 �174.23 �40.00 �171.95 �40.09 �168.58

TABLE 10.5 Data for normalized and scaled log-magnitude and phase plots for 1=ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
(Continued)

Freq.
v

vn

Mag (dB)
z ¼ 0:5

Phase (deg)
z ¼ 0:5

Mag (dB)
z ¼ 0:7

Phase (deg)
z ¼ 0:7

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1
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Let us now look at an example of drawing Bode plots for transfer functions that
contain second-order factors.

Example 10.3

Bode Plots for Ratio of First- and Second-Order Factors

PROBLEM: Draw the Bode log-magnitude and phase plots of G(s) for the unity
feedback system shown in Figure 10.10, whereGðsÞ ¼ ðsþ 3Þ=½ðsþ 2Þðs2 þ 2sþ 25Þ�.
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FIGURE 10.16 Normalized and scaled log-magnitude response for 1=ðs2 þ 2zvnsþ v2
nÞ

Ph
as

e 
(d

eg
re

es
)

0.1 10

0.5

ζ = 0.1

1.0

0.2

Asymptote

0.3

0.7

1
nω/ω

–180

–160

–140

–120

–100

–80

–60

–40

–20

0
ζ

1.5

FIGURE 10.17 Scaled phase response for 1=ðs2 þ 2zvnsþ v2
nÞ

556 Chapter 10 Frequency Response Techniques



Apago PDF Enhancer

E1C10 10/27/2010 17:21:15 Page 557

SOLUTION: We first convert G(s) to show the normalized components that have
unity low-frequency gain. The second-order term is normalized by factoring out v2

n,
forming

s2

v2
n

þ 2z

vn
sþ 1 ð10:35Þ

Thus,

GðsÞ ¼ 3

ð2Þð25Þ

s

3
þ 1

� 	

s

2
þ 1

� 	 s2

25
þ 2

25
sþ 1

� � ¼ 3

50

s

2
þ 1

� 	

s

2
þ 1

� 	 s2

25
þ 2

25
sþ 1

� � ð10:36Þ

The Bode log-magnitude diagram is shown in Figure 10.18(b) and is the sum
of the individual first- and second-order terms of G(s) shown in Figure 10.18(a). We
solve this problem by adding the slopes of these component parts, beginning and
ending at the appropriate frequencies. The results are summarized in Table 10.6,
which can be used to obtain the slopes. The low-frequency value for G(s), found by
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FIGURE 10.18
Bode magnitude plot for
GðsÞ ¼ ðsþ 3Þ=
½ðsþ 2Þðs2 þ 2sþ 25Þ�:
a. components;
b. composite

TABLE 10.6 Magnitude diagram slopes for Example 10.3

Frequency (rad/s)

Description

0.01
(Start:
Plot)

2
(Start:

Pole at �2)

3
(Start:

Zero at �3)

5
(Start:
vn ¼ 5)

Pole at �2 0 �20 �20 �20

Zero at �3 0 0 20 20

vn ¼ 5 0 0 0 �40

Total slope (dB/dec) 0 �20 0 �40
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letting s ¼ 0, is 3/50, or �24.44 dB. The Bode magnitude plot starts out at this
value and continues until the first break frequency at 2 rad/s. Here the pole at �2
yields a �20 dB=decade slope downward until the next break at 3 rad/s. The zero
at �3 causes an upward slope of þ20 dB=decade, which, when added to the
previous �20 dB=decade curve, gives a net slope of 0. At a frequency of 5 rad/s,
the second-order term initiates a �40 dB=decade downward slope, which con-
tinues to infinity.

The correction to the log-magnitude curve due to the underdamped second-
order term can be found by plotting a point �20 log 2z above the asymptotes at the
natural frequency. Since z ¼ 0:2 for the second-order term in the denominator of
G(s), the correction is 7.96 dB. Points close to the natural frequency can be
corrected by taking the values from the curves of Figure 10.16.

TABLE 10.7 Phase diagram slopes for Example 10.3

Frequency (rad/s)

Description

0.2
(Start:

Pole at �2)

0.3
(Start:

Zero at �3)

0.5
(Start:

vn at �5)

20
(End:

Pole at �2)

30
(End:

Zero at �3)

50
(End:
vn ¼ 5)

Pole at �2 �45 �45 �45 0

Zero at �3 45 45 45 0

vn ¼ 5 �90 �90 �90 0

Total slope (dB/dec) �45 0 �90 �45 �90 0

FIGURE 10.19 Bode phase
plot for GðsÞ ¼ ðsþ 3Þ=
½ðsþ 2Þðs2 þ 2sþ 25Þ�:
a. components;
b. composite
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We now turn to the phase plot. Table 10.7 is formed to determine the
progression of slopes on the phase diagram. The first-order pole at �2 yields a
phase angle that starts at 0� and ends at �90� via a �45�=decade slope starting a
decade below its break frequency and ending a decade above its break frequency.
The first-order zero yields a phase angle that starts at 0� and ends at þ90� via a
þ45�=decade slope starting a decade below its break frequency and ending a
decade above its break frequency. The second-order poles yield a phase angle that
starts at 0� and ends at �180� via a �90�=decade slope starting a decade below their
natural frequency ðvn ¼ 5Þ and ending a decade above their natural frequency. The
slopes, shown in Figure 10.19(a), are summed over each frequency range, and the
final Bode phase plot is shown in Figure 10.19(b).

Students who are using MATLAB should now run ch10p1 in Appendix B.
You will learn how to use MATLAB to make Bode plots and list the
pointsontheplots.ThisexercisesolvesExample10.3usingMATLAB.

Skill-Assessment Exercise 10.2

PROBLEM: Draw the Bode log-magnitude and phase plots for the system shown in
Figure 10.10, where

GðsÞ ¼ ðsþ 20Þ
ðsþ 1Þðsþ 7Þðsþ 50Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

In this section, we learned how to construct Bode log-magnitude and Bode
phase plots. The Bode plots are separate magnitude and phase frequency response
curves for a system, G(s). In the next section, we develop the Nyquist criterion for
stability, which makes use of the frequency response of a system. The Bode plots can
then be used to determine the stability of a system.

10.3 Introduction to the Nyquist
Criterion

The Nyquist criterion relates the stability of a closed-loop system to the open-loop
frequency response and open-loop pole location. Thus, knowledge of the open-
loop system’s frequency response yields information about the stability of the
closed-loop system. This concept is similar to the root locus, where we began
with information about the open-loop system, its poles and zeros, and developed
transient and stability information about the closed-loop system.

TryIt 10.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to obtain the
Bode plots for the system of
Skill-Assessment Exercise 10.2

G=zpk([�20],[�l,�7,...
�50],1)
bode(G);grid on

After the Bode plots appear,
click on the curve and drag to
read the coordinates.
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Although the Nyquist criterion will yield stability information at first, we will
extend the concept to transient response and steady-state errors. Thus, frequency
response techniques are an alternate approach to the root locus.

Derivation of the Nyquist Criterion
Consider the system of Figure 10.20. The Nyquist criterion can tell us how many closed-
loop poles are in the right half-plane. Before deriving the criterion, let us establish four
importantconcepts that will beused during thederivation: (1) therelationshipbetween
the poles of 1 þGðsÞHðsÞ and the poles of G(s)H(s); (2) the relationship between the
zeros of 1 þGðsÞHðsÞ and the poles of the closed-loop transfer function, T(s); (3) the
concept of mapping points; and (4) the concept of mapping contours.

Letting
GðsÞ ¼ NG

DG
ð10:37aÞ

HðsÞ ¼ NH

DH
ð10:37bÞ

we find

GðsÞHðsÞ ¼ NGNH

DGDH
ð10:38aÞ

1 þGðsÞHðsÞ ¼ 1 þNGNH

DGDH
¼ DGDH þNGNH

DGDH
ð10:38bÞ

TðsÞ ¼ GðsÞ
1 þGðsÞHðsÞ ¼

NGDH

DGDH þNGNH
ð10:38cÞ

From Eqs. (10.38), we conclude that (1) the poles of 1 þGðsÞHðsÞ are the same as the
poles of G(s)H(s), the open-loop system, and (2) the zeros of 1 þGðsÞHðsÞare the
same as the poles of T(s), the closed-loop system.

Next, let us define the termmapping. If we take a complex number on the s-plane
and substitute it into a function, F(s), another complex number results. This process is
called mapping. For example, substituting s ¼ 4 þ j3 into the function ðs2 þ 2sþ 1Þ
yields16 þ j30.Wesaythat4 þ j3 maps into16 þ j30throughthefunctionðs2 þ 2sþ 1Þ.

Finally, we discuss the concept of mapping contours. Consider the collection of
points, called a contour, shown in Figure 10.21 as contour A. Also, assume that

FðsÞ ¼ ðs� z1Þðs� z2Þ . . .
ðs� p1Þðs� p2Þ . . .

ð10:39Þ

Contour A can be mapped through F(s) into contour B by substituting each point
of contour A into the function F(s) and plotting the resulting complex numbers.
For example, point Q in Figure 10.21 maps into point Q

0
through the function F(s).

R(s) +  

–
G(s)

H(s)

C(s)

FIGURE 10.20 Closed-loop
control system

jω

σ F(s) 

ImContour A 

Re

Contour B

s-plane F-plane

Q'

Q

FIGURE 10.21 Mapping contour A through function F(s) to contour B
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The vector approach to performing the calculation, covered in Section 8.1, can
be used as an alternative. Some examples of contour mapping are shown in Fig-
ure 10.22 for some simple F(s). The mapping of each point is defined by complex
arithmetic, where the resulting complex number, R, is evaluated from the complex
numbers represented by V, as shown in the last column of Figure 10.22. You should
verify that if we assume a clockwise direction for mapping the points on contour A,
then contour B maps in a clockwise direction if F(s) in Figure 10.22 has just zeros or
has just poles that are not encircled by the contour. The contour B maps in a
counterclockwise direction if F(s) has just poles that are encircled by the contour.
Also, you should verify that if the pole or zero of F(s) is enclosed by contour A, the

V

jω

z1

s

F(s) = (s – z1) 

ImContour A 

Re R = V

Contour B

RF-plane

(a)

V

jω

p1

s-plane

F(s) =

ImContour A 

Re R =
V

Contour B

R

F-plane

(b)

1
(s – p1)

1

V

jω

z1

s-plane

Im

Contour A 

Re R = V

Contour B

R

F-plane

(c)

V

jω

p1

  F(s) =

Im

Contour A 

Re R =
V

Contour B

(d)

1 1

R

V1

jω

p1

s-plane

Im

Contour A 

Re R =

Contour BF-plane

(e)

R
z1

(s – z1)
V2

-plane

F(s) = (s – z1)

s-plane

(s – p1)

F-plane

F(s) =
(s – p1)

V2 V1

σ

σ

σ

σ

σ

FIGURE 10.22 Examples of
contour mapping
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mapping encircles the origin. In the last case of Figure 10.22, the pole and zero
rotation cancel, and the mapping does not encircle the origin.

Let us now begin the derivation of the Nyquist criterion for stability. We show
that a unique relationship exists between the number of poles of F(s) contained
inside contour A, the number of zeros of F(s) contained inside contour A, and the
number of counterclockwise encirclements of the origin for the mapping of contour
B. We then show how this interrelationship can be used to determine the stability of
closed-loop systems. This method of determining stability is called the Nyquist
criterion.

Let us first assume that FðsÞ ¼ 1 þGðsÞHðsÞ, with the picture of the poles and
zeros of 1 þGðsÞHðsÞ as shown in Figure 10.23 near contour A. Hence,
R ¼ ðV1V2Þ=ðV3V4V5Þ. As each point Q of the contour A is substituted into
1 þGðsÞHðsÞ, a mapped point results on contour B. Assuming that FðsÞ ¼ 1 þ
GðsÞHðsÞ has two zeros and three poles, each parenthetical term of Eq. (10.39) is a
vector in Figure 10.23. As we move around contour A in a clockwise direction, each
vector of Eq. (10.39) that lies inside contour A will appear to undergo a complete
rotation, or a change in angle of 360�. On the other hand, each vector drawn from the
poles and zeros of 1 þGðsÞHðsÞ that exist outside contour Awill appear to oscillate
and return to its previous position, undergoing a net angular change of 0�.

Each pole or zero factor of 1 þGðsÞHðsÞ whose vector undergoes a complete
rotation around contour A must yield a change of 360� in the resultant, R, or a
complete rotation of the mapping of contour B. If we move in a clockwise direction
along contour A, each zero inside contour A yields a rotation in the clockwise
direction, while each pole inside contour A yields a rotation in the counterclockwise
direction since poles are in the denominator of Eq. (10.39).

Thus, N ¼ P� Z, where N equals the number of counterclockwise rotations of
contour B about the origin; P equals the number of poles of 1 þGðsÞHðsÞ inside
contour A, and Z equals the number of zeros of 1 þGðsÞHðsÞ inside contour A.

Since the poles shown in Figure 10.23 are poles of 1 þGðsÞHðsÞ, we know from
Eqs. (10.38) that they are also the poles ofG(s)H(s) and are known. But since the zeros
shown in Figure 10.23 are the zeros of 1 þGðsÞHðsÞ, we know from Eqs. (10.38)
that they are also the poles of the closed-loop system and are not known. Thus, P equals
the number of enclosed open-loop poles, andZ equals the number of enclosed closed-
loop poles. Hence, N ¼ P� Z, or alternately, Z ¼ P�N, tells us that the number of
closed-loop poles inside the contour (which is the same as the zeros inside the contour)
equals the number of open-loop poles of G(s)H(s) inside the contour minus the
number of counterclockwise rotations of the mapping about the origin.

If we extend the contour to include the entire right half-plane, as shown in
Figure 10.24, we can count the number of right–half-plane, closed-loop poles inside
contour A and determine a system’s stability. Since we can count the number of open-
loop poles, P, inside the contour, which are the same as the right–half-plane poles of
G(s)H(s), the only problem remaining is how to obtain the mapping and find N.

s-plane A

σ

jω

FIGURE 10.24 Contour
enclosing right half-plane to
determine stability

FIGURE 10.23 Vector
representation of mapping

F(s) = 1 + G(s)H(s)V2

V3

V4Q
V1

jω

s-plane

Contour A

σ

1 + GH-plane

Contour B

V1R

Im

Re

=

V5

V2

V3V4V5

R
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Since all of the poles and zeros of G(s)H(s) are known, what if we map through
G(s)H(s) instead of 1 þGðsÞHðsÞ? The resulting contour is the same as a mapping
through 1 þGðsÞHðsÞ, except that it is translated one unit to the left; thus, we count
rotations about �1 instead of rotations about the origin. Hence, the final statement
of the Nyquist stability criterion is as follows:

If a contour, A, that encircles the entire right half-plane is mapped through
G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals
the number of open-loop poles, P, that are in the right half-plane minus the number
of counterclockwise revolutions, N, around �1 of the mapping; that is, Z ¼ P�N.
The mapping is called the Nyquist diagram, or Nyquist plot, of G(s)H(s).

We can now see why this method is classified as a frequency response technique.
Around contourA in Figure 10.24, the mapping of the points on the jv-axis through the
function G(s)H(s) is the same as substituting s ¼ jv into G(s)H(s) to form the
frequency response functionGðjvÞHðjvÞ. We are thus finding the frequency response
of G(s)H(s) over that part of contour A on the positive jv-axis. In other words, part of
the Nyquist diagram is the polar plot of the frequency response of G(s)H(s).

Applying the Nyquist Criterion to Determine Stability
Before describing how to sketch a Nyquist diagram, let us look at some typical
examples that use the Nyquist criterion to determine the stability of a system. These
examples give us a perspective prior to engaging in the details of mapping. Fig-
ure 10.25(a) shows a contour A that does not enclose closed-loop poles, that is, the
zeros of 1 þGðsÞHðsÞ. The contour thus maps through G(s)H(s) into a Nyquist
diagram that does not encircle �1. Hence, P ¼ 0; N ¼ 0, and Z ¼ P�N ¼ 0. Since
Z is the number of closed-loop poles inside contour A, which encircles the right
half-plane, this system has no right–half-plane poles and is stable.

On the other hand, Figure 10.25(b) shows a contour A that, while it does not
enclose open-loop poles, does generate two clockwise encirclements of �1. Thus,
P ¼ 0; N ¼ �2, and the system is unstable; it has two closed-loop poles in the right
half-plane since Z ¼ P�N ¼ 2. The two closed-loop poles are shown inside contour

A

jω

A

s-plane
Test radius

Im
GH-plane

–1

B
Re

Re

B

Im

GH-plane

–1

(a)

(b)

s-plane

G(s)H(s)

G(s)H(s)

= zeros of 1 + G(s)H(s)
= poles of closed-loop system

= poles of 1 + G(s)H(s)
= poles of G(s)H(s)

Location is knownLocation not known

jω

σ

σ

FIGURE 10.25 Mapping
examples: a. Contour does not
enclose closed-loop poles;
b. contour does enclose closed-
loop poles
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A in Figure 10.25(b) as zeros of 1 þGðsÞHðsÞ. You should keep in mind that the
existence of these poles is not known a priori.

In this example, notice that clockwise encirclements imply a negative value forN.
The number of encirclements can be determined by drawing a test radius from �1 in
any convenient direction and counting the number of times the Nyquist diagram
crosses the test radius. Counterclockwise crossings are positive, and clockwise cross-
ings are negative. For example, in Figure 10.25(b), contour B crosses the test radius
twice in a clockwise direction. Hence, there are �2 encirclements of the point �1.

Before applying the Nyquist criterion to other examples in order to determine
a system’s stability, we must first gain experience in sketching Nyquist diagrams. The
next section covers the development of this skill.

10.4 Sketching the Nyquist Diagram

The contour that encloses the right half-plane can be mapped through the function
G(s)H(s) by substituting points along the contour into G(s)H(s). The points along
the positive extension of the imaginary axis yield the polar frequency response of
G(s)H(s). Approximations can be made to G(s)H(s) for points around the infinite
semicircle by assuming that the vectors originate at the origin. Thus, their length is
infinite, and their angles are easily evaluated.

However, most of the time a simple sketch of the Nyquist diagram is all that is
needed. A sketch can be obtained rapidly by looking at the vectors of G(s)H(s) and
their motion along the contour. In the examples that follow, we stress this rapid
method for sketching the Nyquist diagram. However, the examples also include
analytical expressions for G(s)H(s) for each section of the contour to aid you in
determining the shape of the Nyquist diagram.

Example 10.4

Sketching a Nyquist Diagram

PROBLEM: Speed controls find wide application throughout industry and the
home. Figure 10.26(a) shows one application: output frequency control of electrical

FIGURE 10.26
a. Turbine and generator;
b. block diagram of
speed control system
for Example 10.4

 GeneratorTurbine

ControllerValve
actuator

Desired speed
or frequency

Frequency or speed
measurements

(a)

Steam

(b)

Desired
speed +

–

Turbine

Amplifier,
valve actuator, and

steam valve Generator

E (s)
Steam

pressure Torque
Actual
speed100

(s + 10)
1

(s + 3)
5

(s + 1)

Sensor
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power from a turbine and generator pair. By regulating the speed, the control
system ensures that the generated frequency remains within tolerance. Deviations
from the desired speed are sensed, and a steam valve is changed to compensate for
the speed error. The system block diagram is shown in Figure 10.26(b). Sketch the
Nyquist diagram for the system of Figure 10.26.

SOLUTION: Conceptually, the Nyquist diagram is plotted by substituting the points
of the contour shown in Figure 10.27(a) into GðsÞ ¼ 500=½ðsþ 1Þðsþ 3Þðsþ 10Þ�.
This process is equivalent to performing complex arithmetic using the vectors of
G(s) drawn to the points of the contour as shown in Figure 10.27(a) and (b). Each
pole and zero term of G(s) shown in Figure 10.26(b) is a vector in Figure 10.27(a)
and (b). The resultant vector, R, found at any point along the contour is in general
the product of the zero vectors divided by the product of the pole vectors (see
Figure 10.27(c)). Thus, the magnitude of the resultant is the product of the zero
lengths divided by the product of the pole lengths, and the angle of the resultant is
the sum of the zero angles minus the sum of the pole angles.

As we move in a clockwise direction around the contour from point A to
point C in Figure 10.27(a), the resultant angle goes from 0� to �3 � 90� ¼ �270�, or
from A0 to C0 in Figure 10.27(c). Since the angles emanate from poles in the
denominator of G(s), the rotation or increase in angle is really a decrease in angle

Q'

Im

50
3

Re
A'

B'
–j8.36

D'

C'–0.874

(c)

GH-plane

B'=
V1V2V3

500

jω

–3 –1–10

C

A

D

B

(a)

s-plane

V1 V2 V3

C

D

–3 –1–10

(b)

s-plane

B

jω

V3
V2

V1

A
σ σ

FIGURE 10.27 Vector
evaluation of the Nyquist
diagram for Example 10.4:
a. vectors on contour at low
frequency;
b. vectors on contour
around infinity;
c. Nyquist diagram
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of the function G(s); the poles gain 270� in a counterclockwise direction, which
explains why the function loses 270�.

While the resultant moves from A
0
to C

0
in Figure 10.27(c), its magnitude

changes as the product of the zero lengths divided by the product of the pole lengths.
Thus, the resultant goes from a finite value at zero frequency (at point A of Figure
10.27(a), there are three finite pole lengths) to zero magnitude at infinite frequency at
point C (at point C of Figure 10.27(a), there are three infinite pole lengths).

The mapping from point A to point C can also be explained analytically. From
A to C the collection of points along the contour is imaginary. Hence, from A to C,
GðsÞ ¼ GðjvÞ, or from Figure 10.26(b),

GðjvÞ ¼ 500

ðsþ 1Þðsþ 3Þðsþ 10Þ
����
s!jv

¼ 500

ð�14v2 þ 30Þ þ jð43v� v3Þ ð10:40Þ

Multiplying the numerator and denominator by the complex conjugate of the
denominator, we obtain

GðjvÞ ¼ 500
ð�14v2 þ 30Þ � jð43v� v3Þ
ð�14v2 þ 30Þ2 þ ð43v� v3Þ2

ð10:41Þ

At zero frequency, GðjvÞ ¼ 500=30 ¼ 50=3. Thus, the Nyquist diagram starts at
50=3 at an angle of 0�. As v increases the real part remains positive, and the
imaginary part remains negative. At v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

30=14
p

, the real part becomes negative.
At v ¼ ffiffiffiffiffi

43
p

, the Nyquist diagram crosses the negative real axis since the imaginary
term goes to zero. The real value at the axis crossing, point Q

0
in Figure 10.27(c),

found by substituting into Eq. (10.41), is �0.874. Continuing toward v ¼ 1, the
real part is negative, and the imaginary part is positive. At infinite frequency
GðjvÞ 	 500j=v3, or approximately zero at 90�.

Around the infinite semicircle from pointC to pointD shown in Figure 10.27(b),
the vectors rotate clockwise, each by 180�. Hence, the resultant undergoes a counter-
clockwise rotation of 3 � 180�, starting at point C0 and ending at point D0 of
Figure 10.27(c). Analytically, we can see this by assuming that around the infinite
semicircle, the vectors originate approximately at the origin and have infinite length.
For any point on the s-plane, the value of G(s) can be found by representing each
complex number in polar form, as follows:

GðsÞ ¼ 500

ðR�1eju�1ÞðR�3eju�3ÞðR�10eju�10Þ ð10:42Þ

where R�i is the magnitude of the complex number ðsþ 1Þ, and u�i is the angle of
the complex number ðsþ iÞ. Around the infinite semicircle, all R�i are infinite, and
we can use our assumption to approximate the angles as if the vectors originated at
the origin. Thus, around the infinite semicircle,

GðsÞ ¼ 500

1—ðu�1 þ u�3 þ u�10Þ ¼ 0—� ðu�1 þ u�3 þ u�10Þ ð10:43Þ

At pointC in Figure 10.27(b), the angles are all 90�. Hence, the resultant is 0—� 270�,
shown as point C0 in Figure 10.27(c). Similarly, at point D, GðsÞ ¼ 0—þ 270� and
maps into point D0. You can select intermediate points to verify the spiral whose
radius vector approaches zero at the origin, as shown in Figure 10.27(c).

The negative imaginary axis can be mapped by realizing that the real part of
GðjvÞHðjvÞ is always an even function, whereas the imaginary part of GðjvÞHðjvÞ
is an odd function. That is, the real part will not change sign when negative values of
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v are used, whereas the imaginary part will change sign. Thus, the mapping of the
negative imaginary axis is a mirror image of the mapping of the positive imaginary
axis. The mapping of the section of the contour from points D to A is drawn as a
mirror image about the real axis of the mapping of points A to C.

In the previous example, there were no open-loop poles situated along the
contour enclosing the right half-plane. If such poles exist, then a detour around the
poles on the contour is required; otherwise, the mapping would go to infinity in an
undetermined way, without angular information. Subsequently, a complete sketch of
the Nyquist diagram could not be made, and the number of encirclements of �1
could not be found.

Let us assume a GðsÞHðsÞ ¼ NðsÞ=sDðsÞ where D(s) has imaginary roots. The s
term in the denominator and the imaginary roots of D(s) are poles of G(s)H(s) that
lie on the contour, as shown in Figure 10.28(a). To sketch the Nyquist diagram, the
contour must detour around each open-loop pole lying on its path. The detour can be
to the right of the pole, as shown in Figure 10.28(b), which makes it clear that each
pole’s vector rotates through þ180� as we move around the contour near that pole.
This knowledge of the angular rotation of the poles on the contour permits us to
complete the Nyquist diagram. Of course, our detour must carry us only an infini-
tesimal distance into the right half-plane, or else some closed-loop, right–half-plane
poles will be excluded in the count.

We can also detour to the left of the open-loop poles. In this case, each pole
rotates through an angle of �180� as we detour around it. Again, the detour must be
infinitesimally small, or else we might include some left–half-plane poles in the
count. Let us look at an example.

Example 10.5

Nyquist Diagram for Open-Loop Function with Poles on Contour

PROBLEM: Sketch the Nyquist diagram of the unity feedback system of Fig-
ure 10.10, where GðsÞ ¼ ðsþ 2Þ=s2.

SOLUTION: The system’s two poles at the origin are on the contour and must be
bypassed, as shown in Figure 10.29(a). The mapping starts at point A and continues
in a clockwise direction. Points A, B, C, D, E, and F of Figure 10.29(a) map
respectively into points A

0
; B

0
; C

0
; D

0
; E

0
; and F

0
of Figure 10.29(b).

At point A, the two open-loop poles at the origin contribute 2 � 90� ¼ 180�,
and the zero contributes 0�. The total angle at point A is thus �180�. Close to the
origin, the function is infinite in magnitude because of the close proximity to the

j

σ σ σ

(a) (b) (c)

ω ω ω

s-planes-planes-plane

jj

FIGURE 10.28 Detouring
around open-loop poles:
a. poles on contour;
b. detour right;
c. detour left
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two open-loop poles. Thus, point A maps into point A0, located at infinity at an
angle of �180�.

Moving from point A to point B along the contour yields a net change in angle
of þ90� from the zero alone. The angles of the poles remain the same. Thus, the
mapping changes by þ90� in the counterclockwise direction. The mapped vector
goes from �180� at A

0
to � 90� at B

0
. At the same time, the magnitude changes

from infinity to zero since at point B there is one infinite length from the zero
divided by two infinite lengths from the poles.

Alternately, the frequency response can be determined analytically from
Gð jvÞ ¼ ð2 þ jvÞ=ð�v2Þ, considering v going from 0 to 1. At low frequencies,
Gð jvÞ 	 2=ð�v2Þ, or 1—180�. At high frequencies, Gð jvÞ 	 j=ð�vÞ, or 0—� 90�.
Also, the real and imaginary parts are always negative.

As we travel along the contour BCD, the function magnitude stays at zero
(one infinite zero length divided by two infinite pole lengths). As the vectors move
through BCD, the zero’s vector and the two poles’ vectors undergo changes of
�180� each. Thus, the mapped vector undergoes a net change of þ180�, which is the
angular change of the zero minus the sum of the angular changes of the poles
f�180 � ½2ð�180Þ� ¼ þ180g. The mapping is shown as B0 C0 D0, where the resultant
vector changes by þ180� with a magnitude of e that approaches zero.

From the analytical point of view,

GðsÞ ¼ R�2—u�2

ðR0—u0ÞðR0—u0Þ ð10:44Þ

anywhere on the s-plane where R�2—u�2 is the vector from the zero at �2 to any
point on the s-plane, and R0—u0 is the vector from a pole at the origin to any point
on the s-plane. Around the infinite semicircle, all R�i ¼ 1, and all angles can be
approximated as if the vectors originated at the origin. Thus at point B, GðsÞ ¼
0—� 90� since all u�i ¼ 90� in Eq. (10.44). At point C, all R�i ¼ 1, and all u�i ¼ 0�

in Eq. (10.44). Thus, GðsÞ ¼ 0—0�. At point D, all R�i ¼ 1, and all u�i ¼ �90� in
Eq. (10.44). Thus, GðsÞ ¼ 0—90�.

The mapping of the section of the contour from D to E is a mirror image of
the mapping of A to B. The result is D0 to E0.

Finally, over the section EFA, the resultant magnitude approaches infinity.
The angle of the zero does not change, but each pole changes by þ180�. This
change yields a change in the function of �2 � 180� ¼ �360�. Thus, the mapping
from E0 to A0 is shown as infinite in length and rotating �360�. Analytically,
we can use Eq. (10.44) for the points along the contour EFA. At E,

E

A
F C

B

D

F'C'
A'
E'

D'

B'–2

Two poles

jω
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Test radius
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(a) (b)
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FIGURE 10.29 a. Contour for Example 10.5; b. Nyquist diagram for Example 10.5
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GðsÞ ¼ ð2—0�Þ=½ðe—� 90�Þðe—� 90�Þ� ¼ 1—180�. At F, GðsÞ ¼ ð2—0�Þ=½ðe—0�Þ
ðe—0�Þ� ¼ 1—0�. At A, GðsÞ ¼ ð2—0�Þ=½ðe—90�Þðe—90�Þ� ¼ 1—� 180�.

The Nyquist diagram is now complete, and a test radius drawn from �1 in
Figure 10.29(b) shows one counterclockwise revolution, and one clockwise revo-
lution, yielding zero encirclements.

Students who are using MATLAB should now run ch10p2 in Appendix B.
You will learn how to use MATLAB to make a Nyquist plot and list the
points on the plot. You will also learn how to specify a range for
frequency. This exercise solves Example 10.5 using MATLAB.

Skill-Assessment Exercise 10.3

PROBLEM: Sketch the Nyquist diagram for the system shown in Figure 10.10 where

GðsÞ ¼ 1

ðsþ 2Þðsþ 4Þ
Compare your sketch with the polar plot in Skill-Assessment Exercise 10.1(c).

ANSWER: The complete solution is located at www.wiley.com/college/nise.

In this section, we learned how to sketch a Nyquist diagram. We saw how to
calculate the value of the intersection of the Nyquist diagram with the negative real
axis. This intersection is important in determining the number of encirclements of
�1. Also, we showed how to sketch the Nyquist diagram when open-loop poles exist
on the contour; this case required detours around the poles. In the next section, we
apply the Nyquist criterion to determine the stability of feedback control systems.

10.5 Stability via the Nyquist Diagram

We now use the Nyquist diagram to determine a system’s stability, using the simple
equation Z ¼ P�N. The values of P, the number of open-loop poles of G(s)H(s)
enclosed by the contour, and N, the number of encirclements the Nyquist diagram
makes about �1, are used to determine Z, the number of right–half-plane poles of
the closed-loop system.

If the closed-loop system has a variable gain in the loop, one question we would
like to ask is, ‘‘For what range of gain is the system stable?’’ This question, previously
answered by the root locus method and the Routh-Hurwitz criterion, is now answered
via the Nyquist criterion. The general approach is to set the loop gain equal to unity
and draw the Nyquist diagram. Since gain is simply a multiplying factor, the effect of
the gain is to multiply the resultant by a constant anywhere along the Nyquist diagram.

For example, consider Figure 10.30, which summarizes the Nyquist approach
for a system with variable gain, K. As the gain is varied, we can visualize the Nyquist
diagram in Figure 10.30(c) expanding (increased gain) or shrinking (decreased gain)
like a balloon. This motion could move the Nyquist diagram past the �1 point,
changing the stability picture. For this system, since P ¼ 2, the critical point must be
encircled by the Nyquist diagram to yield N ¼ 2 and a stable system. A reduction in
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gain would place the critical point outside the Nyquist diagram where N ¼ 0,
yielding Z ¼ 2, an unstable system.

From another perspective we can think of the Nyquist diagram as remaining
stationary and the �1 point moving along the real axis. In order to do this, we set the
gain to unity and position the critical point at �1=K rather than �1. Thus, the critical
point appears to move closer to the origin as K increases.

Finally, if the Nyquist diagram intersects the real axis at�1, thenGð jvÞHð jvÞ ¼
�1. From root locus concepts, when GðsÞHðsÞ ¼ �1, the variable s is a closed-loop
pole of the system. Thus, the frequency at which the Nyquist diagram intersects �1 is
the same frequency at which the root locus crosses the jv-axis. Hence, the system is
marginally stable if the Nyquist diagram intersects the real axis at �1.

In summary, then, if the open-loop system contains a variable gain, K, set K ¼
1 and sketch the Nyquist diagram. Consider the critical point to be at �1=K rather
than at �1. Adjust the value of K to yield stability, based upon the Nyquist criterion.

Example 10.6

Range of Gain for Stability via The Nyquist Criterion

PROBLEM: For the unity feedback system of Figure 10.10, where
GðsÞ ¼ K=½sðsþ 3Þðsþ 5Þ�, find the range of gain, K, for stability, instability, and
the value of gain for marginal stability. For marginal stability also find the
frequency of oscillation. Use the Nyquist criterion.

SOLUTION: First set K ¼ 1 and sketch the Nyquist diagram for the system, using
the contour shown in Figure 10.31(a). For all points on the imaginary axis,

Gð jvÞHð jvÞ ¼ K

sðsþ 3Þðsþ 5Þ
���� K¼1
s¼jv

¼ �8v2 � jð15v� v3Þ
64v4 þ v2ð15 � v2Þ2 ð10:45Þ

At v ¼ 0; Gð jvÞHð jvÞ ¼ �0:0356 � j1.

FIGURE 10.30 Demonstrating
Nyquist stability: a. system;
b. contour; c. Nyquist diagram
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TryIt 10.2

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to plot the
Nyquist diagram of the system
shown in Figure 10.30(a).

G=zpk([�3,�5],...
[2,4],1)
nyquist(G)

After the Nyquist diagram
appears, click on the curve and
drag to read the coordinates.
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Next find the point where the Nyquist diagram intersects the negative real
axis. Setting the imaginary part of Eq. (10.45) equal to zero, we find v ¼

ffiffiffiffiffi
15

p
.

Substituting this value of v back into Eq. (10.45) yields the real part of �0.0083.
Finally, at v ¼ 1, Gð jvÞHð jvÞ ¼ GðsÞHðsÞjs!j1 ¼ 1=ð j1Þ3 ¼ 0—� 270�.

From the contour of Figure 10.31(a), P ¼ 0; for stability N must then be
equal to zero. From Figure 10.31(b), the system is stable if the critical point lies
outside the contour ðN ¼ 0Þ, so that Z ¼ P�N ¼ 0. Thus, K can be increased by
1=0:0083 ¼ 120:5 before the Nyquist diagram encircles �1. Hence, for stability,
K < 120:5. For marginal stability K ¼ 120:5. At this gain the Nyquist diagram
intersects �1, and the frequency of oscillation is

ffiffiffiffiffi
15

p
rad/s.

Now that we have used the Nyquist diagram to determine stability, we can
develop a simplified approach that uses only the mapping of the positive jv-axis.

Stability via Mapping Only the Positive jv-Axis
Once the stability of a system is determined by the Nyquist criterion, continued
evaluation of the system can be simplified by using just the mapping of the positive
jv-axis. This concept plays a major role in the next two sections, where we discuss
stability margin and the implementation of the Nyquist criterion with Bode plots.

Consider the system shown in Figure 10.32, which is stable at low values of gain
and unstable at high values of gain. Since the contour does not encircle open-loop

jω
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∞

– 0.0083–1
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(  )b(  )a

Im

s-plane
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= 0 +ω

= 0 –ω
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FIGURE 10.31
a. Contour for Example 10.6;
b. Nyquist diagram
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FIGURE 10.32
a. Contour and root locus of
system that is stable for small
gain and unstable for large gain;
b. Nyquist diagram
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poles, the Nyquist criterion tells us that we must have no encirclements of �1 for the
system to be stable. We can see from the Nyquist diagram that the encirclements of
the critical point can be determined from the mapping of the positive jv-axis alone. If
the gain is small, the mapping will pass to the right of �1, and the system will be
stable. If the gain is high, the mapping will pass to the left of �1, and the system will
be unstable. Thus, this system is stable for the range of loop gain, K, that ensures that
the open-loop magnitude is less than unity at that frequency where the phase angle is
180� (or, equivalently, �180�). This statement is thus an alternative to the Nyquist
criterion for this system.

Now consider the system shown in Figure 10.33, which is unstable at low values
of gain and stable at high values of gain. Since the contour encloses two open-loop
poles, two counterclockwise encirclements of the critical point are required for
stability. Thus, for this case the system is stable if the open-loop magnitude is greater
than unity at that frequency where the phase angle is 180� (or, equivalently, �180�).

In summary, first determine stability from the Nyquist criterion and the
Nyquist diagram. Next interpret the Nyquist criterion and determine whether the
mapping of just the positive imaginary axis should have a gain of less than or greater
than unity at 180�. If the Nyquist diagram crosses �180� at multiple frequencies,
determine the interpretation from the Nyquist criterion.

Example 10.7

Stability Design via Mapping Positive jv-Axis

PROBLEM: Find the range of gain for stability and instability, and the gain for
marginal stability, for the unity feedback system shown in Figure 10.10, where
GðsÞ ¼ K=½ðs2 þ 2sþ 2Þðsþ 2Þ�. For marginal stability find the radian frequency of
oscillation. Use the Nyquist criterion and the mapping of only the positive
imaginary axis.

SOLUTION: Since the open-loop poles are only in the left–half-plane, the Nyquist
criterion tells us that we want no encirclements of �1 for stability. Hence, a gain
less than unity at �180� is required. Begin by letting K ¼ 1 and draw the portion
of the contour along the positive imaginary axis as shown in Figure 10.34(a). In
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 –1
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FIGURE 10.33 a.Contour and root locus of system that is unstable for small gain and stable for
large gain; b. Nyquist diagram

572 Chapter 10 Frequency Response Techniques



Apago PDF Enhancer

E1C10 10/27/2010 17:21:18 Page 573

Figure 10.34(b), the intersection with the negative real axis is found by letting
s ¼ jv in G(s)H(s), setting the imaginary part equal to zero to find the frequency,
and then substituting the frequency into the real part of Gð jvÞHð jvÞ. Thus, for
any point on the positive imaginary axis,

Gð jvÞHð jvÞ ¼ 1

ðs2 þ 2sþ 2Þðsþ 2Þ
����
s!jv

¼ 4ð1 � v2Þ � jvð6 � v2Þ
16ð1 � v2Þ2 þ v2ð6 � v2Þ2

ð10:46Þ

Setting the imaginary part equal to zero, we find v ¼ ffiffiffi
6

p
. Substituting this value

back into Eq. (10.46) yields the real part, �ð1=20Þ ¼ ð1=20Þ—180�.
This closed-loop system is stable if the magnitude of the frequency response is

less than unity at 180�. Hence, the system is stable for K < 20, unstable for K > 20,
and marginally stable for K ¼ 20. When the system is marginally stable, the radian
frequency of oscillation is

ffiffiffi
6

p
.

Skill-Assessment Exercise 10.4

PROBLEM: For the system shown in Figure 10.10, where

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ
do the following:

a. Plot the Nyquist diagram.

b. Use your Nyquist diagram to find the range of gain, K, for stability.

ANSWERS:

a. See the answer at www.wiley.com/college/nise.

b. Stable for K < 480

The complete solution is at www.wiley.com/college/nise.
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FIGURE 10.34 a. Portion of contour to be mapped for Example 10.7; b. Nyquist diagram of
mapping of positive imaginary axis
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10.6 Gain Margin and Phase Margin via
the Nyquist Diagram

Now that we know how to sketch and interpret a Nyquist diagram to determine a
closed-loop system’s stability, let us extend our discussion to concepts that will
eventually lead us to the design of transient response characteristics via frequency
response techniques.

Using the Nyquist diagram, we define two quantitative measures of how stable
a system is. These quantities are called gain margin and phase margin. Systems with
greater gain and phase margins can withstand greater changes in system parameters
before becoming unstable. In a sense, gain and phase margins can be qualitatively
related to the root locus, in that systems whose poles are farther from the imaginary
axis have a greater degree of stability.

In the last section, we discussed stability from the point of view of gain at 180�

phase shift. This concept leads to the following definitions of gain margin and phase
margin:

Gain margin, GM. The gain margin is the change in open-loop gain, expressed in
decibels (dB), required at 180� of phase shift to make the closed-loop system
unstable.

Phase margin,FM. The phase margin is the change in open-loop phase shift required
at unity gain to make the closed-loop system unstable.

These two definitions are shown graphically on the Nyquist diagram in Figure 10.35.
Assume a system that is stable if there are no encirclements of �1. Using

Figure 10.35, let us focus on the definition of gain margin. Here a gain difference
between the Nyquist diagram’s crossing of the real axis at �1=a and the �1 critical
point determines the proximity of the system to instability. Thus, if the gain of the
system were multiplied by a units, the Nyquist diagram would intersect the critical
point. We then say that the gain margin is a units, or, expressed in dB, GM ¼ 20 log a.
Notice that the gain margin is the reciprocal of the real-axis crossing expressed in dB.

– 1
– 1
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α

1

Nyquist
diagram

Unit circle

Im

Gain margin = GM = 20 log a Phase margin =    M = Φ

Gain difference
before instability

Phase difference
before instability
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Q'

  α

FIGURE 10.35 Nyquist diagram showing gain and phase margins
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In Figure 10.35, we also see the phase margin graphically displayed. At point
Q0, where the gain is unity, a represents the system’s proximity to instability. That is,
at unity gain, if a phase shift of a degrees occurs, the system becomes unstable.
Hence, the amount of phase margin is a. Later in the chapter, we show that phase
margin can be related to the damping ratio. Thus, we will be able to relate
frequency response characteristics to transient response characteristics as well
as stability. We will also show that the calculations of gain and phase margins are
more convenient if Bode plots are used rather than a Nyquist diagram, such as that
shown in Figure 10.35.

For now let us look at an example that shows the calculation of the gain and
phase margins.

Example 10.8

Finding Gain and Phase Margins

PROBLEM: Find the gain and phase margin for the system of Example 10.7 if
K ¼ 6.

SOLUTION: To find the gain margin, first find the frequency where the Nyquist
diagram crosses the negative real axis. Finding Gð jvÞHð jvÞ, we have

Gð jvÞHð jvÞ ¼ 6

ðs2 þ 2sþ 2Þðsþ 2Þ
����
s!jv

¼ 6½4ð1 � v2Þ � jvð6 � v2Þ�
16ð1 � v2Þ2 þ v2ð6 � v2Þ2

ð10:47Þ

The Nyquist diagram crosses the real axis at a frequency of
ffiffiffi
6

p
rad=s. The real part

is calculated to be �0.3. Thus, the gain can be increased by ð1=0:3Þ ¼ 3:33 before
the real part becomes �1. Hence, the gain margin is

GM ¼ 20 log 3:33 ¼ 10:45 dB ð10:48Þ
To find the phase margin, find the frequency in Eq. (10.47) for which the

magnitude is unity. As the problem stands, this calculation requires computational
tools, such as a function solver or the program described in Appendix H.2. Later in
the chapter we will simplify the process by using Bode plots. Eq. (10.47) has unity gain
at a frequency of 1.253 rad/s. At this frequency, the phase angle is �112:3�. The
difference between this angle and �180� is 67:7�, which is the phase margin.

Students who are using MATLAB should now run ch10p3 in Appendix B.
You will learn how to use MATLAB to find gain margin, phase
margin, zero dB frequency, and 180� frequency. This exercise
solves Example 10.8 using MATLAB.

MATLAB’s LTI Viewer, with the Nyquist diagram selected, is an-
other method that may be used to find gain margin, phase margin,
zero dB frequency, and 180� frequency. You are encouraged to
study Appendix E, at www.wiley.com/college/nise, which con-
tains a tutorial on the LTI Viewer as well as some examples.
Example E.2 solves Example 10.8 using the LTI Viewer.
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Skill-Assessment Exercise 10.5

PROBLEM: Find the gain margin and the 180� frequency for the
problem in Skill-Assessment Exercise 10.4 if K ¼ 100.

ANSWERS: Gain margin ¼ 13:62 dB; 180� frequency ¼ 6:63 rad/s
The complete solution is at www.wiley.com/college/nise.

In this section, we defined gain margin and phase margin and calculated them
via the Nyquist diagram. In the next section, we show how to use Bode diagrams to
implement the stability calculations performed in Sections 10.5 and 10.6 using the
Nyquist diagram. We will see that the Bode plots reduce the time and simplify the
calculations required to obtain results.

10.7 Stability, Gain Margin, and Phase Margin via
Bode Plots

In this section, we determine stability, gain and phase margins, and the range of gain
required for stability. All of these topics were covered previously in this chapter, using
Nyquist diagrams as the tool. Now we use Bode plots to determine these character-
istics. Bode plots are subsets of the complete Nyquist diagram but in another form.
They are a viable alternative to Nyquist plots, since they are easily drawn without the
aid of the computational devices or long calculations required for the Nyquist diagram
and root locus. You should remember that all calculations applied to stability were
derived from and based upon the Nyquist stability criterion. The Bode plots are an
alternate way of visualizing and implementing the theoretical concepts.

Determining Stability
Let us look at an example and determine the stability of a system, implementing the
Nyquist stability criterion using Bode plots. We will draw a Bode log-magnitude plot
and then determine the value of gain that ensures that the magnitude is less than
0 dB (unity gain) at that frequency where the phase is �180�.

TryIt 10.3

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find the
gain and phase margins of
G(s)H(s) = 100/[(s+2)
(s+4)(s+6)] using the Nyquist
diagram.

G=zpk([],[–2,–4,–6],100)
nyquist(G)

After the Nyquist diagram
appears:

1. Right-click in the graph
area.

2. Select Characteristics.
3. Select All Stability

Margins.
4. Let the mouse rest on the

margin points to read the
gain and phase margins.
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Example 10.9

Range of Gain for Stability via Bode Plots

PROBLEM: Use Bode plots to determine the range of K within which the unity
feedback system shown in Figure 10.10 is stable. Let GðsÞ ¼ K=½ðsþ 2Þðsþ 4Þðsþ 5Þ�.
SOLUTION: Since this system has all of its open-loop poles in the left–half-plane,
the open-loop system is stable. Hence, from the discussion of Section 10.5, the
closed-loop system will be stable if the frequency response has a gain less than unity
when the phase is 180�.

Begin by sketching the Bode magnitude and phase diagrams shown in Figure
10.36. In Section 10.2, we summed normalized plots of each factor of G(s) to create
the Bode plot. We saw that at each break frequency, the slope of the resultant Bode
plot changed by an amount equal to the new slope that was added. Table 10.6
demonstrates this observation. In this example, we use this fact to draw the Bode
plots faster by avoiding the sketching of the response of each term.

The low-frequency gain of G(s)H(s) is found by setting s to zero. Thus, the
Bode magnitude plot starts at K=40. For convenience, let K ¼ 40 so that the log-
magnitude plot starts at 0 dB. At each break frequency, 2, 4, and 5, a 20 dB/decade
increase in negative slope is drawn, yielding the log-magnitude plot shown in
Figure 10.36.

The phase diagram begins at 0� until a decade below the first break frequency
of 2 rad/s. At 0.2 rad/s the curve decreases at a rate of �45�/decade, decreasing an
additional 45�/decade at each subsequent frequency (0.4 and 0.5 rad/s) a decade
below each break. At a decade above each break frequency, the slopes are reduced
by 45�=decade at each frequency.
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FIGURE 10.36 Bode log-magnitude and phase diagrams for the system of Example 10.9
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The Nyquist criterion for this example tells us that we want zero encir-
clements of �1 for stability. Thus, we recognize that the Bode log-magnitude
plot must be less than unity when the Bode phase plot is 180�. Accordingly,
we see that at a frequency of 7 rad/s, when the phase plot is �180�, the
magnitude plot is �20 dB. Therefore, an increase in gain of þ20 dB is possible
before the system becomes unstable. Since the gain plot was scaled for a gain of
40, þ20 dB (a gain of 10) represents the required increase in gain above 40.
Hence, the gain for instability is 40 � 10 ¼ 400. The final result is 0 < K < 400
for stability.

This result, obtained by approximating the frequency response by Bode
asymptotes, can be compared to the result obtained from the actual frequency
response, which yields a gain of 378 at a frequency of 6.16 rad/s.

Students who are using MATLAB should now run ch10p4 in Appendix B.
You will learn how to use MATLAB to find the range of gain for
stability via frequency response methods. This exercise solves
Example 10.9 using MATLAB.

Evaluating Gain and Phase Margins
Next we show how to evaluate the gain and phase margins by using Bode plots
(Figure 10.37). The gain margin is found by using the phase plot to find the
frequency, vGM , where the phase angle is 180�. At this frequency, we look at
the magnitude plot to determine the gain margin, GM, which is the gain required
to raise the magnitude curve to 0 dB. To illustrate, in the previous example with
K ¼ 40, the gain margin was found to be 20 dB.

The phase margin is found by using the magnitude curve to find the frequency,
vFM , where the gain is 0 dB. On the phase curve at that frequency, the phase margin,
fM, is the difference between the phase value and 180�.
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FIGURE 10.37 Gain and phase margins on the Bode diagrams
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Example 10.10

Gain and Phase Margins from Bode Plots

PROBLEM: If K ¼ 200 in the system of Example 10.9, find the gain margin and the
phase margin.

SOLUTION: The Bode plot in Figure 10.36 is scaled to a gain of 40. If K ¼ 200 (five
times as great), the magnitude plot would be 20 log 5 ¼ 13:98 dB higher.

To find the gain margin, look at the phase plot and find the frequency where the
phase is 180�. At this frequency, determine from the magnitude plot how much the gain
can be increased before reaching 0 dB. In Figure 10.36, the phase angle is 180� at
approximately 7 rad/s. On the magnitude plot, the gain is �20 þ 13:98 ¼ �6:02 dB.
Thus, the gain margin is 6.02 dB.

To find the phase margin, we look on the magnitude plot for the frequency
where the gain is 0 dB. At this frequency, we look on the phase plot to find the
difference between the phase and 180�. This difference is the phase margin. Again,
remembering that the magnitude plot of Figure 10.36 is 13.98 dB lower than the
actual plot, the 0 dB crossing (�13.98 dB for the normalized plot shown in Fig-
ure 10.36) occurs at 5.5 rad/s. At this frequency the phase angle is �165�. Thus, the
phase margin is �165� � ð�180�Þ ¼ 15�.

MATLAB’s LTI Viewer, with Bode plots selected, is another method
that may be used to find gain margin, phase margin, zero dB
frequency, and 180� frequency. You are encouraged to study
Appendix E at www.wiley.com/college/nise, which contains a tu-
torial on the LTI Viewer as well as some examples. Example E.3
solves Example 10.10 using the LTI Viewer.

Skill-Assessment Exercise 10.6

PROBLEM: For the system shown in Figure 10.10, where

GðsÞ ¼ K

ðsþ 5Þðsþ 20Þðsþ 50Þ
do the following:

a. Draw the Bode log-magnitude and phase plots.

b. Find the range of K for stability from your Bode plots.

c. Evaluate gain margin, phase margin, zero dB frequency, and 180� frequency
from your Bode plots for K ¼ 10; 000.

ANSWERS:

a. See the answer at www.wiley.com/college/nise.

b. K < 96; 270

c. Gain margin¼19:67 dB, phase margin¼92:9�, zero dB frequency¼7:74 rad/s,
and 180� frequency ¼ 36:7 rad/s

The complete solution is at www.wiley.com/college/nise.

TryIt 10.4

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to solve
Skill-Assessment Exercise
10.6(c) using Bode plots.

G=zpk([],...
[�5,�20,�50],10000)
bode(G)
grid on

After the Bode plot appears:

1. Right-click in the graph
area.

2. Select Characteristics.
3. Select All Stability

Margins.
4. Let the mouse rest on the

margin points to read the
gain and phase margins.
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We have seen that the open-loop frequency response curves can be used not
only to determine whether a system is stable but to calculate the range of loop gain
that will ensure stability. We have also seen how to calculate the gain margin and the
phase margin from the Bode diagrams.

Is it then possible to parallel the root locus technique and analyze and design
systems for transient response using frequency response methods? We will begin to
explore the answer in the next section.

10.8 Relation Between Closed-Loop Transient and
Closed-Loop Frequency Responses

Damping Ratio and Closed-Loop Frequency Response
In this section, we will show that a relationship exists between a system’s transient
response and its closed-loop frequency response. In particular, consider the second-

order feedback control system of Figure 10.38, which we have been using
since Chapter 4, where we derived relationships between the closed-loop
transient response and the poles of the closed-loop transfer function,

CðsÞ
RðsÞ ¼ TðsÞ ¼ v2

n

s2 þ 2zvnsþ v2
n

ð10:49Þ

We now derive relationships between the transient response of Eq. (10.49) and
characteristics of its frequency response. We define these characteristics and relate
them to damping ratio, natural frequency, settling time, peak time, and rise time. In
Section 10.10, we will show how to use the frequency response of the open-loop
transfer function

GðsÞ ¼ v2
n

sðsþ 2zvnÞ ð10:50Þ

shown in Figure 10.38, to obtain the same transient response characteristics.
Let us now find the frequency response of Eq. (10.49), define characteristics of

this response, and relate these characteristics to the transient response. Substituting
s ¼ jv into Eq. (10.49), we evaluate the magnitude of the closed-loop frequency
response as

M ¼ jTð jvÞj ¼ v2
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2
n � v2Þ2 þ 4z2v2

nv
2

q ð10:51Þ

A representative sketch of the log plot of Eq. (10.51) is shown in Figure 10.39.
We now show that a relationship exists between the peak value of the closed-

loop magnitude response and the damping ratio. Squaring Eq. (10.51), differentiat-
ing with respect to v2, and setting the derivative equal to zero yields the maximum
value of M, Mp, where

Mp ¼ 1

2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð10:52Þ

ωn
2

ωn)ζs  s(   + 2
–

R(s) + E(s) C(s)

FIGURE 10.38 Second-order closed-loop
system
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at a frequency, vp, of

vp ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2

p ð10:53Þ

Since z is related to percent overshoot, we can plot Mp vs. percent overshoot. The
result is shown in Figure 10.40.

Equation (10.52) shows that the maximum magnitude on the frequency
response curve is directly related to the damping ratio and, hence, the percent
overshoot. Also notice from Eq. (10.53) that the peak frequency, vp, is not the
natural frequency. However, for low values of damping ratio, we can assume that the
peak occurs at the natural frequency. Finally, notice that there will not be a peak at
frequencies above zero if z > 0:707. This limiting value of z for peaking on the
magnitude response curve should not be confused with overshoot on the step
response, where there is overshoot for 0 < z < 1.

Response Speed and Closed-Loop Frequency Response
Another relationship between the frequency response and time response is between
the speed of the time response (as measured by settling time, peak time, and rise
time) and the bandwidth of the closed-loop frequency response, which is defined
here as the frequency, vBW, at which the magnitude response curve is 3 dB down
from its value at zero frequency (see Figure 10.39).
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FIGURE 10.39 Representative
log-magnitude plot of
Eq. (10.51)
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FIGURE 10.40 Closed-loop
frequency response peak vs.
percent overshoot for a two-
pole system
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The bandwidth of a two-pole system can be found by finding that frequency for
which M ¼ 1=

ffiffiffi
2

p
(that is, �3 dB) in Eq.(10.51). The derivation is left as an exercise

for the student. The result is

vBW ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 2z2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z 4 � 4z2 þ 2

pq
ð10:54Þ

To relate vBW to settling time, we substitute vn ¼ 4=Tsz into Eq. (10.54) and obtain

vBW ¼ 4

Tsz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 2z2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z 4 � 4z2 þ 2

pq
ð10:55Þ

Similarly, since, vn ¼ p=ðTp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
Þ,

vBW ¼ p

Tp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 2z2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z 4 � 4z2 þ 2

pq
ð10:56Þ

To relate the bandwidth to rise time,Tr , we use Figure 4.16, knowing the desired z andTr .
For example, assume z ¼ 0:4 and Tr ¼ 0:2 second. Using Figure 4.16, the ordinate
Trvn ¼ 1:463, from which vn ¼ 1:463=0:2 ¼ 7:315 rad/s. Using Eq. (10.54), vBW ¼
10:05 rad/s. Normalized plots of Eqs. (10.55) and (10.56) and the relationship between
bandwidth normalized by rise time and damping ratio are shown in Figure 10.41.
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Skill-Assessment Exercise 10.7

PROBLEM: Find the closed-loop bandwidth required for 20% overshoot and
2-seconds settling time.

ANSWER: vBW ¼ 5:79 rad/s

The complete solution is at www.wiley.com/college/nise.

In this section, we related the closed-loop transient response to the closed-loop
frequency response via bandwidth. We continue by relating the closed-loop fre-
quency response to the open-loop frequency response and explaining the impetus.

10.9 Relation Between Closed- and
Open-Loop Frequency Responses

At this point, we do not have an easy way of finding the closed-loop frequency response
from which we could determine Mp and thus the transient response.2 As we have seen,
we are equipped to rapidly sketch the open-loop frequency response but not the closed-
loop frequency response. However, if the open-loop response is related to the closed-
loop response, we can combine the ease of sketching the open-loop response with the
transient response information contained in the closed-loop response.

Constant M Circles and Constant N Circles
Consider a unity feedback system whose closed-loop transfer function is

TðsÞ ¼ GðsÞ
1 þGðsÞ ð10:57Þ

The frequency response of this closed-loop function is

Tð jvÞ ¼ Gð jvÞ
1 þGð jvÞ ð10:58Þ

SinceGð jvÞ isacomplexnumber, letGð jvÞ ¼ PðvÞ þ jQðvÞ inEq.(10.58),whichyields

Tð jvÞ ¼ PðvÞ þ jQðvÞ
½ðPðvÞ þ 1Þ þ jQðvÞ� ð10:59Þ

Therefore,

M2 ¼ jT2ð jvÞj ¼ P2ðvÞ þQ2ðvÞ
½ðPðvÞ þ 1Þ2 þQ2ðvÞ� ð10:60Þ

Eq. (10.60) can be put into the form

Pþ M2

M2 � 1

� �2

þQ2 ¼ M2

ðM2 � 1Þ2 ð10:61Þ

2 At the end of this subsection, we will see how to use MATLAB to obtain closed-loop frequency
responses.
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which is the equation of a circle of radiusM=ðM2 � 1Þ centered at ½�M2=ðM2 � 1Þ; 0�.
These circles, shown plotted in Figure 10.42 for various values ofM, are called constant
M circles and are the locus of the closed-loop magnitude frequency response for unity
feedback systems. Thus, if the polar frequency response of an open-loop function,
G(s), is plotted and superimposed on top of the constant M circles, the closed-loop
magnitude frequency response is determined by each intersection of this polar plot
with the constant M circles.

Before demonstrating the use of the constant M circles with an example, let us
go through a similar development for the closed-loop phase plot, the constant
N circles. From Eq. (10.59), the phase angle, f, of the closed-loop response is

f ¼ tan� 1 QðvÞ
PðvÞ � tan� 1 QðvÞ

PðvÞ þ 1

¼ tan� 1

QðvÞ
PðvÞ �

QðvÞ
PðvÞ þ 1

1 þQðvÞ
PðvÞ

QðvÞ
PðvÞ þ 1

� �
ð10:62Þ

after using tan ða� bÞ ¼ ð tan a� tan bÞ=ð1 þ tan a tan bÞ. Dropping the func-
tional notation,

tan f ¼ N ¼ Q

P2 þ PþQ2
ð10:63Þ

Equation (10.63) can be put into the form of a circle,

Pþ 1

2

� �2

þ Q� 1

2N

� �2

¼ N2 þ 1

4N2 ð10:64Þ
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FIGURE 10.42 Constant M circles
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which is plotted in Figure 10.43 for various values of N. The circles of this plot are
called constant N circles. Superimposing a unity feedback, open-loop frequency
response over the constant N circles yields the closed-loop phase response of the
system. Let us now look at an example of the use of the constant M and N circles.

Example 10.11

Closed-Loop Frequency Response from Open-Loop Frequency Response

PROBLEM: Find the closed-loop frequency response of the unity feedback system
shown in Figure 10.10, where GðsÞ ¼ 50=½sðsþ 3Þðsþ 6Þ�, using the constant M
circles, N circles, and the open-loop polar frequency response curve.

SOLUTION: First evaluate the open-loop frequency function and make a polar
frequency response plot superimposed over the constant M and N circles. The
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FIGURE 10.43 Constant N circles
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open-loop frequency function is

Gð jvÞ ¼ 50

�9v2 þ jð18v� v3Þ ð10:65Þ

from which the magnitude, jGð jvÞj, and phase, —Gð jvÞ, can be found and plotted.
The polar plot of the open-loop frequency response (Nyquist diagram) is shown
superimposed over the M and N circles in Figure 10.44.
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FIGURE 10.44 Nyquist diagram for Example 10.11 and constant M and N circles

FIGURE 10.45 Closed-loop
frequency response for
Example 10.11
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The closed-loop magnitude frequency response can now be obtained by
finding the intersection of each point of the Nyquist plot with the M circles, while
the closed-loop phase response can be obtained by finding the intersection of each
point of the Nyquist plot with the N circles. The result is shown in Figure 10.45.3

Students who are using MATLAB should now run ch10p5 in Appendix B.
You will learn how to use MATLAB to find the closed-loop frequency
response. This exercise solves Example 10.11 using MATLAB.

Nichols Charts
A disadvantage of using the M and N circles is that changes of gain in the open-loop
transfer function, G(s), cannot be handled easily. For example, in the Bode plot, a
gain change is handled by moving the Bode magnitude curve up or down an amount
equal to the gain change in dB. Since the M and N circles are not dB plots, changes in
gain require each point of Gð jvÞ to be multiplied in length by the increase or
decrease in gain.

Another presentation of the M and N circles, called a Nichols chart, displays
the constant M circles in dB, so that changes in gain are as simple to handle as in the
Bode plot. A Nichols chart is shown in Figure 10.46. The chart is a plot of open-loop
magnitude in dB vs. open-loop phase angle in degrees. Every point on the M circles
can be transferred to the Nichols chart. Each point on the constant M circles is
represented by magnitude and angle (polar coordinates). Converting the magnitude
to dB, we can transfer the point to the Nichols chart, using the polar coordinates with
magnitude in dB plotted as the ordinate, and the phase angle plotted as the abscissa.
Similarly, the N circles also can be transferred to the Nichols chart.

3 You are cautioned not to use the closed-loop polar plot for the Nyquist criterion. The closed-loop
frequency response, however, can be used to determine the closed-loop transient response, as discussed in
Section 10.8.
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For example, assume the function

GðsÞ ¼ K

sðsþ 1Þðsþ 2Þ ð10:66Þ

Superimposing the frequency response of G(s) on the Nichols chart by plotting
magnitude in dB vs. phase angle for a range of frequencies from 0.1 to 1 rad/s, we
obtain the plot in Figure 10.47 for K ¼ 1. If the gain is increased by 10 dB, simply
raise the curve for K ¼ 1 by 10 dB and obtain the curve for K ¼ 3:16ð10 dBÞ. The
intersection of the plots of GðjvÞ with the Nichols chart yields the frequency
response of the closed-loop system.

Students who are using MATLAB should now run ch10p6 in Appendix B.
You will learn how to use MATLAB to make a Nichols plot. This exer-
cise makes a Nichols plot of GðsÞ ¼ 1=½sðsþ 1Þðsþ 2Þ� using MATLAB.

MATLAB’s LTI Viewer is an alternative method of obtaining the Nichols
chart. You are encouraged to study Appendix E at www.wiley.com/
college/nise, which contains a tutorial on the LTI Viewer as well
as some examples. Example E.4 shows how to obtain Figure 10.47 using
the LTI Viewer.

Skill-Assessment Exercise 10.8

PROBLEM: Given the system shown in Figure 10.10, where

GðsÞ ¼ 8000

ðsþ 5Þðsþ 20Þðsþ 50Þ
plot the closed-loop log-magnitude and phase frequency response plots using the
following methods:

a. M and N circles

b. Nichols chart

ANSWER: The complete solution is at www.wiley.com/college/nise.

FIGURE 10.47 Nichols chart
with frequency response for
GðsÞ ¼ K=½sðsþ 1Þ ðsþ 2Þ�
superimoposed. Values for
K ¼ 1 and K ¼ 3:16 are shown
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TryIt 10.5

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to make a
Nichols chart of the system
given in Skill-Assessment
Exercise 10.8

G=zpk([],...
[�5,�20,�50],8000)
nichols(G)
grid on
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10.10 Relation Between Closed-Loop
Transient and Open-Loop
Frequency Responses

Damping Ratio FromM Circles
We can use the results of Example 10.11 to estimate the transient response
characteristics of the system. We can find the peak of the closed-loop frequency
response by finding the maximum M curve tangent to the open-loop frequency
response. Then we can find the damping ratio, z, and subsequently the percent
overshoot, via Eq. (10.52). The following example demonstrates the use of the
open-loop frequency response and the M circles to find the damping ratio or,
equivalently, the percent overshoot.

Example 10.12

Percent Overshoot from Open-Loop Frequency Response

PROBLEM: Find the damping ratio and the percent overshoot expected from the
system of Example 10.11, using the open-loop frequency response and theM circles.

SOLUTION: Equation (10.52) shows that there is a unique relationship between the
closed-loop system’s damping ratio and the peak value, MP, of the closed-loop
system’s magnitude frequency plot. From Figure 10.44, we see that the Nyquist
diagram is tangent to the 1.8 M circle. We see that this is the maximum value for the
closed-loop frequency response. Thus, Mp ¼ 1:8.

We can solve for z by rearranging Eq. (10.52) into the following form:

z 4 � z 2 þ ð1=4M2
pÞ ¼ 0 ð10:67Þ

Since Mp ¼ 1:8, then z ¼ 0:29 and 0.96. From Eq. (10.53), a damping ratio larger
than 0.707 yields no peak above zero frequency. Thus, we select z ¼ 0:29, which is
equivalent to 38.6% overshoot. Care must be taken, however, to be sure we can
make a second-order approximation when associating the value of percent over-
shoot to the value of z. A computer simulation of the step response shows 36%
overshoot.

So far in this section, we have tied together the system’s transient response
and the peak value of the closed-loop frequency response as obtained from the
open-loop frequency response. We used the Nyquist plots and the M and N circles to
obtain the closed-loop transient response. Another association exists between the
open-loop frequency response and the closed-loop transient response that is easily
implemented with the Bode plots, which are easier to draw than the Nyquist plots.

Damping Ratio from Phase Margin
Let us now derive the relationship between the phase margin and the damping ratio.
This relationship will enable us to evaluate the percent overshoot from the phase
margin found from the open-loop frequency response.
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Consider a unity feedback system whose open-loop function

GðsÞ ¼ v2
n

sðsþ 2zvnÞ ð10:68Þ

yields the typical second-order, closed-loop transfer function

TðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð10:69Þ

In order to evaluate the phase margin, we first find the frequency for which
jGð jvÞj ¼ 1. Hence,

jGð jvÞj ¼ v2
n

j � v2 þ j2zvnvj ¼ 1 ð10:70Þ

The frequency, v1, that satisfies Eq. (10.70) is

v1 ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4z 4

pq
ð10:71Þ

The phase angle of Gð jvÞ at this frequency is

—Gð jvÞ ¼ �90 � tan� 1 v1

2zvn

¼ �90 � tan� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z 4 þ 1

pq

2z

ð10:72Þ

The difference between the angle of Eq. (10.72) and�180� is the phase margin,fM. Thus,

FM ¼ 90 � tan� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4z 4

pq

2z

¼ tan� 1 2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4z 4

pq
ð10:73Þ

Equation (10.73), plotted in Figure 10.48, shows the relationship between phase
margin and damping ratio.

FIGURE 10.48 Phase margin
vs. damping ratio
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As an example, Eq. (10.53) tells us that there is no peak frequency if z ¼ 0:707.
Hence, there is no peak to the closed-loop magnitude frequency response curve for
this value of damping ratio and larger. Thus, from Figure 10.48, a phase margin of
65:52�ðz ¼ 0:707Þ or larger is required from the open-loop frequency response to
ensure there is no peaking in the closed-loop frequency response.

Response Speed from Open-Loop Frequency Response
Equations (10.55) and (10.56) relate the closed-loop bandwidth to the desired
settling or peak time and the damping ratio. We now show that the closed-loop
bandwidth can be estimated from the open-loop frequency response. From the
Nichols chart in Figure 10.46, we see the relationship between the open-loop gain
and the closed-loop gain. The M ¼ 0:707ð�3 dBÞ curve, replotted in Figure 10.49 for
clarity, shows the open-loop gain when the closed-loop gain is �3 dB, which typically
occurs at vBW if the low-frequency closed-loop gain is 0 dB. We can approximate
Figure 10.49 by saying that the closed-loop bandwidth, vBW (the frequency at which
the closed-loop magnitude response is �3dB), equals the frequency at which the
open-loop magnitude response is between �6 and �7:5 dB if the open-loop phase
response is between �135� and �225�. Then, using a second-order system approxi-
mation, Eqs. (10.55) and (10.56) can be used, along with the desired damping ratio, z,
to find settling time and peak time, respectively. Let us look at an example.

Example 10.13

Settling and Peak Times from Open-Loop Frequency Response

PROBLEM: Given the system of Figure 10.50(a) and the Bode diagrams of Figure
10.50(b), estimate the settling time and peak time.

SOLUTION: Using Figure 10.50(b), we estimate the closed-loop bandwidth by
finding the frequency where the open-loop magnitude response is in the range of
�6 to �7:5 dB if the phase response is in the range of �135� to �225�. Since Figure
10.50(b) shows �6 to �7:5 dB at approximately 3.7 rad/s with a phase response in
the stated region, vBW ffi 3:7 rad=s.

Next find z via the phase margin. From Figure 10.50(b), the phase margin is
found by first finding the frequency at which the magnitude plot is 0 dB. At this
frequency, 2.2 rad/s, the phase is about �145�. Hence, the phase margin is
approximately ð�145� � ð�180�ÞÞ ¼ 35�. Using Figure 10.48, z ¼ 0:32. Finally,
using Eqs. (10.55) and (10.56), with the values of vBW and z just found, Ts ¼ 4:86
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seconds and Tp ¼ 129 seconds. Checking the analysis with a computer simulation
shows Ts ¼ 5:5 seconds, and Tp ¼ 1:43 seconds.

Skill-Assessment Exercise 10.9

PROBLEM: Using the open-loop frequency response for the system in Fig-
ure 10.10, where

GðsÞ ¼ 100

sðsþ 5Þ
estimate the percent overshoot, settling time, and peak time for the closed-loop
step response.

ANSWER: %OS ¼ 44%; Ts ¼ 1:64 s; and TP ¼ 0:33 s

The complete solution is at www.wiley.com/college/nise.
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FIGURE 10.50 a. Block diagram; b. Bode diagrams for system of Example 10.13
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10.11 Steady-State Error Characteristics
from Frequency Response

In this section, we show how to use Bode diagrams to find the values of the static
error constants for equivalent unity feedback systems: Kp for a Type 0 system, Kv for
a Type 1 system, and Ka for a Type 2 system. The results will be obtained from
unnormalized and unscaled Bode log-magnitude plots.

Position Constant
To find Kp, consider the following Type 0 system:

GðsÞ ¼ K

Qn
i¼1

ðsþ ziÞ
Qm
i¼1

ðsþ piÞ
ð10:74Þ

A typical unnormalized and unscaled Bode log-magnitude plot is shown in
Figure 10.51(a). The initial value is

20 log M ¼ 20 log K

Qn
i¼1

zi

Qm
i¼1

pi

ð10:75Þ
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FIGURE 10.51 Typical unnormalized and unscaled Bode log-magnitude plots showing the
value of static error constants: a. Type 0; b. Type 1; c. Type 2
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But for this system

Kp ¼ K

Qn
i¼1

zi

Qm
i¼1

pi

ð10:76Þ

which is the same as the value of the low-frequency axis. Thus, for an unnormalized
and unscaled Bode log-magnitude plot, the low-frequency magnitude is 20 log Kp for
a Type 0 system.

Velocity Constant
To find Kv for a Type 1 system, consider the following open-loop transfer function of
a Type 1 system:

GðsÞ ¼ K

Qn
i¼1

ðsþ ziÞ

s
Qm
i¼1

ðsþ piÞ
ð10:77Þ

A typical unnormalized and unscaled Bode log-magnitude diagram is shown in
Figure 10.51(b) for this Type 1 system. The Bode plot starts at

20 log M ¼ 20 log K

Qn
i¼1

zi

v0
Qm
i¼1

pi

ð10:78Þ

The initial �20 dB/decade slope can be thought of as originating from a function,

G0ðsÞ ¼ K

Qn
i¼1

zi

s
Qm
i¼1

pi

ð10:79Þ

G0ðsÞ intersects the frequency axis when

v ¼ K

Qn
i¼1

zi

Qm
i¼1

pi

ð10:80Þ

But for the original system (Eq. (10.77)),

Kv ¼ K

Qn
i¼1

zi

Qm
i¼1

pi

ð10:81Þ

which is the same as the frequency-axis intercept, Eq. (10.80). Thus, we can find Kv

by extending the initial �20 dB/decade slope to the frequency axis on an unnor-
malized and unscaled Bode diagram. The intersection with the frequency axis is Kv.
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Acceleration Constant
To find Ka for a Type 2 system, consider the following:

GðsÞ ¼ K

Qn
i¼1

ðsþ ziÞ

s2
Qm
i¼1

ðsþ piÞ
ð10:82Þ

A typical unnormalized and unscaled Bode plot for a Type 2 system is shown in
Figure 10.51(c). The Bode plot starts at

20 log M ¼ 20 log K

Qn
i¼1

zi

v2
0

Qm
i¼1

pi

ð10:83Þ

The initial �40 dB/decade slope can be thought of as coming from a function,

G0ðsÞ ¼ K

Qn
i¼1

zi

s2
Qm
i¼1

pi

ð10:84Þ

G0ðsÞ intersects the frequency axis when

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K

Qn
i¼1

zi

Qm
i¼1

pi

vuuuuut ð10:85Þ

But for the original system (Eq. (10.82)),

Ka ¼ K

Qn
i¼1

zi

Qm
i¼1

pi

ð10:86Þ

Thus, the initial �40 dB/decade slope intersects the frequency axis at
ffiffiffiffiffiffi
Ka

p
.

Example 10.14

Static Error Constants from Bode Plots

PROBLEM: For each unnormalized and unscaled Bode log-magnitude plot shown
in Figure 10.52,

a. Find the system type.

b. Find the value of the appropriate static error constant.
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SOLUTION: Figure 10.52(a) is a Type 0 system since the initial slope is zero. The
value of Kp is given by the low-frequency asymptote value. Thus, 20 log Kp ¼ 25, or
Kp ¼ 17:78.

Figure 10.52(b) is a Type 1 system since the initial slope is�20 dB/decade. The
value of Kv is the value of the frequency that the initial slope intersects at the zero
dB crossing of the frequency axis. Hence, Kv ¼ 0:55.

Figure 10.52(c) is a Type 2 system since the initial slope is �40 dB/decade. The
value of

ffiffiffiffiffiffi
Ka

p
is the value of the frequency that the initial slope intersects at the zero

dB crossing of the frequency axis. Hence, Ka ¼ 32 ¼ 9.
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FIGURE 10.52 Bode log-magnitude plots for Example 10.14
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Skill-Assessment Exercise 10.10

PROBLEM: Find the static error constants for a stable unity feedback system whose
open-loop transfer function has the Bode magnitude plot shown in Figure 10.53.

ANSWERS:Kp ¼ 1; Kv ¼ 1; Ka ¼ 90:25

The complete solution is www.wiley.com/college/nise.

10.12 Systems with Time Delay

Time delay occurs in control systems when there is a delay between the com-
manded response and the start of the output response. For example, consider a
heating system that operates by heating water for pipeline distribution to radiators
at distant locations. Since the hot water must flow through the line, the radiators
will not begin to get hot until after a specified time delay. In other words, the time
between the command for more heat and the commencement of the rise in
temperature at a distant location along the pipeline is the time delay. Notice
that this is not the same as the transient response or the time it takes the
temperature to rise to the desired level. During the time delay, nothing is occurring
at the output.

Modeling Time Delay
Assume that an input, R(s), to a system, G(s), yields an output, C(s). If another
system, G0ðsÞ, delays the output by T seconds, the output response is cðt � TÞ. From
Table 2.2, Item 5, the Laplace transform of cðt � TÞ is e�sTCðsÞ. Thus, for the system
without delay, CðsÞ ¼ RðsÞGðsÞ, and for the system with delay, e�sTCðsÞ ¼ RðsÞG0ðsÞ.
Dividing these two equations, G0ðsÞ=GðsÞ ¼ e�sT . Thus, a system with time delay T
can be represented in terms of an equivalent system without time delay as follows:

G0ðsÞ ¼ e�sTGðsÞ ð10:87Þ
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FIGURE 10.53 Bode log-magnitude plot for Skill-Assessment Exercise 10.10
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The effect of introducing time delay into a system can also be seen from the
perspective of the frequency response by substituting s ¼ jv in Eq. (10.87). Hence,

G0ðjvÞ ¼ e�jvTGðjvÞ ¼ jGðjvÞj—f�vT þ—GðjvÞg ð10:88Þ

In other words, the time delay does not affect the magnitude frequency response
curve of GðjvÞ, but it does subtract a linearly increasing phase shift, vT, from the
phase frequency response plot of GðjvÞ.

The typical effect of adding time delay can be seen in Figure 10.54. Assume that
the gain and phase margins as well as the gain- and phase-margin frequencies shown
in the figure apply to the system without delay. From the figure, we see that the
reduction in phase shift caused by the delay reduces the phase margin. Using a
second-order approximation, this reduction in phase margin yields a reduced
damping ratio for the closed-loop system and a more oscillatory response. The
reduction of phase also leads to a reduced gain-margin frequency. From the
magnitude curve, we can see that a reduced gain-margin frequency leads to reduced
gain margin, thus moving the system closer to instability.

An example of plotting frequency response curves for systems with delay follows.

Example 10.15

Frequency Response Plots of a System with Time Delay

PROBLEM: Plot the frequency response for the system GðsÞ ¼ K=½sðsþ 1Þðsþ 10Þ�
if there is a time delay of 1 second through the system. Use the Bode plots.

SOLUTION: Since the magnitude curve is not affected by the delay, it can be plotted
by the methods previously covered in the chapter and is shown in Figure 10.55(a)
for K ¼ 1.

The phase plot, however, is affected by the delay. Figure 10.55(b) shows the
result. First draw the phase plot for the delay, e�jvT ¼ 1 —� vT ¼ 1 —� v, since
T ¼ 1 from the problem statement. Next draw the phase plot of the system, GðjvÞ,

0 dB

180°

ωlog

Gain plot

GM

M(dB)

ωlog

Phase (degrees)

Phase plot with delay

Phase plot without delay
GM ΦM

ωω

ΦM

FIGURE 10.54 Effect of delay upon frequency response
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using the methods previously covered. Finally, add the two phase curves together
to obtain the total phase response for e�jvTGðjvÞ. Be sure to use consistent units
for the phase angles of GðjvÞ and the delay; either degrees or radians.

Notice that the delay yields a decreased phase margin, since at any frequency
the phase angle is more negative. Using a second-order approximation, this
decrease in phase margin implies a lower damping ratio and a more oscillatory
response for the closed-loop system.

Further, there is a decrease in the gain-margin frequency. On the magnitude
curve, note that a reduction in the gain-margin frequency shows up as reduced gain
margin, thus moving the system closer to instability.

Students who are using MATLAB should now run ch10p7 in Appendix B.
You will learn how to use MATLAB to include time delay on Bode plots.
YouwillalsouseMATLABtomakemultipleplotsononegraphandlabel
the plots. This exercise solves Example 10.15 using MATLAB.

Let us now use the results of Example 10.15 to design stability and analyze transient
response and compare the results to the system without time delay.

Example 10.16

Range of Gain for Stability for System with Time Delay

PROBLEM: The open-loop system with time delay in Example 10.15 is used in a
unity feedback configuration. Do the following:

a. Find the range of gain, K, to yield stability. Use Bode plots and frequency
response techniques.

b. Repeat Part a for the system without time delay.
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FIGURE 10.55 Frequency
response plots for GðsÞ ¼
K=½sðsþ 1Þðsþ 10Þ� with a
delay of 1 second and K ¼ 1:
a. magnitude plot; b. phase plot
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SOLUTION:

a. From Figure 10.55, the phase angle is �180� at a frequency of 0.81 rad/s for
the system with time delay, marked ‘‘Total’’ on the phase plot. At this
frequency, the magnitude curve is at �20.39 dB. Thus, K can be raised
from its current value of unity to 1020:39=20 ¼ 10:46. Hence, the system is
stable for 0 < K � 10:46.

b. If we use the phase curve without delay, marked ‘‘System,’’ �180� occurs at a
frequency of 3.16 rad/s, and K can be raised 40.84 dB or 110.2. Thus, without
delay the system is stable for 0 < K � 110:2, an order of magnitude larger.

Example 10.17

Percent Overshoot for System with Time Delay

PROBLEM: The open-loop system with time delay in Example 10.15 is used in a
unity feedback configuration. Do the following:

a. Estimate the percent overshoot if K ¼ 5. Use Bode plots and frequency
response techniques.

b. Repeat Part a for the system without time delay.

SOLUTION:

a. Since K ¼ 5, the magnitude curve of Figure 10.55 is raised by 13.98 dB. The
zero dB crossing then occurs at a frequency of 0.47 rad/s with a phase angle of
�145�, as seen from the phase plot marked ‘‘Total.’’ Therefore, the phase
margin is ð�145� � ð�180�ÞÞ ¼ 35�. Assuming a second-order approximation
and using Eq. (10.73) or Figure 10.48, we find z ¼ 0:33. From Eq. (4.38),
%OS ¼ 33%. The time response, Figure 10.56(a), shows a 38% overshoot
instead of the predicted 33%. Notice the time delay at the start of the curve.

b. The zero dB crossing occurs at a frequency of 0.47 rad/s with a phase angle of
�118�, as seen from the phase plot marked ‘‘System.’’ Therefore, the phase

FIGURE 10.56 Step response
for closed-loop system with
GðsÞ ¼ 5=½sðsþ 1Þðsþ 10Þ�:
a. with a 1-second delay;
(figure continues)
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margin is ð�118� � ð�180�ÞÞ ¼ 62�. Assuming a second-order approxima-
tion and using Eq. (10.73) or Figure 10.48, we find z ¼ 0:64. From Eq. (4.38),
%OS ¼ 7:3%. The time response is shown in Figure 10.56(b). Notice that
the system without delay has less overshoot and a smaller settling time.

Skill-Assessment Exercise 10.11

PROBLEM: For the system shown in Figure 10.10, where

GðsÞ ¼ 10

sðsþ 1Þ
find the phase margin if there is a delay in the forward path of

a. 0 s

b. 0.1 s

c. 3 s

ANSWERS:

a. 18.0�

b. 0.35�

c. �151:41�

The complete solution is at www.wiley.com/college/nise.
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FIGURE 10.56 (Continued )
b. without delay

TryIt 10.6

Use MATLAB, the Control
System Toolbox, and the fol-
lowingstatements tosolveSkill-
Assessment Exercise 10.11. For
each part of the problem letd ¼
the specified delay.

G=zpk([],[0,�l],10)
d=0
[numGd,denGd]=pade...
(d,12)
Gd=tf(numGd,denGd)
Ge=G�Gd
bode(Ge)
grid on

After the Bode diagrams
appear:

1. Right-click in the graph
area.

2. Select Characteristics.
3. Select All Stability

Margins.
4. Let the mouse rest on the

margin point on the phase
plot to read the phase
margin.
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In summary, then, systems with time delay can be handled using previously
described frequency response techniques if the phase response is adjusted to reflect
the time delay. Typically, time delay reduces gain and phase margins, resulting in
increased percent overshoot or instability in the closed-loop response.

10.13 Obtaining Transfer Functions Experimentally

In Chapter 4, we discussed how to obtain the transfer function of a system through
step-response testing. In this section, we show how to obtain the transfer function
using sinusoidal frequency response data.

The analytical determination of a system’s transfer function can be difficult.
Individual component values may not be known, or the internal configuration of the
system may not be accessible. In such cases, the frequency response of the system, from
input to output, can be obtained experimentally and used to determine the transfer
function. To obtain a frequency response plot experimentally, we use a sinusoidal force
or signal generator at the input to the system and measure the output steady-state
sinusoid amplitude and phase angle (see Figure 10.2). Repeating this process at a
number of frequencies yields data for a frequency response plot. Referring to
Figure 10.2(b), the amplitude response is MðvÞ ¼ MoðvÞ=MiðvÞ, and the phase
response is fðvÞ ¼ foðvÞ � fiðvÞ. Once the frequency response is obtained, the
transfer function of the system can be estimated from the break frequencies and
slopes. Frequency response methods can yield a more refined estimate of the transfer
function than the transient response techniques covered in Chapter 4.

Bode plots are a convenient presentation of the frequency response data for
the purpose of estimating the transfer function. These plots allow parts of the
transfer function to be determined and extracted, leading the way to further
refinements to find the remaining parts of the transfer function.

Although experience and intuition are invaluable in the process, the following
steps are still offered as a guideline:

1. Look at the Bode magnitude and phase plots and estimate the pole-zero
configuration of the system. Look at the initial slope on the magnitude plot to
determine system type. Look at phase excursions to get an idea of the difference
between the number of poles and the number of zeros.

2. See if portions of the magnitude and phase curves represent obvious first- or
second-order pole or zero frequency response plots.

3. See if there is any telltale peaking or depressions in the magnitude response plot
that indicate an underdamped second-order pole or zero, respectively.

4. If any pole or zero responses can be identified, overlay appropriate �20 or
�40 dB/decade lines on the magnitude curve or �45�/decade lines on the phase
curve and estimate the break frequencies. For second-order poles or zeros, estimate the
damping ratio and natural frequency from the standard curves given in Section 10.2.

5. Form a transfer function of unity gain using the poles and zeros found. Obtain the
frequency response of this transfer function and subtract this response from the
previous frequency response (Franklin, 1991). You now have a frequency re-
sponse of reduced complexity from which to begin the process again to extract
more of the system’s poles and zeros. A computer program such as MATLAB is of
invaluable help for this step.

Let us demonstrate.
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Example 10.18

Transfer Function from Bode Plots

PROBLEM: Find the transfer function of the subsystem whose Bode plots are
shown in Figure 10.57.

SOLUTION: Let us first extract the underdamped poles that we suspect, based on the
peaking in the magnitude curve. We estimate the natural frequency to be near the peak
frequency, or approximately 5 rad/s. From Figure 10.57, we see a peak of about 6.5 dB,
which translates into a damping ratio of about z ¼ 0:24 using Eq. (10.52). The unity gain
second-order function is thus G1ðsÞ ¼ v2

n=ðs2 þ 2zvnsþ v2
nÞ ¼ 25=ðs2 þ 2:4sþ 25Þ.

The frequency response plot of this function is made and subtracted from the previous
Bode plots to yield the response in Figure 10.58.

Overlaying a �20 dB/decade line on the magnitude response and a
�45�/decade line on the phase response, we detect a final pole. From the
phase response, we estimate the break frequency at 90 rad/s. Subtracting
the response of G2ðsÞ ¼ 90=ðsþ 90Þ from the previous response yields the
response in Figure 10.59.

Figure 10.59 has a magnitude and phase curve similar to that generated by a
lag function. We draw a �20 dB/decade line and fit it to the curves. The break
frequencies are read from the figure as 9 and 30 rad/s. Aunity gain transfer function
containing a pole at �9 and a zero at �30 is G3ðsÞ ¼ 0:3ðsþ 30Þ=ðsþ 9Þ. Upon
subtraction of G1ðsÞG2ðsÞG3ðsÞ, we find the magnitude frequency response flat �1
dB and the phase response flat at �3� � 5�. We thus conclude that we are finished
extracting dynamic transfer functions. The low-frequency, or dc, value of the
original curve is �19 dB, or 0.11. Our estimate of the subsystem’s transfer function
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FIGURE 10.57 Bode plots for subsystem with undetermined transfer function
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is GðsÞ ¼ 0:11G1ðsÞG2ðsÞG3ðsÞ, or

GðsÞ ¼ 0:11
25

s2 þ 2:4sþ 25

� �
90

1

sþ 90

� �
0:3

sþ 30

sþ 9

� �

¼ 74:25
sþ 30

ðsþ 9Þðsþ 90Þðs2 þ 2:4sþ 25Þ

ð10:89Þ
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It is interesting to note that the original curve was obtained from the function

GðsÞ ¼ 70
sþ 20

ðsþ 7Þðsþ 70Þðs2 þ 2sþ 25Þ ð10:90Þ

StudentswhoareusingMATLABshouldnowrunch10p8inAppendixB.You
will learn how to use MATLAB to subtract Bode plots for the purpose
of estimating transfer functions through sinusoidal testing.
This exercise solves a portion of Example 10.18 using MATLAB.

Skill-Assessment Exercise 10.12

PROBLEM: Estimate G(s), whose Bode log-magnitude and phase plots are shown
in Figure 10.60.

ANSWER: GðsÞ ¼ 30ðsþ 5Þ
sðsþ 20Þ

The complete solution is at www.wiley.com/college/nise.

In this chapter, we derived the relationships between time response perform-
ance and the frequency responses of the open- and closed-loop systems. The
methods derived, although yielding a different perspective, are simply alternatives
to the root locus and steady-state error analyses previously covered.
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Case Study

Antenna Control: Stability Design and Transient Performance

Our ongoing antenna position control system serves now as an example that summarizes
the major objectives of the chapter. The case study demonstrates the use of frequency
response methods to find the range of gain for stability and to design a value of gain to
meet a percent overshoot requirement for the closed-loop step response.

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, use frequency response techniques to find the following:

a. The range of preamplifier gain, K, required for stability

b. Percent overshoot if the preamplifier gain is set to 30

c. The estimated settling time

d. The estimated peak time

e. The estimated rise time

SOLUTION: Using the block diagram (Configuration 1) shown on the front end-
papers and performing block diagram reduction yields the loop gain, G(s)H(s), as

GðsÞHðsÞ ¼ 6:63K

sðsþ 1:71Þðsþ 100Þ ¼
0:0388K

s
s

1:71
þ 1

� 	 s

100
þ 1

� 	 ð10:91Þ

Letting K ¼ 1, we have the magnitude and phase frequency response plots shown
in Figure 10.61.

FIGURE 10.61 Open-loop
frequency response plots for
the antenna control system
ðK ¼ 1Þ
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a. In order to find the range of K for stability, we notice from Figure 10.61 that the
phase response is �180� at v ¼ 13:1 rad=s. At this frequency, the magnitude plot
is �68.41 dB. The gain, K, can be raised by 68.41 dB. Thus, K ¼ 2633 will cause
the system to be marginally stable. Hence, the system is stable if 0 < K < 2633.

b. To find the percent overshoot if K ¼ 30, we first make a second-order approxi-
mation and assume that the second-order transient response equations relating
percent overshoot, damping ratio, and phase margin are true for this system. In
other words, we assume that Eq. (10.73), which relates damping ratio to phase
margin, is valid. If K ¼ 30, the magnitude curve of Figure 10.61 is moved up by
20 log 30 ¼ 29:54 dB. Therefore, the adjusted magnitude curve goes through
zero dB at v ¼ 1. At this frequency, the phase angle is �120:9�, yielding a phase
margin of 59.1�. Using Eq. (10.73) or Figure 10.48, z ¼ 0:6, or 9.48% overshoot.
A computer simulation shows 10%.

c. To estimate the settling time, we make a second-order approximation and use
Eq. (10.55). Since K ¼ 30 (29.54 dB), the open-loop magnitude response is
�7 dB when the normalized magnitude response of Figure 10.61 is �36.54 dB.
Thus, the estimated bandwidth is 1.8 rad/s. Using Eq. (10.55), Ts ¼ 4:25 seconds.
A computer simulation shows a settling time of about 4.4 seconds.

d. Using the estimated bandwidth found in c. along with Eq. (10.56), and the
damping ratio found in a. we estimate the peak time to be 2.5 seconds. A
computer simulation shows a peak time of 2.8 seconds.

e. To estimate the rise time, we use Figure 4.16 and find that the normalized rise
time for a damping ratio of 0.6 is 1.854. Using Eq. (10.54), the estimated
bandwidth found in c, and z ¼ 0:6, we find vn ¼ 1:57. Using the normalized rise
time and vn, we find Tr ¼ 1:854=1:57 ¼ 1:18 seconds. A simulation shows a rise
time of 1.2 seconds.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. You are given the antenna azimuth position control system shown on
the front endpapers, Configuration 3. Record the block diagram parameters in the
table shown on the front endpapers for Configuration 3 for use in subsequent case
study challenge problems. Using frequency response methods, do the following:

a. Find the range of gain for stability.

b. Find the percent overshoot for a step input if the gain, K, equals 3.

c. Repeat Parts a. and b. using MATLAB.

Summary

Frequency response methods are an alternative to the root locus for analyzing and
designing feedback control systems. Frequency response techniques can be used
more effectively than transient response to model physical systems in the laboratory.
On the other hand, the root locus is more directly related to the time response.

The input to a physical system can be sinusoidally varying with known
frequency, amplitude, and phase angle. The system’s output, which is also sinusoidal
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in the steady state, can then be measured for amplitude and phase angle at different
frequencies. From this data the magnitude frequency response of the system, which
is the ratio of the output amplitude to the input amplitude, can be plotted and used in
place of an analytically obtained magnitude frequency response. Similarly, we can
obtain the phase response by finding the difference between the output phase angle
and the input phase angle at different frequencies.

The frequency response of a system can be represented either as a polar plot or
as separate magnitude and phase diagrams. As a polar plot, the magnitude response
is the length of a vector drawn from the origin to a point on the curve, whereas the
phase response is the angle of that vector. In the polar plot, frequency is implicit and
is represented by each point on the polar curve. The polar plot of G(s)H(s) is known
as a Nyquist diagram.

Separate magnitude and phase diagrams, sometimes referred to as Bode plots,
present the data with frequency explicitly enumerated along the abscissa. The
magnitude curve can be a plot of log-magnitude versus log-frequency. The other
graph is a plot of phase angle versus log-frequency. An advantage of Bode plots over
the Nyquist diagram is that they can easily be drawn using asymptotic approxima-
tions to the actual curve.

The Nyquist criterion sets forth the theoretical foundation from which the
frequency response can be used to determine a system’s stability. Using the Nyquist
criterion and Nyquist diagram, or the Nyquist criterion and Bode plots, we can
determine a system’s stability.

Frequency response methods give us not only stability information but also
transient response information. By defining such frequency response quantities as
gain margin and phase margin, the transient response can be analyzed or designed.
Gain margin is the amount that the gain of a system can be increased before
instability occurs if the phase angle is constant at 180�. Phase margin is the amount
that the phase angle can be changed before instability occurs if the gain is held at
unity.

While the open-loop frequency response leads to the results for stability and
transient response just described, other design tools relate the closed-loop frequency
response peak and bandwidth to the transient response. Since the closed-loop
response is not as easy to obtain as the open-loop response because of the
unavailability of the closed-loop poles, we use graphical aids in order to obtain
the closed-loop frequency response from the open-loop frequency response. These
graphical aids are the M and N circles and the Nichols chart. By superimposing the
open-loop frequency response over the M and N circles or the Nichols chart, we are
able to obtain the closed-loop frequency response and then analyze and design for
transient response.

Today, with the availability of computers and appropriate software, frequency
response plots can be obtained without relying on the graphical techniques described
in this chapter. The program used for the root locus calculations and described in
Appendix H.2 is one such program. MATLAB is another.

We concluded the chapter discussion by showing how to obtain a reasonable
estimate of a transfer function using its frequency response, which can be obtained
experimentally. Obtaining transfer functions this way yields more accuracy than
transient response testing.

This chapter primarily has examined analysis of feedback control systems via
frequency response techniques. We developed the relationships between frequency
response and both stability and transient response. In the next chapter, we apply the
concepts to the design of feedback control systems, using the Bode plots.
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Review Questions

1. Name four advantages of frequency response techniques over the root locus.

2. Define frequency response as applied to a physical system.

3. Name two ways to plot the frequency response.

4. Briefly describe how to obtain the frequency response analytically.

5. Define Bode plots.

6. Each pole of a system contributes how much of a slope to the Bode magnitude
plot?

7. A system with only four poles and no zeros would exhibit what value of slope at
high frequencies in a Bode magnitude plot?

8. A system with four poles and two zeros would exhibit what value of slope at high
frequencies in a Bode magnitude plot?

9. Describe the asymptotic phase response of a system with a single pole at �2.

10. What is the major difference between Bode magnitude plots for first-order
systems and for second-order systems?

11. For a system with three poles at �4, what is the maximum difference between the
asymptotic approximation and the actual magnitude response?

12. Briefly state the Nyquist criterion.

13. What does the Nyquist criterion tell us?

14. What is a Nyquist diagram?

15. Why is the Nyquist criterion called a frequency response method?

16. When sketching a Nyquist diagram, what must be done with open-loop poles on
the imaginary axis?

17. What simplification to the Nyquist criterion can we usually make for systems
that are open-loop stable?

18. What simplification to the Nyquist criterion can we usually make for systems
that are open-loop unstable?

19. Define gain margin.

20. Define phase margin.

21. Name two different frequency response characteristics that can be used to
determine a system’s transient response.

22. Name three different methods of finding the closed-loop frequency response
from the open-loop transfer function.

23. Briefly explain how to find the static error constant from the Bode magnitude
plot.

24. Describe the change in the open-loop frequency response magnitude plot if time
delay is added to the plant.

25. If the phase response of a pure time delay were plotted on a linear phase versus
linear frequency plot, what would be the shape of the curve?

26. When successively extracting component transfer functions from experimental
frequency response data, how do you know when you are finished?

Review Questions 609
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Problems

1. Find analytical expressions for the
magnitude and phase response for
each G(s) below. [Section: 10.1]

a. GðsÞ ¼ 1

sðsþ 2Þðsþ 4Þ

b. GðsÞ ¼ ðsþ 5Þ
ðsþ 2Þðsþ 4Þ

c. GðsÞ ¼ ðsþ 3Þðsþ 5Þ
sðsþ 2Þðsþ 4Þ

2. For each function in Problem 1, make a plot of the
log-magnitude and the phase, using log-frequency in
rad/s as the ordinate. Do not use asymptotic ap-
proximations. [Section: 10.1]

3. For each function in Problem 1, make a polar plot of
the frequency response. [Section: 10.1]

4. For each function in Problem 1, sketch the Bode
asymptotic magnitude and asymptotic phase plots.
Compare your results with your answers to Problem 1.
[Section: 10.2]

5. Sketch the Nyquist diagram for each of the systems
in Figure P10.1. [Section: 10.4]

6. Draw the polar plot from the separate
magnitude and phase curves shown in
Figure P10.2. [Section: 10.1]
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7. Draw the separate magnitude and phase curves from
the polar plot shown in Figure P10.3. [Section: 10.1]
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FIGURE P10.3

8. Write a program in MATLAB that
will do the following:

a. Plot the Nyquist diagram of a system

b. Display the real-axis crossing value
and frequency

Apply your program to a unity feedback system with

GðsÞ ¼ Kðsþ 5Þ
ðs2 þ 6sþ 100Þðs2 þ 4sþ 25Þ

9. Using the Nyquist criterion, find out whether each
system of Problem 5 is stable. [Section: 10.3]

10. Using the Nyquist criterion, find the range
of K for stability for each of the systems in
Figure P10.4. [Section: 10.3]

FIGURE P10.4 (Continued)

11. For each system of Problem 10, find the
gain margin and phase margin if the
value of K in each part of Problem 10 is
[Section: 10.6]

a. K ¼ 1000

b. K ¼ 100

c. K ¼ 0:1

12. Write a program in MATLAB that will
do the following:

a. Allow a value of gain, K, to be entered
from the keyboard

b. Display the Bode plots of a system for
the entered value of K

c. Calculate and display the gain and
phase margin for the entered value
of K

Test your program on a unity feedback
system with GðsÞ ¼ K=½sðsþ 3Þðsþ 12Þ�.

13. Use MATLAB’s LTI Viewer to find
the gain margin, phase margin,
zero dB frequency, and 180� frequency for
a unity feedback system with

GðsÞ ¼ 8000

ðsþ 6Þðsþ 20Þðsþ 35Þ

Use the following methods:

a. The Nyquist diagram

b. Bode plots

+
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System 2
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FIGURE P10.4 (figure continues)
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14. Derive Eq. (10.54), the closed-loop bandwidth in
terms of z and vn of a two-pole system. [Section:
10.8]

15. For each closed-loop system with the
following performance characteristics,
find the closed-loop bandwidth:
[Section: 10.8]

a. z ¼ 0:2; Ts ¼ 3 seconds

b. z ¼ 0:2; Tp ¼ 3 seconds

c. Ts ¼ 4 seconds; Tp ¼ 2 seconds

d. z ¼ 0:3; Tr ¼ 4 seconds

16. Consider the unity feedback system of
Figure 10.10. For each G(s) that follows,
use the M and N circles to make a plot of
the closed-loop frequency response:
[Section: 10.9]

a. GðsÞ ¼ 10

sðsþ 1Þðsþ 2Þ
b. GðsÞ ¼ 1000

ðsþ 3Þðsþ 4Þðsþ 5Þðsþ 6Þ

c. GðsÞ ¼ 50ðsþ 3Þ
sðsþ 2Þðsþ 4Þ

17. Repeat Problem 16, using the Nichols chart in place
of the M and N circles. [Section: 10.9]

18. Using the results of Problem 16, estimate the
percent overshoot that can be expected in the
step response for each system shown. [Section:
10.10]

19. Use the results of Problem 17 to estimate the
percent overshoot if the gain term in the numer-
ator of the forward path of each part of the
problem is respectively changed as follows:
[Section: 10.10]

a. From 10 to 30

b. From 1000 to 2500

c. From 50 to 75

20. Writea programin MATLABthatwill
do the following:

a. Allow a value of gain, K, to be entered
from the keyboard

b. Display the closed-loop magnitude and
phase frequency response plots of a
unity feedback system with an open-
loop transfer function, KG(s)

c. Calculate and display the peak mag-
nitude, frequency of the peak magni-
tude, and bandwidth for the closed-
loop frequency response and the
entered value of K

Test your program on the system of Figure
P10.5 for K ¼ 40.

K(s + 5)

s(s2 + 4s + 25)

+

–

R(s) E(s) C(s)

FIGURE P10.5

21. Use MATLAB’s LTI Viewer with
the Nichols plot to find the
gain margin, phase margin, zero dB fre-
quency, and 180� frequency for a unity
feedback system with the forward-path
transfer function

GðsÞ ¼ 5ðsþ 6Þ
sðs2 þ 4sþ 15Þ

22. Write a program in MATLAB that will
do the following:

a. Make a Nichols plot of an open-loop
transfer function

b. Allow the user to read the Nichols
plot display and enter the value
of Mp

c. Make closed-loop magnitude and phase
plots

d. Display the expected values of percent
overshoot, settling time, and peak
time

e. Plot the closed-loop step response

Test your program on a unity feedback
system with the forward-path transfer
function

GðsÞ ¼ 5ðsþ 6Þ
sðs2 þ 4sþ 15Þ

and explain any discrepancies.

23. Using Bode plots, estimate the transient response
of the systems in Figure P10.6. [Section: 10.10]
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System 1

+ 50(s + 3)(s + 5)
s(s + 2)(s + 4)(s + 6)

E(s)R(s) C(s)

–

System 2

FIGURE P10.6

24. For the system of Figure P10.5, do the following:
[Section: 10.10]

a. Plot the Bode magnitude and phase plots.

b. Assuming a second-order approximation, esti-
mate the transient response of the system if
K ¼ 40.

c. Use MATLAB or any other program
tocheckyourassumptionsbysim-
ulating the step response of the system.

25. The Bode plots for a plant, G(s), used
in a unity feedback system are shown in
Figure P10.7. Do the following:

a. Find the gain margin, phase margin, zero dB
frequency, 180� frequency, and the closed-loop
bandwidth.

b. Use your results in Part a to estimate the damp-
ing ratio, percent overshoot, settling time, and
peak time.

26. Write a program in MATLAB that
will use an open-loop transfer
function, G(s), to do the
following:

a. Make a Bode plot

b. Use frequency response methods to
estimate the percent overshoot, set-
tling time, and peak time

c. Plot the closed-loop step response

Test your program by comparing the re-
sults to those obtained for the systems
of Problem 23.

27. The open-loop frequency response shown in Figure
P10.8 was experimentally obtained from a unity
feedback system. Estimate the percent overshoot
and steady-state error of the closed-loop system.
[Sections: 10.10, 10.11]

–100

–60

–80

–40

–20

0

20

40

20
 lo

g 
M

0.1 101 100
Frequency (rad/s)

–300

–200

–250

–150

–100

–50

Ph
as

e 
(d

eg
re

es
)

0.1 1 10 100
Frequency (rad/s)

FIGURE P10.7

Problems 613



Apago PDF Enhancer

E1C10 10/27/2010 17:21:23 Page 614

28. Consider the system in Figure P10.9. [Section: 10.12]

R(s) + C(s)
Delay 100

(s + 5)(s + 10)
E(s)

–

FIGURE P10.9

a. Find the phase margin if the system is stable for
time delays of 0, 0.1, 0.2, 0.5, and 1 second.

b. Find the gain margin if the system is stable for
each of the time delays given in Part a.

c. For what time delays mentioned in Part a is the
system stable?

d. For each time delay that makes the system un-
stable, how much reduction in gain is required for
the system to be stable?

29. Given a unity feedback system with the
forward-path transfer function

GðsÞ ¼ K

ðsþ 1Þðsþ 3Þðsþ 6Þ

and a delay of 0.5 second, find the range of gain,
K, to yield stability. Use Bode plots and fre-
quency response techniques. [Section: 10.12]

30. Given a unity feedback system with the forward-
path transfer function

GðsÞ ¼ K

sðsþ 3Þðsþ 12Þ

and a delay of 0.5 second, make a second-order
approximation and estimate the percent overshoot
if K ¼ 40. Use Bode plots and frequency response
techniques. [Section: 10.12]

31. Use the MATLAB function pade(T,n)
to model the delay in Problem 30.
Obtain the unit step response and
evaluate your second-order approximation
in Problem 30.

32. For the Bode plots shown in Figure P10.10, deter-
mine the transfer function by hand or via MATLAB.
[Section: 10.13]
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33. Repeat Problem 32 for the Bode plots shown in
Figure P10.11. [Section: 10.13]

34. An overhead crane consists of a horizontally
moving trolley of mass mT dragging a load of

mass mL, which dangles from its bottom surface
at the end of a rope of fixed length, L. The
position of the trolley is controlled in the feed-
back configuration shown in Figure 10.20. Here,
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GðsÞ ¼ KPðsÞ; H ¼ 1, and

PðsÞ ¼ XTðsÞ
FTðsÞ ¼

1

mT

s2 þ v2
0

s2ðs2 þ av2
0Þ

The input is fT(t), the input force applied to the
trolley. The output is xT(t), the trolley displacement.

Also, v0 ¼
ffiffiffiffi
g

L

r
and a ¼ ðmL þmTÞ=mT (Marttinen,

1990) Make a qualitative Bode plot of the system
assuming a > 1.

35. A room’s temperature can be controlled by varying
the radiator power. In a specific room, the transfer
function from indoor radiator power, _Q, to room
temperature, T in �C is (Thomas, 2005)

PðsÞ ¼ TðsÞ
_QðsÞ

¼ ð1 � 10�6Þs2 þ ð1:314 � 10�9Þsþ ð2:66 � 10�13Þ
s3 þ 0:00163 s2 þ ð5:272 � 10�7Þsþ ð3:538 � 10�11Þ

The system is controlled in the closed-loop configura-
tion shown in Figure 10.20 withGðsÞ ¼ KPðsÞ; H ¼ 1.

a. Draw the corresponding Nyquist diagram for
K ¼ 1.

b. Obtain the gain and phase margins.

c. Find the range of K for the closed-loop stability.
Compare your result with that of Problem 61,
Chapter 6.

36. The open-loop dynamics from dc voltage armature
to angular position of a robotic manipulator joint is

given by PðsÞ ¼ 48500

s2 þ 2:89s
(Low, 2005).

a. Draw by hand a Bode plot using asymptotic
approximations for magnitude and phase.

b. Use MATLAB to plot the exact
Bode plot and compare with
your sketch from Part a.

37. Problem 49, Chapter 8 discusses a magnetic levita-
tion system with a plant transfer function PðsÞ ¼
� 1300

s2 � 8602
(Galv~ao, 2003). Assume that the plant is

in cascade with an M(s) and that the system will be
controlled by the loop shown in Figure 10.20, where
GðsÞ ¼ MðsÞPðsÞ and H ¼ 1. For each M(s) that
follows, draw the Nyquist diagram when K ¼ 1,
and find the range of closed-loop stability for
K > 0.

a. MðsÞ ¼ �K

b. MðsÞ ¼ �Kðsþ 200Þ
sþ 1000

c. Compare your results with those obtained in
Problem 49, Chapter 8.

38. The simplified and linearized model for the transfer
function of a certain bicycle from steer angle (d) to
roll angle (w) is given by (A

�
strom, 2005)

PðsÞ ¼ wðsÞ
dðsÞ ¼

10ðsþ 25Þ
s2 þ 25

Assume the rider can be represented by a gain K,
and that the closed-loop system is shown in Figure
10.20 with GðsÞ ¼ KPðsÞ and H ¼ 1. Use the
Nyquist stability criterion to find the range of K
for closed-loop stability.

39. The control of the radial pickup position of a digital
versatile disk (DVD) was discussed in Problem 48,
Chapter 9. There, the open-loop transfer function
from coil input voltage to radial pickup position was
given as (Bittanti, 2002)

PðsÞ ¼ 0:63

1 þ 0:36

305:4
sþ s2

305:42

� �
1 þ 0:04

248:2
sþ s2

248:22

� �

Assume the plant is in cascade with a controller,

MðsÞ ¼ 0:5ðsþ 1:63Þ
sðsþ 0:27Þ

and in the closed-loop configuration shown in
Figure 10.20, where GðsÞ ¼ MðsÞPðsÞ and H ¼ 1.
Do the following:

a. Draw the open-loop frequency response in a
Nichols chart.

b. Predict the system’s response to a unit step input.
Calculate the %OS, cfinal, and Ts.

c. Verify the results of Part b
using MATLAB simulations.

40. The Soft Arm, used to feed people with disabilities,
was discussed in Problem 57 in Chapter 6. Assuming
the system block diagram shown in Figure P10.12,
use frequency response techniques to determine the
following (Kara, 1992):

a. Gain margin, phase margin, zero dB frequency,
and 180� frequency

b. Is the system stable? Why?
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41. A floppy disk drive was discussed in
Problem 57 in Chapter 8. Assuming
the system block diagram shown in
Figure P10.13, use frequency response techniques to
determine the following:

a. Gain margin, phase margin, zero dB frequency,
180� frequency, and closed-loop bandwidth

b. Percent overshoot, settling time, and peak time

c. Use MATLAB to simulate the
closed-loop step response
and compare the results to those ob-
tained in Part b.

42. Industrial robots, such as that shown in Figure
P10.14, require accurate models for design of high
performance. Many transfer function models for
industrial robots assume interconnected rigid bod-
ies with the drive-torque source modeled as a pure
gain, or first-order system. Since the motions asso-
ciated with the robot are connected to the drives
through flexible linkages rather than rigid linkages,
past modeling does not explain the resonances
observed. An accurate, small-motion, linearized
model has been developed that takes into consider-
ation the flexible drive. The transfer function

GðsÞ ¼ 999:12
ðs2 þ 8:94sþ 44:72Þ

ðsþ 20:7Þðs2 þ 34:858sþ 60:12Þ
relates the angular velocity of the robot base to
electrical current commands (Good, 1985). Make a
Bode plot of the frequency response and identify
the resonant frequencies.

43. The charge-coupled device (CCD) that is used in
video movie cameras to convert images into elec-
trical signals can be used as part of an automatic
focusing system in cameras. Automatic focusing can
be implemented by focusing the center of the image
on a charge-coupled device array through two
lenses. The separation of the two images on the
CCD is related to the focus. The camera senses the
separation, and a computer drives the lens and

R(s) C (s)+ 1000(s + 0.01)(s + 6)
s(s + 20)(s + 100) s2 + 10s + 29–

10

Desired
spoon

position

Actual
spoon

positionController Robot arm

FIGURE P10.12 Soft Arm position control system block diagram

XD(s)+ XA(s)100,000
(s + 500)(s + 800) s(s + 100)

–

20,000

Desired
position

Actual
positionController Motor and load

FIGURE P10.13 Floppy disk drive block diagram

FIGURE P10.14 Robot performing construction of computer
memory units (# Michael Rosenfield/Science Faction/
# Corbis).
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focuses the image. The automatic focus system is a
position control, where the desired position of the
lens is an input selected by pointing the camera at
the subject. The output is the actual position of
the lens. The camera in Figure P10.15(a) uses a
CCD automatic focusing system. Figure P10.15(b)
shows the automatic focusing feature represented as
a position control system. Assuming the simplified
model shown in Figure P10.15(c), draw the Bode

plots and estimate the percent overshoot for a
step input.

44. A ship’s roll can be stabilized with a control system.
A voltage applied to the fins’ actuators creates a roll
torque that is applied to the ship. The ship, in
response to the roll torque, yields a roll angle.
Assuming the block diagram for the roll control
system shown in Figure P10.16, determine the gain
and phase margins for the system.

R(s) C(s)10
s(s + 2)(s + 10)

E(s)

AmplifierComputer and CCD
system

Motor and load

Desired
lens

position

Actual
lens

position+

–

+

–

(a)

(b)

(c)

FIGURE P10.15 a. A cutaway view of a digital camera showing parts of the CCD automatic focusing system (# Stephen Sweet/
iStockphoto); b. functional block diagram; c. block diagram

+
5

Transducer
Fin

actuator

0.5
s + 4

Ship
roll

dynamics

9
s2 + 0.9s + 9

Desired
roll

angle,  d(s) Voltage Torque

–

θ

Roll
angle

error,   e(s)  θ

Actual
roll

angle, θa(s) 

FIGURE P10.16 Block diagram of a ship’s roll-stabilizing system
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45. The linearized model of a particular network link
working under TCP/IP and controlled using a random
early detection (RED) algorithm can be described
by Figure 10.20 where GðsÞ ¼ MðsÞPðsÞ; H ¼ 1, and
(Hollot, 2001)

MðsÞ ¼ 0:005L

sþ 0:005
; PðsÞ ¼ 140625e�0:1s

ðsþ 2:67Þðsþ 10Þ

a. Plot the Nichols chart for L ¼ 1. Is the system
closed-loop stable?

b. Find the range of L for closed-loop stability.

c. Use the Nichols chart to predict %OS and Ts for
L ¼ 0:95. Make a hand sketch of the expected
unit step response.

d. Verify Part c with a Simulink
unitstepresponsesimulation.

46. In the TCP/IP network link of Problem 45, let
L ¼ 0:8, but assume that the amount of delay is
an unknown variable.

a. Plot the Nyquist diagram of the system for zero
delay, and obtain the phase margin.

b. Find the maximum delay allowed for closed-loop
stability.

47. Thermal flutter of the Hubble Space Telescope
(HST) produces errors for the pointing control sys-
tem. Thermal flutter of the solar arrays occurs when
the spacecraft passes from sunlight to darkness and
when the spacecraft is in daylight. In passing from
daylight to darkness, an end-to-end bending oscilla-
tion of frequency f1 rad/s is experienced. Such oscil-
lations interfere with the pointing control system of
the HST. A filter with the transfer function

Gf ðsÞ ¼ 1:96ðs2 þ sþ 0:25Þðs2 þ 1:26sþ 9:87Þ
ðs2 þ 0:015sþ 0:57Þðs2 þ 0:083sþ 17:2Þ

is proposed to be placed in cascade with the PID
controller to reduce the bending (Wie, 1992).

a. Obtain the frequency response of the filter and
estimate the bending frequencies that will be
reduced.

b. Explain why this filter will reduce the bending
oscillations if these oscillations are thought to be
disturbances at the output of the control system.

48. An experimental holographic media storage system
uses a flexible photopolymer disk. During rotation,

the disk tilts, making information retrieval difficult. A
system that compensates for the tilt has been devel-
oped. For this, a laser beam is focused on the disk
surface and disk variations are measured through
reflection. A mirror is in turn adjusted to align with
the disk and makes information retrieval possible. The
system can be represented by a unity feedback system
in which a controller with transfer function

GCðsÞ ¼ 78:575ðsþ 436Þ2

ðsþ 132Þðsþ 8030Þ
and a plant

PðsÞ ¼ 1:163 � 108

s3 þ 962:5s2 þ 5:958 � 105sþ 1:16 � 108

form an open loop transmission LðsÞ ¼ GcðsÞPðsÞ
(Kim, 2009).

a. Use MATLAB to obtain the
system’s Nyquist dia-
gram. Find out if the system is stable.

b. Find the system’s phase margin.

c. Use the value of phase margin obtained
in b. to calculate the expected sys-
tem’s overshoot to a step input.

d. Simulate the system’s response to a
unit step input and verify the %OS cal-
culated in c.

49. The design of cruise control systems in heavy vehicles
such as big rigs is especially challenging due to the
extreme variations in payload. A typical frequency
response for the transfer function from fuel mass flow
to vehicle speed is shown in Figure P10.17.
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FIGURE P10.17
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This response includes the dynamics of the
engine, the gear box, the propulsion shaft, the dif-
ferential, the drive shafts, the chassis, the payload,
and tire dynamics. Assume that the system is con-
trolled in a closed-loop, unity-feedback loop using a
proportional compensator (van der Zalm, 2008).

a. Make a plot of the Nyquist diagram that corre-
sponds to the Bode plot of Figure P10.17.

b. Assuming there are no open-loop poles in the
right half-plane, find out if the system is closed-
loop stable when the proportional gain K ¼ 1.

c. Find the range of positive K for which the system
is closed-loop stable.

50. Use LabVIEW with the Control
Design and Simulation Mod-
ule, and MathScript RT Module
and modify the CDEx Nyquist
Analysis.vi to obtain the
range of K for stability using the Nyquist
plotforanysystemyouenter.Inaddition,
design a LabVIEW VI that will accept as an
input the polynomial numerator and poly-
nomial denominator of an open-loop trans-
fer function and obtain a Nyquist plot
for a value of K ¼ 10, 000. Your VI will
also display the following as generated
from the Nyquist plot: (1) gain margin,
(2) phase margin, (3) zero dB frequency,
and (4) 180 degrees frequency. Use the
system and results of Skill-Assessment
Exercise 10.6 to test your VIs.

51. Use LabVIEW with the Control
Design and Simulation Mod-
ule, and MathScript RT Module
to build a VI that will accept
an open-loop transfer function, plot the
Bode diagram, and plot the closed-loop
step response. Your VI will also use the
CD Parametric Time Response.vi todisplay
(1) rise time, (2) peak time, (3) settling
time, (4) percent overshoot, (5) steady-
state value, and (6) peak value. Use the
system in Skill-Assessment Exercise 10.9
to test your VI. Compare the results ob-
tained from your VI with those obtained in
Skill-Assessment Exercise 10.9.

52. The block diagram of a cascade
system used to control water
level in a steam generator of a nuclear

power plant (Wang, 2009) was presented
in Figure P.6.19. In that system, the
level controller, GLC (s), is the master
controller and the feed-water flow con-
troller, GFC (s), is the slave controller.
Consider that the inner feedback loop is
replacedbyitsequivalenttransferfunc-
tion, GWX (s).

Using numerical values in (Wang, 2009)
and (Bhambhani, 2008) the transfer func-
tions with a 1 second pure delay are:

GfwðsÞ ¼ 2 � e�ts

sðT1sþ 1Þ ¼
2 � e�s

sð25sþ 1Þ ;

GWXðsÞ ¼ ð4sþ 1Þ
3ð3:333sþ 1Þ ;

GLCðsÞ ¼ KPLC þKDLCs ¼ 1:5ð10sþ 1Þ:
Use MATLAB or any other program to:

a. Obtain Bode magnitude and phase plots
for this system using a fifth-order
Pad�e approximation (available in MAT-
LAB). Note on these plots, if applica-
ble, the gain and phase margins.

b. Plottheresponseofthesystem,c(t),to
a unit step input, r(t) = u(t). Note on
thec(t)curvetherisetime,Tr,theset-
tling time, Ts, the final value of the
output,and,if applicable,the percent
overshoot, %OS, and mid peak time, Tp.

c. Repeat the above two steps for a pure
delay of 1.5 seconds.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
53. High-speed rail pantograph. Problem21inChapter1

discusses active control of a pantograph mechanism
forhigh-speedrail systems.InProblem79(a),Chapter
5, you found the block diagram for the active panto-
graph control system. In Chapter 8, Problem 72, you
designed the gain to yield a closed-loop step response
with30%overshoot.Aplotofthestepresponseshould
have shown a settling time greater than 0.5 second as
well as a high-frequency oscillation superimposed
over the step response. In Chapter 9, Problem 55,
we reduced the settling time to about 0.3 second, re-
duced the step response steady-state error to zero, and
eliminated the high-frequency oscillations by using a
notch filter (O’Connor, 1997). Using the equivalent
forward transfer function found in Chapter 5 cascaded
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with the notch filter specified in Chapter 9, do the
following using frequency response techniques:

a. Plot the Bode plots for a total equivalent gain of
1 and find the gain margin, phase margin, and
180� frequency.

b. Find the range of K for stability.

c. Compare your answer to Part b with your answer
to Problem 67, Chapter 6. Explain any differences.

54. Control of HIV/AIDS. The linearized model for an
HIV/AIDS patient treated with RTIs was obtained
in Chapter 6 as (Craig, 2004);

PðsÞ ¼ YðsÞ
U1ðsÞ ¼

�520s� 10:3844

s3 þ 2:6817s2 þ 0:11sþ 0:0126

a. Consider this plant in the feedback configuration
in Figure 10.20 with GðsÞ ¼ PðsÞ and HðsÞ ¼ 1.
Obtain the Nyquist diagram. Evaluate the sys-
tem for closed-loop stability.

b. Consider this plant in the feedback configuration
in Figure 10.20 with GðsÞ ¼ �PðsÞ and HðsÞ ¼ 1.
Obtain the Nyquist diagram. Evaluate the system
for closed-loop stability. Obtain the gain and
phase margins.

55. Hybrid vehicle. In Problem 8.74
we used MATLAB to plot the
root locus for the speed con-
trol of an HEV rearranged as a unity-
feedback system, as shown in Figure
P7.34 (Preitl, 2007). The plant and com-
pensator were given by

GðsÞ ¼ Kðsþ 0:6Þ
ðsþ 0:5858Þðsþ 0:0163Þ

and we found that K ¼ 0.78, resulted in a
critically damped system.

a. Use MATLAB or any other program to plot

i. The Bode magnitude and phase plots
for that system, and

ii. The response of the system, c(t), to
a step input, r(t) = 4 u(t). Note on
the c(t) curve the rise time, Tr, and
settling time, Ts, as well as the
final value of the output.

b. Now add an integral gain to the con-
troller, such that the plant and com-
pensator transfer function becomes

GðsÞ ¼ K1ðsþ ZcÞðsþ 0:6Þ
sðsþ 0:5858Þðsþ 0:0163Þ

where K1¼0.78 and Zc¼K2

K1
¼0:4. Use MAT-

LAB or any other program to do the
following:

i. Plot the Bode magnitude and phase
plots for this case.

ii. Obtain the response of the system to
a step input, r(t) = 4 u(t). Plot
c(t) and note on it the rise time,
Tr, percent overshoot, %OS, peak
time, Tp, and settling time, Ts.

c. Does the response obtained in a. or b.
resemble a second-order overdamped,
critically damped, or underdamped re-
sponse? Explain.

Cyber Exploration Laboratory

Experiment 10.1

Objective To examine the relationships between open-loop frequency response
and stability, open-loop frequency response and closed-loop transient response, and
the effect of additional closed-loop poles and zeros upon the ability to predict
closed-loop transient response

Minimum Required Software Packages MATLAB, and the Control
System Toolbox

Prelab

1. Sketch the Nyquist diagram for a unity negative feedback system with a forward

transfer function of GðsÞ ¼ K

sðsþ 2Þðsþ 10Þ. From your Nyquist plot, determine

the range of gain, K, for stability.
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2. Find the phase margins required for second-order closed-loop step responses
with the following percent overshoots: 5%, 10%, 20%, 30%.

Lab

1. Using the SISO Design Tool, produce the following plots simultaneously for the
system of Prelab 1: root locus, Nyquist diagram, and step response. Make plots for
the following values of K: 50, 100, the value for marginal stability found in Prelab
1, and a value above that found for marginal stability. Use the zoom tools when
required to produce an illustrative plot. Finally, change the gain by grabbing and
moving the closed-loop poles along the root locus and note the changes in the
Nyquist diagram and step response.

2. Using the SISO Design Tool, produce Bode plots and closed-loop step responses
for a unity negative feedback system with a forward transfer function of

GðsÞ ¼ K

sðsþ 10Þ2
. Produce these plots for each value of phase margin found

in Prelab 2. Adjust the gain to arrive at the desired phase margin by grabbing the
Bode magnitude curve and moving it up or down. Observe the effects, if any,
upon the Bode phase plot. For each case, record the value of gain and the
location of the closed-loop poles.

3. Repeat Lab 2 for GðsÞ ¼ K

sðsþ 10Þ.

Postlab

1. Make a table showing calculated and actual values for the range of gain for
stability as found in Prelab 1 and Lab 1.

2. Make a table from the data obtained in Lab 2 itemizing phase margin, percent
overshoot, and the location of the closed-loop poles.

3. Make a table from the data obtained in Lab 3 itemizing phase margin, percent
overshoot, and the location of the closed-loop poles.

4. For each Postlab task 1 to 3, explain any discrepancies between the actual values
obtained and those expected.

Experiment 10.2

Objective To use LabVIEW and Nichols charts to determine the closed-loop
time response performance.

Minimum Required Software Packages LabVIEW, Control Design and
Simulation Module, MathScript RT Module, and MATLAB

Prelab

1. Assume a unity-feedback system with a forward-path transfer function,

GðsÞ ¼ 100

sðsþ 5Þ. Use MATLAB or any method to determine gain and phase

margins. In addition, find the percent overshoot, settling time, and peak time of
the closed-loop step response.

2. Design a LabVIEW VI that will create a Nichols chart. Adjust the Nichols chart’s
scale to estimate gain and phase margins. Then, prompt the user to enter the values of
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gain and phase margin found from the Nichols chart. In response, your VI will produce
the percent overshoot, settling time, and peak time of the closed-loop step response.

Lab Run your VI for the system given in the Prelab. Test your VI with other
systems of your choice.

Postlab Compare the closed-loop performance calculated in the Prelab with
those produced by your VI.
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Design via Frequency Response 11

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Use frequency response techniques to adjust the gain to meet a transient response
specification (Sections 11.1–11.2)

� Use frequency response techniques to design cascade compensators to improve the
steady-state error (Section 11.3)

� Use frequency response techniques to design cascade compensators to improve the
transient response (Section 11.4)

� Use frequency response techniques to design cascade compensators to improve
both the steady-state error and the transient response (Section 11.5)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to use frequency response techniques to design the gain to meet a
transient response specification.

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to use frequency response techniques to design a cascade
compensator to meet both transient and steady-state error specifications.
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11.1 Introduction

In Chapter 8, we designed the transient response of a control system by adjusting the
gain along the root locus. The design process consisted of finding the transient
response specification on the root locus, setting the gain accordingly, and settling for
the resulting steady-state error. The disadvantage of design by gain adjustment is
that only the transient response and steady-state error represented by points along
the root locus are available.

In order to meet transient response specifications represented by points not on
the root locus and, independently, steady-state error requirements, we designed
cascade compensators in Chapter 9. In this chapter, we use Bode plots to parallel the
root locus design process from Chapters 8 and 9.

Let us begin by drawing some general comparisons between root locus and
frequency response design.

Stability and transient response design via gain adjustment. Frequency response
design methods, unlike root locus methods, can be implemented conveniently
without a computer or other tool except for testing the design. We can easily
draw Bode plots using asymptotic approximations and read the gain from the plots.
Root locus requires repeated trials to find the desired design point from which the
gain can be obtained. For example, in designing gain to meet a percent overshoot
requirement, root locus requires the search of a radial line for the point where the
open-loop transfer function yields an angle of 180�. To evaluate the range of gain for
stability, root locus requires a search of the jv-axis for 180�. Of course, if one uses a
computer program, such as MATLAB, the computational disadvantage of root locus
vanishes.

Transient response design via cascade compensation. Frequency response
methods are not as intuitive as the root locus, and it is something of an art to
design cascade compensation with the methods of this chapter. With root locus, we
can identify a specific point as having a desired transient response characteristic. We
can then design cascade compensation to operate at that point and meet the
transient response specifications. In Chapter 10, we learned that phase margin is
related to percent overshoot (Eq. (10.73)) and bandwidth is related to both damping
ratio and settling time or peak time (Eqs. (10.55) and (10.56)). These equations are
rather complicated. When we design cascade compensation using frequency re-
sponse methods to improve the transient response, we strive to reshape the open-
loop transfer function’s frequency response to meet both the phase-margin require-
ment (percent overshoot) and the bandwidth requirement (settling or peak time).
There is no easy way to relate all the requirements prior to the reshaping task. Thus,
the reshaping of the open-loop transfer function’s frequency response can lead to
several trials until all transient response requirements are met.

Steady-state error design via cascade compensation. An advantage of using
frequency design techniques is the ability to design derivative compensation, such as
lead compensation, to speed up the system and at the same time build in a desired
steady-state error requirement that can be met by the lead compensator alone.
Recall that in using root locus there are an infinite number of possible solutions to
the design of a lead compensator. One of the differences between these solutions is
the steady-state error. We must make numerous tries to arrive at the solution that
yields the required steady-state error performance. With frequency response tech-
niques, we build the steady-state error requirement right into the design of the lead
compensator.
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You are encouraged to reflect on the advantages and disadvantages of root
locus and frequency response techniques as you progress through this chapter. Let us
take a closer look at frequency response design.

When designing via frequency response methods, we use the concepts of
stability, transient response, and steady-state error that we learned in Chapter 10.
First, the Nyquist criterion tells us how to determine if a system is stable. Typically, an
open-loop stable system is stable in closed-loop if the open-loop magnitude fre-
quency response has a gain of less than 0 dB at the frequency where the phase
frequency response is 180�. Second, percent overshoot is reduced by increasing the
phase margin, and the speed of the response is increased by increasing the
bandwidth. Finally, steady-state error is improved by increasing the low-frequency
magnitude responses, even if the high-frequency magnitude response is attenuated.

These, then, are the basic facts underlying our design for stability, transient
response, and steady-state error using frequency response methods, where the
Nyquist criterion and the Nyquist diagram compose the underlying theory behind
the design process. Thus, even though we use the Bode plots for ease in obtaining the
frequency response, the design process can be verified with the Nyquist diagram
when questions arise about interpreting the Bode plots. In particular, when the
structure of the system is changed with additional compensator poles and zeros, the
Nyquist diagram can offer a valuable perspective.

The emphasis in this chapter is on the design of lag, lead, and lag-lead
compensation. General design concepts are presented first, followed by step-by-
step procedures. These procedures are only suggestions, and you are encouraged to
develop other procedures to arrive at the same goals. Although the concepts in general
apply to the design of PI, PD, and PID controllers, in the interest of brevity, detailed
procedures and examples will not be presented. You are encouraged to extrapolate the
concepts and designs covered and apply them to problems involving PI, PD, and PID
compensation presented at the end of this chapter. Finally, the compensators devel-
oped in this chapter can be implemented with the realizations discussed in Section 9.6.

11.2 Transient Response via Gain
Adjustment

Let us begin our discussion of design via frequency response methods by discussing
the link between phase margin, transient response, and gain. In Section 10.10, the
relationship between damping ratio (equivalently percent overshoot) and phase
margin was derived for GðsÞ ¼ v2

n=sðsþ 2zvnÞ. Thus, if we can vary the phase
margin, we can vary the percent overshoot. Looking at Figure 11.1, we see that
if we desire a phase margin, FM, represented by CD, we would have to raise the
magnitude curve by AB. Thus, a simple gain adjustment can be used to design phase
margin and, hence, percent overshoot.

We now outline a procedure by which we can determine the gain to meet a
percent overshoot requirement using the open-loop frequency response and assum-
ing dominant second-order closed-loop poles.

Design Procedure
1. Draw the Bode magnitude and phase plots for a convenient value of gain.

2. Using Eqs. (4.39) and (10.73), determine the required phase margin from the
percent overshoot.
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3. Find the frequency, vFM , on the Bode phase diagram that yields the desired phase
margin, CD, as shown on Figure 11.1.

4. Change the gain by an amount AB to force the magnitude curve to go through
0 dB at vFM . The amount of gain adjustment is the additional gain needed to
produce the required phase margin.

We now look at an example of designing the gain of a third-order system for
percent overshoot.

Example 11.1

Transient Response Design via Gain Adjustment

PROBLEM: For the position control system shown in Figure 11.2, find the value of
preamplifier gain, K, to yield a 9.5% overshoot in the transient response for a step
input. Use only frequency response methods.

SOLUTION: We will now follow the previously described gain adjustment design
procedure.

1. Choose K ¼ 3:6 to start the magnitude plot at 0 dB at v ¼ 0:1 in Figure 11.3.

2. Using Eq. (4.39), a 9.5% overshoot implies z ¼ 0:6 for the closed-loop dominant
poles. Equation (10.73) yields a 59.2� phase margin for a damping ratio of 0.6.
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FIGURE 11.1 Bode plots showing gain adjustment for a desired phase margin
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FIGURE 11.2 System for Example 11.1
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3. Locate on the phase plot the frequency that yields a 59.2� phase margin. This
frequency is found where the phase angle is the difference between �180� and
59.2�, or �120:8�. The value of the phase-margin frequency is 14.8 rad/s.

4. At a frequency of 14.8 rad/s on the magnitude plot, the gain is found to be�44.2 dB.
This magnitude has to be raised to 0 dB to yield the required phase margin. Since
the log-magnitude plot was drawn for K ¼ 3:6, a 44.2 dB increase, or K ¼ 3:6 �
162:2 ¼ 583:9, would yield the required phase margin for 9.48% overshoot.

The gain-adjusted open-loop transfer function is

GðsÞ ¼ 58;390

sðsþ 36Þðsþ 100Þ ð11:1Þ

Table 11.1 summarizes a computer simulation of the gain-compensated system.

Students who are using MATLAB should now run ch11p1 in Appendix B.
You will learn how to use MATLAB to design a gain to meet a percent
overshoot specification using Bode plots. This exercise solves
Example 11.1 using MATLAB.
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FIGURE 11.3 Bode magnitude and phase plots for Example 11.1

TABLE 11.1 Characteristic of gain-compensated system of Example 11.1

Parameter Proposed specification Actual value

Kv — 16.22

Phase margin 59.2� 59.2�

Phase-margin frequency — 14.8 rad/s

Percent overshoot 9.5 10

Peak time — 0.18 second
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Skill-Assessment Exercise 11.1

PROBLEM: For a unity feedback system with a forward transfer function

GðsÞ ¼ K

sðsþ 50Þðsþ 120Þ
use frequency response techniques to find the value of gain, K, to yield a closed-
loop step response with 20% overshoot.

ANSWER: K ¼ 194;200

The complete solution is located at www.wiley.com/college/nise.

In the SISOTOOL Window:

1. Select Import . . . in the File menu.

2. Click on G in the System Data Window and click Browse . . .

3. In the Model Import Window select radio button Workspace and select G in
Available Models. Click Import, then Close.

4. Click Ok in the System Data Window.

5. Right-click in the Bode graph area and be sure all selections under Show are
checked.

6. Grab the stability margin point in the magnitude diagram and raise the
magnitude curve until the phase curve shows the phase margin calculated by
the program and shown in the MATLAB Command Window as Pm.

7. Right-click in the Bode plot area, select Edit Compensator . . . and read the
gain under Compensator in the resulting window.

In this section, we paralleled our work in Chapter 8 with a discussion of
transient response design through gain adjustment. In the next three sections, we
parallel the root locus compensator design in Chapter 9 and discuss the design of lag,
lead, and lag-lead compensation via Bode diagrams.

11.3 Lag Compensation

In Chapter 9, we used the root locus to design lag networks and PI controllers. Recall
that these compensators permitted us to design for steady-state error without
appreciably affecting the transient response. In this section, we provide a parallel
development using the Bode diagrams.

Visualizing Lag Compensation
The function of the lag compensator as seen on Bode diagrams is to (1) improve the
static error constant by increasing only the low-frequency gain without any resulting
instability, and (2) increase the phase margin of the system to yield the desired
transient response. These concepts are illustrated in Figure 11.4.

The uncompensated system is unstable since the gain at 180� is greater than
0 dB. The lag compensator, while not changing the low-frequency gain, does reduce

TryIt 11.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to solve
Skill-Assessment Exercise
11.1.

pos=20
z=(-log(pos/100))/...
(sqrt(pi^2+...
log(pos/100)̂ 2))

Pm=atan(2*z/...
(sqrt(-2*z^2+...
sqrt(1+4*z^4))))*...
(180/pi)

G=zpk([],...
[0.-50,-120],1)

sisotool
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the high-frequency gain.1 Thus, the low-frequency gain of the system can be made
high to yield a large Kv without creating instability. This stabilizing effect of the lag
network comes about because the gain at 180� of phase is reduced below 0 dB.
Through judicious design, the magnitude curve can be reshaped, as shown in Figure
11.4, to go through 0 dB at the desired phase margin. Thus, both Kv and the desired
transient response can be obtained. We now enumerate a design procedure.

Design Procedure
1. Set the gain, K, to the value that satisfies the steady-state error specification and

plot the Bode magnitude and phase diagrams for this value of gain.

2. Find the frequency where the phase margin is 5� to 12� greater than the phase
margin that yields the desired transient response (Ogata, 1990). This step com-
pensates for the fact that the phase of the lag compensator may still contribute
anywhere from �5� to � 12� of phase at the phase-margin frequency.

3. Select a lag compensator whose magnitude response yields a composite Bode
magnitude diagram that goes through 0 dB at the frequency found in Step 2 as
follows: Draw the compensator’s high-frequency asymptote to yield 0 dB for the
compensated system at the frequency found in Step 2. Thus, if the gain at the
frequency found in Step 2 is 20 log KPM, then the compensator’s high-frequency
asymptote will be set at �20 log KPM; select the upper break frequency to be
1 decade below the frequency found in Step 2;2 select the low-frequency asymp-
tote to be at 0 dB; connect the compensator’s high- and low-frequency asymptotes
with a �20 dB/decade line to locate the lower break frequency.

4. Reset the system gain, K, to compensate for any attenuation in the lag network in
order to keep the static error constant the same as that found in Step 1.

log ω

Desired phase

Phase (degrees)

–180

log ω

Kv

M (dB)

Compensated system

Uncompensated system

Lag compensator

Uncompensated system

Compensated system

Phase-margin frequency

Lag compensator

FIGURE 11.4 Visualizing lag compensation

1 The name lag compensator comes from the fact that the typical phase angle response for the
compensator, as shown in Figure 11.4, is always negative, or lagging in phase angle.
2 This value of break frequency ensures that there will be only �5� to � 12� phase contribution from the
compensator at the frequency found in Step 2.
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From these steps, you see that we are relying upon the initial gain setting to
meet the steady-state requirements and then relying upon the lag compensator’s
�20 dB/decade slope to meet the transient response requirement by setting the 0 dB
crossing of the magnitude plot.

The transfer function of the lag compensator is

GcðsÞ ¼
sþ 1

T

sþ 1

aT

ð11:2Þ

where a > 1.
Figure 11.5 shows the frequency response curves for the lag compensator. The

range of high frequencies shown in the phase plot is where we will design our phase
margin. This region is after the second break frequency of the lag compensator,
where we can rely on the attenuation characteristics of the lag network to reduce the
total open-loop gain to unity at the phase-margin frequency. Further, in this region
the phase response of the compensator will have minimal effect on our design of the
phase margin. Since there is still some effect, approximately 5� to 12�, we will add
this amount to our phase margin to compensate for the phase response of the lag
compensator (see Step 2).

Example 11.2

Lag Compensation Design

PROBLEM: Given the system of Figure 11.2, use Bode diagrams to design a lag
compensator to yield a tenfold improvement in steady-state error over the gain-
compensated system while keeping the percent overshoot at 9.5%.

SOLUTION: We will follow the previously described lag compensation design
procedure.

FIGURE 11.5 Frequency response
plots of a lag compensator,
GcðsÞ ¼ ðsþ 0:1Þ=ðsþ 0:01Þ
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1. From Example 11.1 a gain, K, of 583.9 yields a 9.5% overshoot. Thus, for this
system, Kv ¼ 16:22. For a tenfold improvement in steady-state error, Kv must
increase by a factor of 10, or Kv ¼ 162:2. Therefore, the value of K in Figure 11.2
equals 5839, and the open-loop transfer function is

GðsÞ ¼ 583;900

sðsþ 36Þðsþ 100Þ ð11:3Þ
The Bode plots for K ¼ 5839 are shown in Figure 11.6.

2. Thephasemarginrequiredfora 9.5%overshoot ðz ¼ 0:6Þ is foundfromEq.(10.73)
to be 59.2�. We increase this value of phase margin by 10� to 69.2� in order to
compensate for the phase angle contribution of the lag compensator. Now find the
frequency where the phase margin is 69.2�. This frequency occurs at a phase angle
of�180� þ 69:2� ¼ �110:8� and is 9.8 rad/s. At this frequency, the magnitude plot
must go through 0 dB. The magnitude at 9.8 rad/s is now þ24 dB (exact, that
is, nonasymptotic). Thus, the lag compensator must provide �24 dB attenuation
at 9.8 rad/s.

3.&4. We now design the compensator. First draw the high-frequency asymptote
at �24 dB. Arbitrarily select the higher break frequency to be about one decade
below the phase-margin frequency, or 0.98 rad/s. Starting at the intersection of
this frequency with the lag compensator’s high-frequency asymptote, draw a
�20 dB=decade line until 0 dB is reached. The compensator must have a dc gain
of unity to retain the value of Kv that we have already designed by setting
K ¼ 5839. The lower break frequency is found to be 0.062 rad/s. Hence, the lag
compensator’s transfer function is

GcðsÞ ¼ 0:063ðsþ 0:98Þ
ðsþ 0:062Þ ð11:4Þ

where the gain of the compensator is 0.063 to yield a dc gain of unity.
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The compensated system’s forward transfer function is thus

GðsÞGcðsÞ ¼ 36;786ðsþ 0:98Þ
sðsþ 36Þðsþ 100Þðsþ 0:062Þ ð11:5Þ

The characteristics of the compensated system, found from a simulation and exact
frequency response plots, are summarized in Table 11.2.

Students who are using MATLAB should now run ch11p2 in Appendix B.
You will learn how to use MATLAB to design a lag compensator. You
will enter the value of gain to meet the steady-state error
requirement as well as the desired percent overshoot. MATLAB
then designs a lag compensator using Bode plots, evaluates Kv,
and generates a closed-loop step response. This exercise solves
Example 11.2 using MATLAB.

Skill-Assessment Exercise 11.2

PROBLEM: Design a lag compensator for the system in Skill-Assessment Exercise
11.1 that will improve the steady-state error tenfold, while still operating with 20%
overshoot.

ANSWER:

GlagðsÞ ¼ 0:0691ðsþ 2:04Þ
ðsþ 0:141Þ ; GðsÞ ¼ 1;942;000

sðsþ 50Þðsþ 120Þ
The complete solution is at www.wiley.com/college/nise.

TABLE 11.2 Characteristics of the lag-compensated system of Example 11.2

Parameter Proposed specification Actual value

Kv 162.2 161.5

Phase margin 59.2� 62�

Phase-margin frequency — 11 rad/s

Percent overshoot 9.5 10

Peak time — 0.25 second

TryIt 11.2

Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-
Assessment Exercise 11.2.

pos=20
Ts=0.2
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2))
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(l+4*z^4))))*(180/pi)
Wbw=(4/(Ts*z))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2))
K=1942000
G=zpk([], [0,-50,-120], K)
sisotool(G,1) (TryIt continues)
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In this section, we showed how to design a lag compensator to improve the steady-
state error while keeping the transient response relatively unaffected. We next
discuss how to improve the transient response using frequency response methods.

11.4 Lead Compensation

For second-order systems, we derived the relationship between phase margin and
percent overshoot as well as the relationship between closed-loop bandwidth and
other time-domain specifications, such as settling time, peak time, and rise time.
When we designed the lag network to improve the steady-state error, we wanted a
minimal effect on the phase diagram in order to yield an imperceptible change in the
transient response. However, in designing lead compensators via Bode plots, we
want to change the phase diagram, increasing the phase margin to reduce the percent
overshoot, and increasing the gain crossover to realize a faster transient response.

Visualizing Lead Compensation
The lead compensator increases the bandwidth by increasing the gain crossover
frequency. At the same time, the phase diagram is raised at higher frequencies. The
result isa largerphasemarginandahigherphase-marginfrequency. Inthetimedomain,
lowerpercentovershoots(largerphasemargins)withsmallerpeaktimes(higherphase-
margin frequencies) are the results. The concepts are shown in Figure 11.7.

The uncompensated system has a small phase margin (B) and a low phase-
margin frequency (A). Using a phase lead compensator, the phase angle plot
(compensated system) is raised for higher frequencies.3 At the same time, the gain
crossover frequency in the magnitude plot is increased from A rad/s to C rad/s. These
effects yield a larger phase margin (D), a higher phase-margin frequency (C), and a
larger bandwidth.

One advantage of the frequency response technique over the root locus is that
we can implement a steady-state error requirement and then design a transient
response. This specification of transient response with the constraint of a steady-
state error is easier to implement with the frequency response technique than with
the root locus. Notice that the initial slope, which determines the steady-state error,
is not affected by the design for the transient response.

3 The name lead compensator comes from the fact that the typical phase angle response shown in Figure
11.7 is always positive, or leading in phase angle.

(TryIt Continued )
When the SISO Design for SISO Design Task Window appears:

1. Right-click on the Bode plot area and select Grid.
2. Note the phase margin shown in the MATLAB Command Window.
3. Using the Bode phase plot, estimate the frequency at which the phase margin from Step 2 occurs.
4. On the SISO Design for SISO Design Task Window toolbar, click on the red zero.
5. Place the zero of the compensator by clicking on the gain plot at a frequency that is 1/10 that

found in Step 3.
6. On the SISO Design for SISO Design Task Window toolbar, click on the red pole.
7. Place the pole of the compensator by clicking on the gain plot to the left of the compensator zero.
8. Grab the pole with the mouse and move it until the phase plot shows a P.M. equal to that found in

Step 2.
9. Right-click in the Bode plot area and select Edit Compensator . . .

10. Read the lag compensator in the Control and Estimation Tools Manager Window.
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Lead Compensator Frequency Response
Let us first look at the frequency response characteristics of a lead network and
derive some valuable relationships that will help us in the design process. Figure 11.8
shows plots of the lead network

GcðsÞ ¼ 1

b

sþ 1

T

sþ 1

bT

ð11:6Þ

for various values of b, where b < 1. Notice that the peaks of the phase curve vary in
maximum angle and in the frequency at which the maximum occurs. The dc gain of the
compensator is set to unity with the coefficient 1=b, in order not to change the dc gain
designed for the static error constant when the compensator is inserted into the system.

In order to design a lead compensator and change both the phase margin and
phase-margin frequency, it is helpful to have an analytical expression for the
maximum value of phase and the frequency at which the maximum value of phase
occurs, as shown in Figure 11.8.

From Eq. (11.6) the phase angle of the lead compensator, fc, is

fc ¼ tan�1vT � tan�1vbT ð11:7Þ
Differentiating with respect to v, we obtain

dfc

dv
¼ T

1 þ ðvTÞ2
� bT

1 þ ðvbTÞ2
ð11:8Þ

Setting Eq. (11.8) equal to zero, we find that the frequency, vmax, at which the
maximum phase angle, fmax, occurs is

vmax ¼ 1

T
ffiffiffi
b

p ð11:9Þ
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FIGURE 11.7 Visualizing lead compensation
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Substituting Eq. (11.9) into Eq. (11.6) with s ¼ jvmax,

Gcð jvmaxÞ ¼ 1

b

jvmax þ 1

T

jvmax þ 1

bT

¼
j

1ffiffiffi
b

p þ 1

j
ffiffiffi
b

p þ 1
ð11:10Þ

Making use of tanðf1 � f2Þ ¼ ðtan f1 � tan f2Þ=ð1 þ tan f1tan f2Þ, the maximum
phase shift of the compensator, fmax, is

fmax ¼ tan�1 1 � b

2
ffiffiffi
b

p ¼ sin�1 1 � b

1 þ b
ð11:11Þ

and the compensator’s magnitude at vmax is

jGcðjvmaxÞj ¼ 1ffiffiffi
b

p ð11:12Þ

We are now ready to enumerate a design procedure.

Design Procedure
1. Find the closed-loop bandwidth required to meet the settling time, peak time,

or rise time requirement (see Eqs. (10.54) through (10.56)).

2. Since the lead compensator has negligible effect at low frequencies, set the
gain, K, of the uncompensated system to the value that satisfies the steady-
state error requirement.
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3. Plot the Bode magnitude and phase diagrams for this value of gain and
determine the uncompensated system’s phase margin.

4. Find the phase margin to meet the damping ratio or percent overshoot require-
ment. Then evaluate the additional phase contribution required from the
compensator.4

5. Determine the value of b (see Eqs. (11.6) and (11.11)) from the lead compen-
sator’s required phase contribution.

6. Determine the compensator’s magnitude at the peak of the phase curve
(Eq. (11.12)).

7. Determine the new phase-margin frequency by finding where the un-
compensated system’s magnitude curve is the negative of the lead compensa-
tor’s magnitude at the peak of the compensator’s phase curve.

8. Design the lead compensator’s break frequencies, using Eqs. (11.6) and (11.9)
to find T and the break frequencies.

9. Reset the system gain to compensate for the lead compensator’s gain.

10. Check the bandwidth to be sure the speed requirement in Step 1 has been met.

11. Simulate to be sure all requirements are met.

12. Redesign if necessary to meet requirements.

From these steps, we see that we are increasing both the amount of phase
margin (improving percent overshoot) and the gain crossover frequency (increasing
the speed). Now that we have enumerated a procedure with which we can design a
lead compensator to improve the transient response, let us demonstrate.

Example 11.3

Lead Compensation Design

PROBLEM: Given the system of Figure 11.2, design a lead compensator to yield a
20% overshoot and Kv ¼ 40, with a peak time of 0.1 second.

SOLUTION: The uncompensated system is GðsÞ ¼ 100K=½sðsþ 36Þðsþ 100Þ�. We
will follow the outlined procedure.

1. We first look at the closed-loop bandwidth needed to meet the speed
requirement imposed by Tp ¼ 0:1 second. From Eq. (10.56), with Tp ¼ 0:1
second and z ¼ 0:456 (i.e., 20% overshoot), a closed-loop bandwidth of 46.6
rad/s is required.

2. In order to meet the specification of Kv ¼ 40, K must be set at 1440, yielding
GðsÞ ¼ 144;000=½sðsþ 36Þðsþ 100Þ�.

3. The uncompensated system’s frequency response plots for K ¼ 1440 are
shown in Figure 11.9.

4. A 20% overshoot implies a phase margin of 48.1�. The uncompensated
system with K ¼ 1440 has a phase margin of 34� at a phase-margin frequency

4 We know that the phase-margin frequency will be increased after the insertion of the compensator. At
this new phase-margin frequency, the system’s phase will be smaller than originally estimated, as seen by
comparing points B and D in Figure 11.7. Hence, an additional phase should be added to that provided by
the lead compensator to correct for the phase reduction caused by the original system.
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of 29.6. To increase the phase margin, we insert a lead network that adds enough
phase to yield a 48.1� phase margin. Since we know that the lead network will
also increase the phase-margin frequency, we add a correction factor to
compensate for the lower uncompensated system’s phase angle at this higher
phase-margin frequency. Since we do not know the higher phase-margin
frequency, we assume a correction factor of 10�. Thus, the total phase contri-
bution required from the compensator is 48:1� � 34� þ 10� ¼ 24:1�. In sum-
mary, our compensated system should have a phase margin of 48.1� with a
bandwidth of 46.6 rad/s. If the system’s characteristics are not acceptable after
the design, then a redesign with a different correction factor may be necessary.

5. Using Eq. (11.11), b ¼ 0:42 for fmax ¼ 24:1�.
6. From Eq. (11.12), the lead compensator’s magnitude is 3.76 dB at vmax.

7. If we select vmax to be the new phase-margin frequency, the uncompensated
system’s magnitude at this frequency must be �3.76 dB to yield a 0 dB
crossover at vmax for the compensated system. The uncompensated system
passes through �3.76 dB at vmax ¼ 39 rad/s. This frequency is thus the new
phase-margin frequency.

8. We now find the lead compensator’s break frequencies. From Eq. (11.9),
1=T ¼ 25:3 and 1=bT ¼ 60:2.

9. Hence, the compensator is given by

GcðsÞ ¼ 1

b

sþ 1

T

sþ 1

bT

¼ 2:38
sþ 25:3

sþ 60:2
ð11:13Þ
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where 2.38 is the gain required to keep the dc gain of the compensator at unity
so that Kv ¼ 40 after the compensator is inserted.

The final, compensated open-loop transfer function is then

GcðsÞGðsÞ ¼ 342;600ðsþ 25:3Þ
sðsþ 36Þðsþ 100Þðsþ 60:2Þ ð11:14Þ

10. From Figure 11.9, the lead-compensated open-loop magnitude response is
�7 dB at approximately 68.8 rad/s. Thus, we estimate the closed-loop
bandwidth to be 68.8 rad/s. Since this bandwidth exceeds the requirement
of 46.6 rad/s, we assume the peak time specification is met. This conclusion
about the peak time is based upon a second-order and asymptotic approxi-
mation that will be checked via simulation.

11. Figure 11.9 summarizes the design and shows the effect of the compensation.
Final results, obtained from a simulation and the actual (nonasymptotic)
frequency response, are shown in Table 11.3. Notice the increase in phase
margin, phase-margin frequency, and closed-loop bandwidth after the lead
compensator was added to the gain-adjusted system. The peak time and the
steady-state error requirements have been met, although the phase margin is
less than that proposed and the percent overshoot is 2.6% larger than proposed.
Finally, if the performance is not acceptable, a redesign is necessary.

Students who are using MATLAB should now run ch11p3 in Appendix B.
You will learn how to use MATLAB to design a lead compensator. You
will enter the desired percent overshoot, peak time, and Kv.
MATLAB then designs a lead compensator using Bode plots, eval-
uates Kv, and generates a closed-loop step response. This exer-
cise solves Example 11.3 using MATLAB.

Skill-Assessment Exercise 11.3

PROBLEM: Design a lead compensator for the system in Skill-Assessment Exer-
cise 11.1 to meet the following specifications: %OS ¼ 20%; Ts ¼ 0:2 s and
Kv ¼ 50.

TABLE 11.3 Characteristic of the lead-compensated system of Example 11.3

Parameter
Proposed

specification

Actual gain-
compensated

value

Actual lead-
compensated

value

Kv 40 40 40

Phase margin 48.1� 34� 45.5�

Phase-margin frequency — 29.6 rad/s 39 rad/s

Closed-loop bandwidth 46.6 rad/s 50 rad/s 68.8 rad/s

Percent overshoot 20 37 22.6

Peak time 0.1 second 0.1 second 0.075 second
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ANSWER: GleadðsÞ ¼ 2:27ðsþ 33:2Þ
ðsþ 75:4Þ ; GðsÞ ¼ 300;000

sðsþ 50Þðsþ 120Þ
The complete solution is at www.wiley.com/college/nise.

Keep in mind that the previous examples were designs for third-order systems
and must be simulated to ensure the desired transient results. In the next section, we
look at lag-lead compensation to improve steady-state error and transient response.

11.5 Lag-Lead Compensation

In Section 9.4, using root locus, we designed lag-lead compensation to improve the
transient response and steady-state error. Figure 11.10 is an example of a system to
which lag-lead compensation can be applied. In this section we repeat the design,
using frequency response techniques. One method is to design the lag compensation
to lower the high-frequency gain, stabilize the system, and improve the steady-state
error and then design a lead compensator to meet the phase-margin requirements.
Let us look at another method.

Section 9.6 describes a passive lag-lead network that can be used in place of
separate lag and lead networks. It may be more economical to use a single, passive
network that performs both tasks, since the buffer amplifier that separates the lag
network from the lead network may be eliminated. In this section, we emphasize lag-
lead design, using a single, passive lag-lead network.

The transfer function of a single, passive lag-lead network is

GcðsÞ ¼ GLeadðsÞGLagðsÞ ¼
sþ 1

T1

sþ g

T1

0
BB@

1
CCA

sþ 1

T2

sþ 1

gT2

0
BB@

1
CCA ð11:15Þ

TryIt 11.3

Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-Assessment Exercise 11.3.

pos=20
Ts=0.2
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2))
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi)
Wbw=(4/(Ts*z))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2))
K=50*50*120
G=zpk([], [0,-50,-120],K)
sisotool(G,1)

When the SISO Design for SISO Design Task Window appears:

1. Right-click on the Bode plot area and select Grid.
2. Note the phase margin and bandwidth shown in the MATLAB Command Window.
3. On the SISO Design for SISO Design Task Window toolbar, click on the red pole.
4. Place the pole of the compensator by clicking on the gain plot at a frequency that is to the right of the desired bandwidth found in Step 2.
5. On the SISO Design for SISO Design Task Window toolbar, click on the red zero.
6. Place the zero of the compensator by clicking on the gain plot to the left of the desired bandwidth.
7. Reshape the Bode plots: alternately grab the pole and the zero with the mouse and alternately move them along the phase plot until the

phase plot show a P.M. equal to that found in Step 2 and a phase-margin frequency close to the bandwidth found in Step 2.
8. Right-click in the Bode plot area and select Edit Compensator . . .
9. Read the lead compensator in the Control and Estimation Tools Manager Window.

11.5 Lag-Lead Compensation 641
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where g > 1. The first term in parentheses produces the lead compensation, and the
second term in parentheses produces the lag compensation. The constraint that we
must follow here is that the single value g replaces the quantity a for the lag network
in Eq. (11.2) and the quantity b for the lead network in Eq. (11.6). For our design, a
and b must be reciprocals of each other. An example of the frequency response of
the passive lag-lead is shown in Figure 11.11.

We are now ready to enumerate a design procedure.

(a) (b)

FIGURE 11.10 a. The National Advanced Driving Simulator at the University of Iowa; b. test driving the simulator with its
realistic graphics (Katharina Bosse/laif/Redux Pictures.)
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Design Procedure
1. Using a second-order approximation, find the closed-loop bandwidth required

to meet the settling time, peak time, or rise time requirement (see Eqs. (10.55)
and (10.56)).

2. Set the gain, K, to the value required by the steady-state error specification.

3. Plot the Bode magnitude and phase diagrams for this value of gain.

4. Using a second-order approximation, calculate the phase margin to meet the
damping ratio or percent overshoot requirement, using Eq. (10.73).

5. Select a new phase-margin frequency near vBW.

6. At the new phase-margin frequency, determine the additional amount of phase
lead required to meet the phase-margin requirement. Add a small contribution
that will be required after the addition of the lag compensator.

7. Design the lag compensator by selecting the higher break frequency one
decade below the new phase-margin frequency. The design of the lag compen-
sator is not critical, and any design for the proper phase margin will be
relegated to the lead compensator. The lag compensator simply provides
stabilization of the system with the gain required for the steady-state error
specification. Find the value of g from the lead compensator’s requirements.
Using the phase required from the lead compensator, the phase response curve
of Figure 11.8 can be used to find the value of g ¼ 1=b. This value, along with
the previously found lag’s upper break frequency, allows us to find the lag’s
lower break frequency.

8. Design the lead compensator. Using the value of g from the lag compensator
design and the value assumed for the new phase-margin frequency, find the
lower and upper break frequency for the lead compensator, using Eq. (11.9)
and solving for T.

9. Check the bandwidth to be sure the speed requirement in Step 1 has been met.

10. Redesign if phase-margin or transient specifications are not met, as shown by
analysis or simulation.

Let us demonstrate the procedure with an example.

Example 11.4

Lag-Lead Compensation Design

PROBLEM: Given a unity feedback system where GðsÞ ¼ K=½sðsþ 1Þðsþ 4Þ�,
design a passive lag-lead compensator using Bode diagrams to yield a 13.25%
overshoot, a peak time of 2 seconds, and Kv ¼ 12.

SOLUTION: We will follow the steps previously mentioned in this section for lag-
lead design.

1. The bandwidth required for a 2-seconds peak time is 2.29 rad/s.

2. In order to meet the steady-state error requirement,Kv ¼ 12, the value ofK is 48.

3. The Bode plots for the uncompensated system with K ¼ 48 are shown in Figure
11.12. We can see that the system is unstable.

4. The required phase margin to yield a 13.25% overshoot is 55�.
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5. Let us select v ¼ 1:8 rad/s as the new phase-margin frequency.

6. At this frequency, the uncompensated phase is �176� and would require, if we
add a �5� contribution from the lag compensator, a 56� contribution from the
lead portion of the compensator.

7. The design of the lag compensator is next. The lag compensator allows us
to keep the gain of 48 required for Kv ¼ 12 and not have to lower the gain
to stabilize the system. As long as the lag compensator stabilizes the system,
the design parameters are not critical since the phase margin will be designed
with the lead compensator. Thus, choose the lag compensator so that its
phase response will have minimal effect at the new phase-margin frequency.
Let us choose the lag compensator’s higher break frequency to be 1 decade
below the new phase-margin frequency, at 0.18 rad/s. Since we need to add 56�

of phase shift with the lead compensator at v ¼ 1:8 rad/s, we estimate
from Figure 11.8 that, if g ¼ 10:6 (since g ¼ 1=b; b ¼ 0:094), we can obtain
about 56� of phase shift from the lead compensator. Thus with g ¼ 10:6 and a
new phase-margin frequency of v ¼ 1:8 rad/s, the transfer function of the lag
compensator is

GlagðsÞ ¼ 1

g

sþ 1

T2

� �

sþ 1

gT2

� � ¼ 1

10:6

ðsþ 0:183Þ
ðsþ 0:0172Þ ð11:16Þ

.01 0.1 1 10 100

84
72
60
48
36
24
12
0

–12
–24
–36
–48
–60

Frequency (rad/s)

20
 lo

g 
M

0.01 0.1 1 10 100

–250

100

Frequency (rad/s)

Ph
as

e 
(d

eg
re

es
)

–300

–200

–150

–100

–50

0

50

Lag-lead-compensated
systemLag-compensated

system

Lag-lead compensator

Uncompensated system

Uncompensated
system

Lag-lead
compensator

Lag-lead-compensated
system

Lag-compensated
system

FIGURE 11.12 Bode plots for lag-lead compensation in Example 11.4
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where the gain term, 1=g, keeps the dc gain of the lag compensator at 0 dB. The
lag-compensated system’s open-loop transfer function is

Glag-compðsÞ ¼ 4:53ðsþ 0:183Þ
sðsþ 1Þðsþ 4Þðsþ 0:0172Þ ð11:17Þ

8. Now we design the lead compensator. At v ¼ 1:8, the lag-compensated system
has a phase angle of 180�. Using the values of vmax ¼ 1:8 and b ¼ 0:094, Eq.
(11.9) yields the lower break, 1=T1 ¼ 0:56 rad/s. The higher break is then
1=bT1 ¼ 5:96 rad/s. The lead compensator is

GleadðsÞ ¼ g

sþ 1

T1

� �

sþ g

T1

� � ¼ 10:6
ðsþ 0:56Þ
ðsþ 5:96Þ ð11:18Þ

The lag-lead-compensated system’s open-loop transfer function is

Glag-lead-compðsÞ ¼ 48ðsþ 0:183Þðsþ 0:56Þ
sðsþ 1Þðsþ 4Þðsþ 0:0172Þðsþ 5:96Þ ð11:19Þ

9. Now check the bandwidth. The closed-loop bandwidth is equal to that frequency
where the open-loop magnitude response is approximately �7 dB. From Figure
11.12, the magnitude is �7 dB at approximately 3 rad/s. This bandwidth exceeds
that required to meet the peak time requirement.

The design is now checked with a simulation to obtain actual performance
values. Table 11.4 summarizes the system’s characteristics. The peak time
requirement is also met. Again, if the requirements were not met, a redesign
would be necessary.

Students who are using MATLAB should now run ch11p4 in Appendix B.
You will learn how to use MATLAB to design a lag-lead compensator.
You will enter the desired percent overshoot, peak time, and Kv.
MATLAB then designs a lag-lead compensator using Bode plots,
evaluates Kv, and generates a closed-loop step response. This
exercise solves Example 11.4 using MATLAB.

For a final example, we include the design of a lag-lead compensator using a
Nichols chart. Recall from Chapter 10 that the Nichols chart contains a presentation of
both the open-loop frequency response and the closed-loop frequency response. The
axes of the Nichols chart are the open-loop magnitude and phase (y and x axis,
respectively). The open-loop frequency response is plotted using the coordinates
of the Nichols chart at each frequency. The open-loop plot is overlaying a grid that
yields the closed-loop magnitude and phase. Thus, we have a presentation of both the

TABLE 11.4 Characteristics of gain-compensated system of Example 11.4

Parameter Proposed specification Actual value

Kv 12 12

Phase margin 55� 59.3�

Phase-margin frequency — 1.63 rad/s

Closed-loop bandwidth 2.29 rad/s 3 rad/s

Percent overshoot 13.25 10.2

Peak time 2.0 seconds 1.61 seconds
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open- and closed-loop responses. Thus, a design can be implemented that reshapes the
Nichols plot to meet both open- and closed-loop frequency specifications.

From a Nichols chart, we can see simultaneously the following frequency res-
ponse specifications that are used to design a desired time response: (1) phase margin,
(2) gain margin, (3) closed-loop bandwidth, and (4) closed-loop peak amplitude.

In the following example, we first specify the following: (1) maximum allowable
percent overshoot, (2) maximum allowable peak time, and (3) minimum allowable
static error constant. We first design the lead compensator to meet the transient
requirements followed by the lag compensator design to meet the steady-state error
requirement. Although calculations could be made by hand, we will use MATLAB
and SISOTOOL to make and shape the Nichols plot.

Let us first outline the steps that we will take in the example:

1. Calculate the damping ratio from the percent overshoot requirement using
Eq. (4.39)

2. Calculate the peak amplitude, Mp, of the closed-loop response using
Eq. (10.52) and the damping ratio found in (1).

3. Calculate the minimum closed-loop bandwidth to meet the peak time require-
ment using Eq. (10.56), with peak time and the damping ratio from (1).

4. Plot the open-loop response on the Nichols chart.

5. Raise the open-loop gain until the open-loop plot is tangent to the required
closed-loop magnitude curve, yielding the proper Mp.

6. Place the lead zero at this point of tangency and the lead pole at a higher
frequency. Zeros and poles are added in SISOTOOL by clicking either one on
the tool bar and then clicking the position on the open-loop frequency response
curve where you desire to add the zero or pole.

7. Adjust the positions of the lead zero and pole until the open-loop frequency
response plot is tangent to the same Mp curve, but at the approximate
frequency found in (3). This yields the proper closed-loop peak and proper
bandwidth to yield the desired percent overshoot and peak time, respectively.

8. Evaluate the open-loop transfer function, which is the product of the plant and
the lead compensator, and determine the static error constant.

9. If the static error constant is lower than required, a lag compensator must now
be designed. Determine how much improvement in the static error constant is
required.

10. Recalling that the lag pole is at a frequency below that of the lag zero, place a lag
pole and zero at frequencies below the lead compensator and adjust to yield the
desired improvement instatic errorconstant.Asanexample, recall from Eq. (9.5)
thattheimprovementinstaticerrorconstantforaType1systemisequaltotheratio
of the lag zero value divided by the lag pole value. Readjust the gain if necessary.

Example 11.5

Lag-Lead Design Using the Nichols Chart, MATLAB, and SISOTOOL

PROBLEM: Design a lag-lead compensator for the plant, GðsÞ ¼ K

sðsþ 5Þðsþ 10Þ,
to meet the following requirements: (1) a maximum of 20% overshoot, (2) a peak
time of no more than 0.5 seconds, (3) a static error constant of no less than 6.
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SOLUTION: We follow the steps enumerated immediately above,

1. Using Eq. (4.39), z ¼ 0:456 for 20% overshoot.

2. Using Eq. (10.52), Mp ¼ 1:23 ¼ 1:81 dB for z ¼ 0:456.

3. Using Eq. (10.56), vBW ¼ 9:3 r/s for z ¼ 0:456 and Tp ¼ 0:5.

4. Plot the open-loop frequency response curve on the Nichols chart for K ¼ 1.

5. Raise the open-loop frequency response curve until it is tangent to the closed-
loop peak of 1.81 dB curve as shown in Figure 11.13. The frequency at the
tangent point is approximately 3 r/s, which can be found by letting your mouse
rest on the point of tangency. On the menu bar, select Designs/Edit Com-
pensator . . . and find the gain added to the plant. Thus, the plant is now

GðsÞ ¼ 150

sðsþ 5Þðsþ 10Þ. The gain-adjusted closed-loop step response is

shown in Figure 11.14. Notice that the peak time is about 1 second and
must be decreased.

6. Place the lead zero at this point of tangency and the lead pole at a higher
frequency.

7. Adjust the positions of the lead zero and pole until the open-loop frequency
response plot is tangent to the same Mp curve, but at the approximate
frequency found in 3.

8. Checking Designs/Edit Compensator . . . shows

GðsÞGleadðsÞ ¼ 1286ðsþ 1:4Þ
sðsþ 5Þðsþ 10Þðsþ 12Þ, which yields a Kv ¼ 3.

FIGURE 11.13 Nichols chart
after gain adjustment
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FIGURE 11.14 Gain-adjusted closed-loop step response

FIGURE 11.15 Nichols chart after lag-lead compensation
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9. We now add lag compensation to improve the static error constant by at least 2.

10. Now add a lag pole at �0.004 and a lag zero at �0.008. Readjust the gain to
yield the same tangency as after the insertion of the lead. The final forward

path is found to be GðsÞGleadðsÞGlagðsÞ ¼ 1381ðsþ 1:4Þðsþ 0:008Þ
sðsþ 5Þðsþ 10Þðsþ 12Þðsþ 0:004Þ.

The final Nichols chart is shown in Figure 11.15 and the compensated time
response is shown in Figure 11.16. Notice that the time response has the
expected slow climb to the final value that is typical of lag compensation. If
your design requirements require a faster climb to the final response, then
redesign the system with a larger bandwidth or attempt a design only with
lead compensation. A problem at the end of the chapter provides the
opportunity for practice.

Skill-Assessment Exercise 11.4

PROBLEM: Design a lag-lead compensator for a unity feedback system with the
forward-path transfer function

GðsÞ ¼ K

sðsþ 8Þðsþ 30Þ
to meet the following specifications: %OS ¼ 10%; Tp ¼ 0:6 s, and Kv ¼ 10. Use
frequency response techniques.

FIGURE 11.16 Lag-lead compensated closed-loop step response
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ANSWER: GlagðsÞ ¼ 0:456
ðsþ 0:602Þ
ðsþ 0:275Þ ; GleadðsÞ ¼ 2:19

ðsþ 4:07Þ
ðsþ 8:93Þ ; K ¼ 2400:

The complete solution is at www.wiley.com/college/nise.

Case Studies

Our ongoing antenna azimuth position control system serves now as an
example to summarize the major objectives of the chapter. The following cases
demonstrate the use of frequency response methods to (1) design a value of gain
to meet a percent overshoot requirement for the closed-loop step response
and (2) design cascade compensation to meet both transient and steady-state
error requirements.

Antenna Control: Gain Design

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, use frequency response techniques to do the following:

a. Find the preamplifier gain required for a closed-loop response of 20% over-
shoot for a step input.

b. Estimate the settling time.

SOLUTION: The block diagram for the control system is shown on the inside front
cover (Configuration 1). The loop gain, after block diagram reduction, is

GðsÞ ¼ 6:63K

sðsþ 1:71Þðsþ 100Þ ¼
0:0388K

s
s

1:71
þ 1

� � s

100
þ 1

� � ð11:20Þ

Letting K ¼ 1, the magnitude and phase frequency response plots are shown in
Figure 10.61.

a. To find K to yield a 20% overshoot, we first make a second-order approximation
and assume that the second-order transient response equations relating percent
overshoot, damping ratio, and phase margin are true for this system. Thus, a
20% overshoot implies a damping ratio of 0.456. Using Eq. (10.73), this
damping ratio implies a phase margin of 48.1�. The phase angle should therefore
be ð�180� þ 48:1�Þ ¼ �131:9�. The phase angle is �131:9� at v ¼ 1:49 rad/s,
where the gain is�34.1 dB. Thus K ¼ 34:1 dB ¼ 50:7 for a 20% overshoot. Since
the system is third-order, the second-order approximation should be checked. A
computer simulation shows a 20% overshoot for the step response.

b. Adjusting the magnitude plot of Figure 10.61 for K ¼ 50:7, we find �7 dB at
v ¼ 2:5 rad/s, which yields a closed-loop bandwidth of 2.5 rad/s. Using
Eq. (10.55) with z ¼ 0:456 and vBW ¼ 2:5, we find Ts ¼ 4:63 seconds. A compu-
ter simulation shows a settling time of approximately 5 seconds.

650 Chapter 11 Design via Frequency Response

www.wiley.com/college/nise


Apago PDF Enhancer

E1C11 11/02/2010 16:27:9 Page 651

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. You are given the antenna azimuth position control system shown on
the inside front cover (Configuration 3). Using frequency response methods do the
following:

a. Find the value of K to yield 25% overshoot for a step input.

b. Repeat Part a using MATLAB.

Antenna Control: Cascade Compensation Design

PROBLEM: Given the antenna azimuth position control system block diagram
shown on the front endpapers, Configuration 1, use frequency response techniques
and design cascade compensation for a closed-loop response of 20% overshoot for
a step input, a fivefold improvement in steady-state error over the gain-compen-
sated system operating at 20% overshoot, and a settling time of 3.5 seconds.

SOLUTION: Following the lag-lead design procedure, we first determine the value
of gain, K, required to meet the steady-state error requirement.

1. Using Eq. (10.55) with z ¼ 0:456, and Ts ¼ 3:5 seconds, the required bandwidth
is 3.3 rad/s.

2. From the preceding case study, the gain-compensated system’s open-loop
transfer function was, for K ¼ 50:7,

GðsÞHðsÞ ¼ 6:63K

sðsþ 1:71Þðsþ 100Þ ¼
336:14

sðsþ 1:71Þðsþ 100Þ ð11:21Þ

This function yields Kv ¼ 1:97. If K ¼ 254, then Kv ¼ 9:85, a fivefold
improvement.

3. The frequency response curves of Figure 10.61, which are plotted for K ¼ 1, will
be used for the solution.

4. Using a second-order approximation, a 20% overshoot requires a phase margin
of 48.1�.

5. Select v ¼ 3 rad/s to be the new phase-margin frequency.

6. The phase angle at the selected phase-margin frequency is �152�. This is a phase
margin of 28�. Allowing for a 5� contribution from the lag compensator, the lead
compensator must contribute ð48:1� � 28� þ 5�Þ ¼ 25:1�.

7. The design of the lag compensator now follows. Choose the lag compensatorupper
break one decade below the new phase-margin frequency, or 0.3 rad/s. Figure 11.8
says that we can obtain 25.1� phase shift from the lead ifb ¼ 0:4 or g ¼ 1=b ¼ 2:5.
Thus, the lower break for the lag is at 1=ðgTÞ ¼ 0:3=2:5 ¼ 0:12 rad/s.

Hence,

GlagðsÞ ¼ 0:4
ðsþ 0:3Þ
ðsþ 0:12Þ ð11:22Þ

8. Finally, design the lead compensator. Using Eq. (11.9), we have

T ¼ 1

vmax
ffiffiffi
b

p ¼ 1

3
ffiffiffiffiffiffiffi
0:4

p ¼ 0:527 ð11:23Þ

Therefore the lead compensator lower break frequency is 1=T ¼ 1:9
rad/s, and the upper break frequency is 1=ðbTÞ ¼ 4:75 rad/s. Thus, the
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lag-lead-compensated forward path is

Glag-lead-compðsÞ ¼ ð6:63Þð254Þðsþ 0:3Þðsþ 1:9Þ
sðsþ 1:71Þðsþ 100Þðsþ 0:12Þðsþ 4:75Þ ð11:24Þ

9. A plot of the open-loop frequency response for the lag-lead-compensated
system shows �7 dB at 5.3 rad/s. Thus, the bandwidth meets the design
requirements for settling time. A simulation of the compensated system shows
a 20% overshoot and a settling time of approximately 3.2 seconds, compared to
a 20% overshoot for the uncompensated system and a settling time of approxi-
mately 5 seconds. Kv for the compensated system is 9.85 compared to the
uncompensated system value of 1.97.

CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. You are given the antenna azimuth position control system shown on
the front endpapers (Configuration 3). Using frequency response methods, do the
following:

a. Design a lag-lead compensator to yield a 15% overshoot and Kv ¼ 20. In order
to speed up the system, the compensated system’s phase-margin frequency will
be set to 4.6 times the phase-margin frequency of the uncompensated system.

b. Repeat Part a using MATLAB.

Summary

This chapter covered the design of feedback control systems using frequency
response techniques. We learned how to design by gain adjustment as well as
cascaded lag, lead, and lag-lead compensation. Time response characteristics
were related to the phase margin, phase-margin frequency, and bandwidth.

Design by gain adjustment consisted of adjusting the gain to meet a phase-
margin specification. We located the phase-margin frequency and adjusted the gain
to 0 dB.

A lag compensator is basically a low-pass filter. The low-frequency gain can be
raised to improve the steady-state error, and the high-frequency gain is reduced to
yield stability. Lag compensation consists of setting the gain to meet the steady-state
error requirement and then reducing the high-frequency gain to create stability and
meet the phase-margin requirement for the transient response.

Aleadcompensator isbasicallyahigh-pass filter.Theleadcompensator increases
the high-frequency gain while keeping the low-frequency gain the same. Thus, the
steady-state error can be designed first. At the same time, the lead compensator
increases the phase angle at high frequencies. The effect is to produce a faster, stable
system since the uncompensated phase margin now occurs at a higher frequency.

A lag-lead compensator combines the advantages of both the lag and the lead
compensator. First, the lag compensator is designed to yield the proper steady-state
error with improved stability. Next, the lead compensator is designed to speed up the
transient response. If a single network is used as the lag-lead, additional design
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considerations are applied so that the ratio of the lag zero to the lag pole is the same
as the ratio of the lead pole to the lead zero.

In the next chapter, we return to state space and develop methods to design
desired transient and steady-state error characteristics.

Review Questions

1. What major advantage does compensator design by frequency response have
over root locus design?

2. How is gain adjustment related to the transient response on the Bode diagrams?

3. Briefly explain how a lag network allows the low-frequency gain to be increased
to improve steady-state error without having the system become unstable.

4. From the Bode plot perspective, briefly explain how the lag network does not
appreciably affect the speed of the transient response.

5. Why is the phase margin increased above that desired when designing a lag
compensator?

6. Compare the following for uncompensated and lag-compensated systems de-
signed to yield the same transient response: low-frequency gain, phase-margin
frequency, gain curve value around the phase-margin frequency, and phase curve
values around the phase-margin frequency.

7. From the Bode diagram viewpoint, briefly explain how a lead network increases
the speed of the transient response.

8. Based upon your answer to Question 7, explain why lead networks do not cause
instability.

9. Why is a correction factor added to the phase margin required to meet the
transient response?

10. When designing a lag-lead network, what difference is there in the design of the
lag portion as compared to a separate lag compensator?

Problems

1. Design the value of gain, K, for a gain margin of
10 dB in the unity feedback system of Figure P11.1 if
[Section: 11.2]

a. GðsÞ ¼ K

ðsþ 4Þðsþ 10Þðsþ 15Þ

b. GðsÞ ¼ K

sðsþ 4Þðsþ 10Þ

c. GðsÞ ¼ Kðsþ 2Þ
sðsþ 4Þðsþ 6Þðsþ 10Þ

R(s) C(s)+

_
G(s)

FIGURE P11.1

2. For each of the systems in Problem 1, design
the gain, K, for a phase margin of 40�. [Section:
11.2]

3. Given the unity feedback system of Figure P11.1,
use frequency response methods to determine
the value of gain, K, to yield a step response with
a 20% overshoot if [Section: 11.2]
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a. GðsÞ ¼ K

sðsþ 8Þðsþ 15Þ

b. GðsÞ ¼ Kðsþ 4Þ
sðsþ 8Þðsþ 10Þðsþ 15Þ

c. GðsÞ ¼ Kðsþ 2Þðsþ 7Þ
sðsþ 6Þðsþ 8Þðsþ 10Þðsþ 15Þ

4. Given the unity feedback system of Figure P11.1
with

GðsÞ ¼ Kðsþ 20Þðsþ 25Þ
sðsþ 6Þðsþ 9Þðsþ 14Þ

do the following: [Section: 11.2]

a. Use frequency response methods to determine
the value of gain, K, to yield a step response with
a 15% overshoot. Make any required second-
order approximations.

b. Use MATLAB or any other com-
puter program to test your
second-order approximation
by simulating the system for your
designed value of K.

5. The unity feedback system of
Figure P11.1 with

GðsÞ ¼ K

sðsþ 7Þ
is operating with 15% overshoot. Using frequency
response techniques, design a compensator to yield
Kv ¼ 50 with the phase-margin frequency and phase
margin remaining approximately the same as in the
uncompensated system. [Section: 11.3]

6. Given the unity feedback system of Figure P11.1
with

GðsÞ ¼ Kðsþ 10Þðsþ 11Þ
sðsþ 3Þðsþ 6Þðsþ 9Þ

do the following: [Section: 11.3]

a. Use frequency response methods to design a lag
compensator to yield Kv ¼ 1000 and 15% over-
shoot for the step response. Make any required
second-order approximations.

b. Use MATLAB or any other com-
puter program to test your
second-order approximation by
simulating the system for your de-
signed value of K and lag compensator.

7. The unity feedback system shown in Figure P11.1
with

GðsÞ ¼ K

ðsþ 2Þðsþ 5Þðsþ 7Þ
is operating with 15% overshoot. Using frequency
response methods, design a compensator to yield
a five-fold improvement in steady-state error with-
out appreciably changing the transient response.
[Section: 11.3]

8. Design a lag compensator so that the system of
Figure P11.1 where

GðsÞ ¼ Kðsþ 4Þ
ðsþ 2Þðsþ 6Þðsþ 8Þ

operates with a 45� phase margin and a static error
constant of 100. [Section: 11.3]

9. Design a PI controller for the system of Figure 11.2
that will yield zero steady-state error for a ramp
input and a 9.48% overshoot for a step input.
[Section: 11.3]

10. For the system of Problem 6, do the following:
[Section: 11.3]

a. Use frequency response methods to find the gain,
K, required to yield about 15% overshoot. Make
any required second-order approximations.

b. Use frequency response methods to design a PI
compensator to yield zero steady-state error for a
ramp input without appreciably changing the
transient response characteristics designed in
Part a.

c. Use MATLAB or any other compu-
terprogramtotestyoursecond-
order approximation by simulating the
system for your designed value of K and
PI compensator.

11. Write a MATLAB program that will
design a PI controller assuming a
second-order approximation as follows:

a. Allow the user to input from the key-
board the desired percent overshoot

b. DesignaPIcontrollerandgaintoyield
zero steady-state error for a closed-
loop step response as well as meet the
percent overshoot specification

c. Display the compensated closed-loop
step response
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Test your program on

GðsÞ ¼ K
ðsþ 5Þðsþ 10Þ

and 25% overshoot.

12. Design a compensator for the unity
feedback system of Figure P11.1 with

GðsÞ ¼ K

sðsþ 3Þðsþ 15Þðsþ 20Þ
to yield a Kv ¼ 4 and a phase margin of 40�.
[Section: 11.4]

13. Consider the unity feedback system of Figure P11.1
with

GðsÞ ¼ K

sðsþ 5Þðsþ 20Þ
The uncompensated system has about 55% over-
shoot and a peak time of 0.5 second when Kv ¼ 10.
Do the following: [Section: 11.4]

a. Use frequency response methods to design a lead
compensator to reduce the percent overshoot to
10%, while keeping the peak time and steady-
state error about the same or less. Make any
required second-order approximations.

b. Use MATLAB or any other compu-
ter program to test your
second-order approximation by simu-
lating the system for your designed
value of K.

14. The unity feedback system of Figure P11.1 with

GðsÞ ¼ Kðsþ 5Þ
ðsþ 2Þðsþ 6Þðsþ 10Þ

is operating with 20% overshoot. [Section: 11.4]

a. Find the settling time.

b. Find Kp.

c. Find the phase margin and the phase-margin
frequency.

d. Using frequency response techniques, design a
compensator that will yield a threefold improve-
ment in Kp and a twofold reduction in settling
time while keeping the overshoot at 20%.

15. Repeat the design of Example 11.3
in the text using a PD controller.
[Section: 11.4]

16. Repeat Problem 13 using a PD compensator.
[Section: 11.4]

17. Write a MATLAB program that will
design a lead compensator assum-
ing second-order approximations as
follows:

a. Allow the user to input from the key-
board the desired percent overshoot,
peak time, and gain required to meet a
steady-state error specification

b. Displaythegain-compensatedBodeplot

c. Calculate the required phase margin
and bandwidth

d. Display the pole, zero, and gain of the
lead compensator

e. Display the compensated Bode plot

f. Output the step response of the lead-
compensated system to test your
second-order approximation

Test your program on a unity feedback
system where

GðsÞ ¼ Kðsþ 1Þ
sðsþ 2Þðsþ 6Þ

and the following specifications are to
be met: percent overshoot ¼ 10%, peak
time ¼ 0.1 second, and Kv ¼ 30.

18. Repeat Problem 17 for a PD
controller.

19. Use frequency response methods to design a lag-
lead compensator for a unity feedback system
where [Section: 11.4]

GðsÞ ¼ Kðsþ 7Þ
sðsþ 5Þðsþ 15Þ

and the following specifications are to be met:
percent overshoot ¼ 15%, settling time ¼ 0.1 sec-
ond, and Kv ¼ 1000.

20. Write a MATLAB program that will
design a lag-lead compensator
assuming second-order approximations
as follows: [Section: 11.5]

a. Allow the user to input from the key-
board the desired percent overshoot,
settling time, and gain required to
meetasteady-stateerrorspecification

b. Display the gain-compensated Bode
plot
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c. Calculate the required phase margin
and bandwidth

d. Display the poles, zeros, and the gain
of the lag-lead compensator

e. Display the lag-lead-compensated Bode
plot

f. Display the step response of the lag-
lead compensated system to test your
second-order approximation

Use your program to do Problem 19.

21. Given a unity feedback system with

GðsÞ ¼ K

sðsþ 2Þðsþ 5Þ
design a PID controller to yield zero steady-state
error for a ramp input, as well as a 20% overshoot,
and a peak time less than 2 seconds for a step input.
Use only frequency response methods. [Section: 11.5]

22. A unity feedback system has

GðsÞ ¼ K
sðsþ 3Þðsþ 6Þ

If this system has an associated 0.5 sec-
ond delay, use MATLAB to design the value
of K for 20% overshoot. Make any neces-
sary second-order approximations, but
test your assumptions by simulating
your design. The delay can be repre-
sented by cascading the MATLAB function
pad�e (T,n) with G(s), where T is the delay
in seconds and n is the order of the Pade
approximation (use 5). Write the program
to do the following:

a. Accept your value of percent overshoot
from the keyboard

b. Display the Bode plot for K ¼ 1

c. Calculate the required phase margin
and find the phase-margin frequency
and the magnitude at the phase-margin
frequency

d. Calculate and display the value of K

DESIGN PROBLEMS
23. Aircraft are sometimes used to tow other vehicles.

A roll control system for such an aircraft was dis-
cussed in Problem 58 in Chapter 6. If Figure P11.2
represents the roll control system, use only fre-
quency response techniques to do the following
(Cochran, 1992):

a. Find the value of gain, K, to yield a closed-loop
step response with 10% overshoot.

b. Estimate peak time and settling time using the
gain-compensated frequency response.

c. Use MATLAB to simulate your
system. Compare the results of
the simulation with the re-
quirements in Part a and your estima-
tion of performance in Part b.

24. The model for a specific linearized TCP/IP com-
puter network queue working under a random
early detection (RED) algorithm has been modeled
using the block diagram of Figure P11.1, where
GðsÞ ¼ MðsÞPðsÞ, with

MðsÞ ¼ 0:005L

sþ 0:005
and

PðsÞ ¼ 140;625e�0:1s

ðsþ 2:67Þðsþ 10Þ
Also, L is a parameter to be varied (Hollot, 2001).

a. Adjust L to obtain a 15% overshoot in the
transient response for step inputs.

b. Verify Part a with a Simulink
unit step response simulation.

25. An electric ventricular assist device (EVAD) that
helps pump blood concurrently to a defective natu-
ral heart in sick patients can be shown to have a
transfer function

GðsÞ ¼ PaoðsÞ
EmðsÞ ¼

1361

s2 þ 69sþ 70:85

+

Commanded
roll angle

–

 c(s)φ

Actual
roll angle

(s)φ200
s2 + 12s + 100

500
s (s + 6)

Compensator Actuator Roll dynamics

K

FIGURE P11.2 Towed-vehicle roll control
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The input, Em(s), is the motor’s armature voltage,
and the output is Pao(s), the aortic blood pressure
(Tasch, 1990). The EVAD will be controlled in the
closed-loop configuration shown in Figure P11.1.

a. Design a phase lag compensator to achieve a
tenfold improvement in the steady-state error to
step inputs without appreciably affecting the
transient response of the uncompensated system.

b. Use MATLAB to simulate the
uncompensated and compensated
systems for a unit step input.

26. A Tower Trainer 60 Unmanned Aerial Vehicle has a
transfer function

PðsÞ ¼ hðsÞ
deðsÞ

¼ �34:16s3 � 144:4s2 þ 7047sþ 557:2

s5 þ 13:18s4 þ 95:93s3 þ 14:61s2 þ 31:94s

where deðsÞ is the elevator angle and h(s) is the
change in altitude (Barkana, 2005).

a. Assuming the airplane is controlled in the closed-
loop configuration of Figure P11.1 with
GðsÞ ¼ KPðsÞ, find the value of K that will result
in a 30� phase margin.

b. For the value of K calculated in Part a, obtain the
corresponding gain margin.

c. Obtain estimates for the system’s %OS and
settling times Ts for step inputs.

d. Simulate the step response of
the system using MATLAB.

e. Explain the simulation results and discuss any
inaccuracies in the estimates obtained in Part c.

27. Self-guided vehicles, such as that shown in Figure
P11.3(a), are used in factories to transport products
from station to station. One method of construction

(a)

Desired
bearing
angle

+
K

Computer
Desired
wheel

position
+

Motor and
controller

5

s(s + 2)

Actual
wheel

position
Vehicle

1

s(s + 3)

Actual
bearing
angle

(b)

– –

FIGURE P11.3 a. Automated guided carts in the final assembly area of lithium-ion batteries for Chevrolet VoltTM

electric vehicles (Rebecca Cook/Rueters/#Corbis); b. simplified block diagram of a guided cart
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is to embed a wire in the floor to provide guidance.
Another method is to use an onboard computer and
a laser scanning device. Bar-coded reflective devices
at known locations allow the system to determine
the vehicle’s angular position. This system allows
the vehicle to travel anywhere, including between
buildings (Stefanides, 1987). Figure P11.3(b) shows a
simplified block diagram of the vehicle’s bearing con-
trol system. For 11% overshoot, K is set equal to 2.
Design a lag compensator using frequency response
techniques to improve the steady-state error by a
factor of 30 over that of the uncompensated system.

28. An aircraft roll control system is shown in Figure
P11.4. The torque on the aileron generates a roll rate.
The resulting roll angle is then controlled through a
feedback system as shown. Design a lead compensa-
tor for a 60� phase margin and Kv ¼ 5.

29. The transfer function from applied force to arm
displacement for the arm of a hard disk drive has
been identified as

GðsÞ ¼ XðsÞ
FðsÞ ¼ 3:3333 � 104

s2

The position of the arm will be controlled using the
feedback loop shown in Figure P11.1 (Yan, 2003).

a. Design a lead compensator to achieve closed-loop
stability with a transient response of 16% over-
shoot and a settling time of 2 msec for a step input.

b. Verify your design through
MATLAB simulations.

30. A pitch axis attitude control system
utilizing a momentum wheel was the sub-
ject of Problem 61 in Chapter 8. In that
problem, the compensator is shown as a PI compen-
sator. We want to replace the PI compensator with a
lag-lead compensator to improve both transient and
steady-state error performance. The block diagram
for the pitch axis attitude control is shown in Figure
P11.5, where ucðsÞ is a commanded pitch angle and
uðsÞ is the actual pitch angle of the spacecraft. If t ¼
23 seconds and Iz ¼ 963 l in-lb-s2, do the following
(Piper, 1992):

a. Design a lag-lead compensator and find Gc(s)
and K to yield a system with the following
performance specifications: percent overshoot ¼
20%, settling time ¼ 10 seconds, Kv ¼ 200. Make
any required second-order approximations.

b. Use MATLAB or any other compu-
terprogramtotestyoursecond-
order approximation by simulating
the system for your designed value
of K and lag-lead compensator.

31. For the heat exchange system described in Problem
36, Chapter 9 (Smith, 2002):

+

Actual
roll

angle
K

1
s

10
s + 5

1
s + 1

Desired
roll

angle

–

Motor
Aileron
torque AircraftAmplifier

Roll
rate

FIGURE P11.4

Pitch
command

KGc(s)

Compensator

1
ττ

Hw(s)
1

Hc(s)+

Pitch
output

Disturbance
Td = 0

1Tw(s)

Pitch
dynamic

Momentum
wheel assembly

+

–+

θ(s)θc(s)θ

Hsys(s)

+
–

+

Izs
2

s

FIGURE P11.5

658 Chapter 11 Design via Frequency Response



Apago PDF Enhancer

E1C11 11/02/2010 16:27:31 Page 659

a. Design a passive lag-lead compensator to
achieve 5% steady-state error with a transient
response of 10% overshoot and a settling time of
60 seconds for step inputs.

b. Use MATLAB to simulate and
verify your design.

32. Active front steering is used in front-steering four-
wheel cars to control the yaw rate of the vehicle as a
function of changes in wheel-steering commands.
For a certain car, and under certain conditions, it has
been shown that the transfer function from steering
wheel angle to yaw rate is given by (Zhang, 2008):

PðsÞ ¼ 28:4sþ 119:7

s2 þ 7:15sþ 14:7

The system is controlled in a unity-feedback
configuration.

a. Use the Nichols chart and follow the procedure
of Example 11.5 to design a lag-lead compensa-
tor such that the system has zero steady-state
error for a step input. The bandwidth of the
closed-loop system must be vB ¼ 10 rad/sec.
Let the open-loop magnitude response peak be
less than 1 dB and the steady-state error constant
Kv ¼ 20.

b. Relax the bandwidth requirement to vB � 10
rad/sec. Design the system for a steady-state
error of zero for a step input. Let the open-
loop magnitude response peak be less than
1 dB and Kv ¼ 20 using only a lead compensator.

c. Simulate the step response of
both designs using MATLAB.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
33. High-speed rail pantograph. Problem 21 in Chap-

ter 1 discusses active control of a pantograph mech-
anism for high-speed rail systems. In Problem 79(a),
Chapter 5, you found the block diagram for the
active pantograph control system. In Chapter 8,
Problem 72, you designed the gain to yield a
closed-loop step response with 38% overshoot. A
plot of the step response should have shown a
settling time greater than 0.5 second as well as a
high-frequency oscillation superimposed over the
step response. In Chapter 9, Problem 55, we reduced
the settling time to about 0.3 second, reduced the
step response steady-state error to zero, and

eliminated the high-frequency oscillations using a
notch filter (O’Connor, 1997). Using the equivalent
forward transfer function found in Chapter 5
cascaded with the notch filter specified in Chapter 9,
design, using frequency response techniques, a
lag-lead compensator to meet the following
specifications:

a. At least 35� phase margin

b. A maximum of 10% steady-state error for the
closed-loop step response

c. At least 35 rad/s bandwidth

34. Control of HIV/AIDS. In Chapter 6, the model for
an HIV/AIDS patient treated with RTIs was linear-
ized and shown to be

PðsÞ ¼ YðsÞ
U1ðsÞ ¼

�520s� 10:3844

s3 þ 2:6817s2 þ 0:11sþ 0:0126

¼ �520ðsþ 0:02Þ
ðsþ 2:2644Þðs2 þ 0:04sþ 0:0048Þ

It is assumed here that the patient will be treated
and monitored using the closed-loop configuration
shown in Figure P11.1 Since the plant has a negative
dc gain, assume for simplicity that GðsÞ ¼
GcðsÞ PðsÞ and Gcð0Þ < 0. Assume also that the
specifications for the design are (1) zero steady-
state error for step inputs, (2) overdamped time-
domain response, and (3) settling time Ts � 100
days (Craig, 2004).

a. The overdamped specification requires a
FM � 90�. Find the corresponding bandwidth
required to satisfy the settling time requirement.

b. The zero steady-state error specification implies
that the open-loop transfer function must be
augmented to Type 1. The �0.02 zero of the
plant adds too much phase lead at low frequen-
cies, and the complex conjugate poles, if left
uncompensated within the loop, result in un-
desired oscillations in the time domain. Thus,
as an initial approach to compensation for this
system we can try

GcðsÞ ¼ �Kðs2 þ 0:04sþ 0:0048Þ
sðsþ 0:02Þ

For K ¼ 1, make a Bode plot of the resulting system.
Obtain the value of K necessary to achieve the
design demands. Check for closed-loop stability.

Problems 659
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c. Simulate the unit step res-
ponse of the system using MAT-
LAB. Adjust K to achieve the
desired response.

35. Hybrid vehicle. In Part b of Problem 10.55 we used a
proportional-plus-integral (PI) speed controller
that resulted in an overshoot of 20% and a settling
time, Ts ¼ 3:92 seconds (Preitl, 2007).

a. Now assume that the system specifications re-
quire a steady-state error of zero for a step input,
a ramp input steady-state error 	2%, a %OS
	 4.32%, and a settling time 	 4 seconds. One
way to achieve these requirements is to cancel
the PI-controller’s zero, ZI, with the real pole of
the uncompensated system closest to the origin
(located at �0.0163). Assuming exact cancella-
tion is possible, the plant and controller transfer
function becomes

GðsÞ ¼ Kðsþ 0:6Þ
sðsþ 0:5858Þ

Design the system to meet the requirements. You
may use the following steps:

i. Set the gain, K, to the value required by the
steady-state error specifications. Plot the
Bode magnitude and phase diagrams.

ii. Calculate the required phase margin to meet
the damping ratio or equivalently the %OS
requirement, using Eq. (10.73). If the phase
margin found from the Bode plot obtained in
Step i is greater than the required value,
simulate the system to check whether the

settling time is less than 4 seconds and
whether the requirement of a %OS 	 4.32%
has been met. Redesign if the simulation
shows that the %OS and/or the steady-state
error requirements have not been met. If all
requirements are met, you have completed the
design.

b. In most cases, perfect pole-zero cancellation is
not possible. Assume that you want to check
what happens if the PI-controller’s zero changes
by 
 20%, e.g., if ZI moves to:

Case 1: �0:01304
or to

Case 2: �0:01956:

The plant and controller transfer function in
these cases will be, respectively:

Case 1: GðsÞ ¼ Kðsþ 0:6Þðsþ 0:01304Þ
sðsþ 0:0163Þðsþ 0:5858Þ

Case 2: GðsÞ ¼ Kðsþ 0:6Þðsþ 0:01956Þ
sðsþ 0:0163Þðsþ 0:5858Þ

Set K in each case to the value required by the
steady-state error specifications and plot the Bode
magnitude and phase diagrams. Simulate the closed-
loop step response for each of the three locations of
ZI: pole/zero cancellation, Case 1, and Case 2, given
in the problem.

Do the responses obtained resemble a second-
order overdamped, critically damped, or under-
damped response? Is there a need to add a deriva-
tive mode?

Cyber Exploration Laboratory

Experiment 11.1

Objectives To design a PID controller using MATLAB’s SISO Design Tool. To
see the effect of a PI and a PD controller on the magnitude and phase responses at
each step of the design of a PID controller.

Minimum Required Software Packages MATLAB, and the Control
System Toolbox

Prelab

1. What is the phase margin required for 12% overshoot?

2. What is the bandwidth required for 12% overshoot and a peak time of 2 seconds?
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3. Given a unity feedback system with GðsÞ ¼ K

sðsþ 1Þðsþ 4Þ, what is the gain, K,

required to yield the phase margin found in Prelab 1? What is the phase-margin
frequency?

4. Design a PI controller to yield a phase margin 5� more than that found in Prelab 1.

5. Complete the design of a PID controller for the system of Prelab 3.

Lab

1. Using MATLAB’s SISO Design Tool, set up the system of Prelab 3 and display
the open-loop Bode plots and the closed-loop step response.

2. Drag the Bode magnitude plot in a vertical direction until the phase margin found
in Prelab 1 is obtained. Record the gain K, the phase margin, the phase-margin
frequency, the percent overshoot, and the peak time. Move the magnitude curve
up and down and note the effect upon the phase curve, the phase margin, and the
phase-margin frequency.

3. Design the PI controller by adding a pole at the origin and a zero one decade below
the phase-margin frequency found in Lab 2. Readjust the gain to yield a phase
margin 5� higher than that found in Prelab 1. Record the gain K, the phase margin,
the phase-margin frequency, the percent overshoot, and the peak time. Move the
zero back and forth in the vicinity of its current location and note the effect on the
magnitude and phase curve. Move the magnitude curve up and down and note its
effect on the phase curve, the phase margin, and the phase-margin frequency.

4. Design the PD portion of the PID controller by first adjusting the magnitude
curve to yield a phase-margin frequency slightly below the bandwidth calculated
in Prelab 2. Add a zero to the system and move it until you obtain the phase
margin calculated in Prelab 1. Move the zero and note its effect. Move the
magnitude curve and note its effect.

Postlab

1. Compare the Prelab PID design with that obtained via the SISO Design Tool. In
particular, compare the gain K, the phase margin, the phase-margin frequency,
the percent overshoot, and the peak time.

2. For the uncompensated system, describe the effect of changing gain on the phase
curve, the phase margin, and the phase-margin frequency.

3. For the PI-compensated system, describe the effect of changing gain on the phase
curve, the phase margin, and the phase-margin frequency. Repeat for changes in
the zero location.

4. For the PID-compensated system, describe the effect of changing gain on the
phase curve, the phase margin, and the phase-margin frequency. Repeat for
changes in the PD zero location.
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Design via State Space

12

This chapter covers only state-space methods.

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Design a state-feedback controller using pole placement for systems represented in
phase-variable form to meet transient response specifications (Sections 12.1–12.2)

� Determine if a system is controllable (Section 12.3)

� Design a state-feedback controller using pole placement for systems not repre-
sented in phase-variable form to meet transient response specifications
(Section 12.4)

� Design a state-feedback observer using pole placement for systems represented in
observer canonical form (Section 12.5)

� Determine if a system is observable (Section 12.6)

� Design a state-feedback observer using pole placement for systems not represented
in observer canonical form (Section 12.7)

� Design steady-state error characteristics for systems represented in state space
(Section 12.8)
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Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to specify all closed-loop poles and then design a state-feedback
controller to meet transient response specifications.

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to design an observer to estimate the states.

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to combine the controller and observer designs into a viable
compensator for the system.

12.1 Introduction

Chapter 3 introduced the concepts of state-space analysis and system modeling. We
showed that state-space methods, like transform methods, are simply tools for
analyzing and designing feedback control systems. However, state-space techniques
can be applied to a wider class of systems than transform methods. Systems with
nonlinearities, such as that shown in Figure 12.1, and multiple-input, multiple-output
systems are just two of the candidates for the state-space approach. In this book,
however, we apply the approach only to linear systems.

In Chapters 9 and 11, we applied frequency domain methods to system design.
The basic design technique is to create a compensator in cascade with the plant or in

FIGURE 12.1 A robot in a hospital
pharmacy selects medications by bar
code
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the feedback path that has the correct additional poles and zeros to yield a desired
transient response and steady-state error.

One of the drawbacks of frequency domain methods of design, using either
root locus or frequency response techniques, is that after designing the location of
the dominant second-order pair of poles, we keep our fingers crossed, hoping that
the higher-order poles do not affect the second-order approximation. What we
would like to be able to do is specify all closed-loop poles of the higher-order system.
Frequency domain methods of design do not allow us to specify all poles in systems
of order higher than 2 because they do not allow for a sufficient number of unknown
parameters to place all of the closed-loop poles uniquely. One gain to adjust, or
compensator pole and zero to select, does not yield a sufficient number of parame-
ters to place all the closed-loop poles at desired locations. Remember, to place
n unknown quantities, you need n adjustable parameters. State-space methods solve
this problem by introducing into the system (1) other adjustable parameters and
(2) the technique for finding these parameter values, so that we can properly place all
poles of the closed-loop system.1

On the other hand, state-space methods do not allow the specification of
closed-loop zero locations, which frequency domain methods do allow through
placement of the lead compensator zero. This is a disadvantage of state-space
methods, since the location of the zero does affect the transient response. Also, a
state-space design may prove to be very sensitive to parameter changes.

Finally, there is a wide range of computational support for state-space methods;
many software packages support the matrix algebra required by the design process.
However, as mentioned before, the advantages of computer support are balanced by
the loss of graphic insight into a design problem that the frequency domain methods
yield.

This chapter should be considered only an introduction to state-space design;
we introduce one state-space design technique and apply it only to linear systems.
Advanced study is required to apply state-space techniques to the design of systems
beyond the scope of this textbook.

12.2 Controller Design

This section shows how to introduce additional parameters into a system so that we
can control the location of all closed-loop poles. An nth-order feedback control
system has an nth-order closed-loop characteristic equation of the form

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð12:1Þ

Since the coefficient of the highest power of s is unity, there are n coefficients whose
values determine the system’s closed-loop pole locations. Thus, if we can introduce
n adjustable parameters into the system and relate them to the coefficients in
Eq. (12.1), all of the poles of the closed-loop system can be set to any desired
location.

1 This is an advantage as long as we know where to place the higher-order poles, which is not always the
case. One course of action is to place the higher-order poles far from the dominant second-order poles or
near a closed-loop zero to keep the second-order system design valid. Another approach is to use optimal
control concepts, which are beyond the scope of this text.
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Topology for Pole Placement
In order to lay the groundwork for the approach, consider a plant represented in
state space by

_x ¼ Axþ Bu ð12:2aÞ

y ¼ Cx ð12:2bÞ

and shown pictorially in Figure 12.2(a), where light lines are scalars and the heavy
lines are vectors.

In a typical feedback control system, the output, y, is fed back to the summing
junction. It is now that the topology of the design changes. Instead of feeding back y,
what if we feed back all of the state variables? If each state variable is fed back to the
control, u, through a gain, ki, there would be n gains, ki, that could be adjusted to
yield the required closed-loop pole values. The feedback through the gains, ki, is
represented in Figure 12.2(b) by the feedback vector �K.

The state equations for the closed-loop system of Figure 12.2(b) can be written
by inspection as

_x ¼ Axþ Bu ¼ Axþ Bð�Kxþ rÞ ¼ ðA� BKÞxþ Br ð12:3aÞ

y ¼ Cx ð12:3bÞ

Before continuing, you should have a good idea of how the feedback system of
Figure 12.2(b) is actually implemented. As an example, assume a plant signal-flow
graph in phase-variable form, as shown in Figure 12.3(a). Each state variable is then
fed back to the plant’s input, u, through a gain, ki, as shown in Figure 12.3(b).
Although we will cover other representations later in the chapter, the phase-variable

FIGURE 12.2 a. State-space
representation of a plant; b. plant
with state-variable feedback
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form, with its typical lower companion system matrix, or the controller canonical
form, with its typical upper companion system matrix, yields the simplest evaluation
of the feedback gains. In the ensuing discussion, we use the phase-variable form to
develop and demonstrate the concepts. End-of-chapter problems will give you an
opportunity to develop and test the concepts for the controller canonical form.

The design of state-variable feedback for closed-loop pole placement consists
of equating the characteristic equation of a closed-loop system, such as that shown in
Figure 12.3(b), to a desired characteristic equation and then finding the values of the
feedback gains, ki.

If a plant like that shown in Figure 12.3(a) is of high order and not represented
in phase-variable or controller canonical form, the solution for the ki’s can be
intricate. Thus, it is advisable to transform the system to either of these forms, design
the ki’s, and then transform the system back to its original representation. We
perform this conversion in Section 12.4, where we develop a method for performing
the transformations. Until then, let us direct our attention to plants represented in
phase-variable form.

x1

u
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x3 x2 x1
y

c1

c3

–a0

–a1

–a2
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FIGURE 12.3 a. Phase-
variable representation for
plant; b. plant with state-
variable feedback
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Pole Placement for Plants in Phase-Variable Form
To apply pole-placement methodology to plants represented in phase-variable form,
we take the following steps:

1. Represent the plant in phase-variable form.

2. Feed back each phase variable to the input of the plant through a gain, ki.

3. Find the characteristic equation for the closed-loop system represented in Step 2.

4. Decide upon all closed-loop pole locations and determine an equivalent charac-
teristic equation.

5. Equate like coefficients of the characteristic equations from Steps 3 and 4 and
solve for ki.

Following these steps, the phase-variable representation of the plant is given by
Eq. (12.2), with

A ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

.

�a0 �a1 �a2 � � � �an�1

2
66664

3
77775; B ¼

0

0

..

.

1

2
66664

3
77775;

C ¼ ½ c1 c2 � � � cn � ð12:4Þ
The characteristic equation of the plant is thus

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð12:5Þ

Now form the closed-loop system by feeding back each state variable to u, forming

u ¼ �Kx ð12:6Þ
where

K ¼ ½ k1 k2 � � � kn � ð12:7Þ
The ki’s are the phase variables’ feedback gains.

Using Eq. (12.3a) with Eqs. (12.4) and (12.7), the system matrix, A� BK, for
the closed-loop system is

A� BK ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

.

�ða0 þ k1Þ �ða1 þ k2Þ �ða2 þ k3Þ � � � �ðan�1 þ knÞ

2
66664

3
77775 ð12:8Þ

Since Eq. (12.8) is in phase-variable form, the characteristic equation of the closed-
loop system can be written by inspection as

detðsI� ðA� BKÞÞ ¼ sn þ ðan�1 þ knÞsn�1 þ ðan�2 þ kn�1Þsn�2

þ � � � ða1 þ k2Þsþ ða0 þ k1Þ ¼ 0
ð12:9Þ

Notice the relationship between Eqs. (12.5) and (12.9). For plants represented in
phase-variable form, we can write by inspection the closed-loop characteristic
equation from the open-loop characteristic equation by adding the appropriate ki
to each coefficient.
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Now assume that the desired characteristic equation for proper pole place-
ment is

sn þ dn�1s
n�1 þ dn�2s

n�2 þ � � � þ d2s
2 þ d1sþ d0 ¼ 0 ð12:10Þ

where the di’s are the desired coefficients. Equating Eqs. (12.9) and (12.10), we
obtain

di ¼ ai þ kiþ1 i ¼ 0; 1; 2; . . . ; n� 1 ð12:11Þ

from which

kiþ1 ¼ di � ai ð12:12Þ

Now that we have found the denominator of the closed-loop transfer function,
let us find the numerator. For systems represented in phase-variable form, we
learned that the numerator polynomial is formed from the coefficients of the output
coupling matrix, C. Since Figures 12.3(a) and (b) are both in phase-variable form
and have the same output coupling matrix, we conclude that the numerators of their
transfer functions are the same. Let us look at a design example.

Example 12.1

Controller Design for Phase-Variable Form

PROBLEM: Given the plant

GðsÞ ¼ 20ðsþ 5Þ
sðsþ 1Þðsþ 4Þ ð12:13Þ

design the phase-variable feedback gains to yield 9.5% overshoot and a settling
time of 0.74 second.

SOLUTION: We begin by calculating the desired closed-loop characteristic equa-
tion. Using the transient response requirements, the closed-loop poles are
�5:4 � j7:2. Since the system is third-order, we must select another closed-loop
pole. The closed-loop system will have a zero at �5, the same as the open-loop
system. We could select the third closed-loop pole to cancel the closed-loop zero.
However, to demonstrate the effect of the third pole and the design process,
including the need for simulation, let us choose �5.1 as the location of the third
closed-loop pole.

Now draw the signal-flow diagram for the plant. The result is shown in
Figure 12.4(a). Next feed back all state variables to the control, u, through gains ki,
as shown in Figure 12.4(b).

Writing the closed-loop system’s state equations from Figure 12.4(b), we have

_x ¼
0 1 0

0 0 1

�k1 �ð4 þ k2Þ �ð5 þ k3Þ

2
64

3
75xþ

0

0

1

2
64
3
75r ð12:14aÞ

y ¼ ½ 100 20 0 �x ð12:14bÞ

12.2 Controller Design 669



Apago PDF Enhancer

E1C12 11/02/2010 10:37:7 Page 670

Comparing Eqs. (12.14) to Eqs. (12.3), we identify the closed-loop system
matrix as

A� BK ¼
0 1 0

0 0 1

�k1 �ð4 þ k2Þ �ð5 þ k3Þ

2
64

3
75 ð12:15Þ

To find the closed-loop system’s characteristic equation, form

detðsI� ðA� BKÞÞ ¼ s3 þ ð5 þ k3Þs2 þ ð4 þ k2Þsþ k1 ¼ 0 ð12:16Þ
This equation must match the desired characteristic equation,

s3 þ 15:9s2 þ 136:08sþ 413:1 ¼ 0 ð12:17Þ
formed from the poles �5:4 þ j7:2; �5:4 � j7:2, and �5.1, which were previously
determined.

Equating the coefficients of Eqs. (12.16) and (12.17), we obtain

k1 ¼ 413:1; k2 ¼ 132:08; k3 ¼ 10:9 ð12:18Þ

FIGURE 12.4 a. Phase-variable
representation for plant of
Example 12.1; b. plant with
state-variable feedback
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Finally, the zero term of the closed-loop transfer function is the same as the
zero term of the open-loop system, or ðsþ 5Þ.

Using Eqs. (12.14), we obtain the following state-space representation of the
closed-loop system:

_x ¼
0 1 0

0 0 1

�413:1 �136:08 �15:9

2
64

3
75 xþ

0

0

1

2
64
3
75r ð12:19aÞ

y ¼ ½ 100 20 0 �x ð12:19bÞ

The transfer function is

TðsÞ ¼ 20ðsþ 5Þ
s3 þ 15:9s2 þ 136:08sþ 413:1

ð12:20Þ

Figure 12.5, a simulation of the closed-loop system, shows 11.5% overshoot
and a settling time of 0.8 second. A redesign with the third pole canceling the zero
at �5 will yield performance equal to the requirements.

Since the steady-state response approaches 0.24 instead of unity, there is a
large steady-state error. Design techniques to reduce this error are discussed in
Section 12.8.

Students who are using MATLAB should now run ch12p1 in Appendix B.
You will learn how to use MATLAB to design a controller for phase
variables using pole placement. MATLAB will plot the step re-
sponse of the designed system. This exercise solves Example 12.1
using MATLAB.

 0
 0
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c(
t)
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FIGURE 12.5 Simulation of
closed-loop system of
Example 12.1
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Skill-Assessment Exercise 12.1

PROBLEMS: For the plant

GðsÞ ¼ 100ðsþ 10Þ
sðsþ 3Þðsþ 12Þ

represented in the state space in phase-variable form by

_x¼ Axþ Bu ¼
0 1 0

0 0 1

0 �36 �15

2
64

3
75xþ

0

0

1

2
64
3
75u

y¼ Cx ¼ 1000 100 0½ �x
design the phase-variable feedback gains to yield 5% overshoot and a peak time of
0.3 second.

ANSWER: K ¼ ½ 2094 373:1 14:97 �
The complete solution is located at www.wiley.com/college/nise.

In this section, we showed how to design feedback gains for plants represented
in phase-variable form in order to place all of the closed-loop system’s poles at
desired locations on the s-plane. On the surface, it appears that the method should
always work for any system. However, this is not the case. The conditions that must
exist in order to uniquely place the closed-loop poles where we want them is the
topic of the next section.

12.3 Controllability

Consider the parallel form shown in Figure 12.6(a). To control the pole location of
the closed-loop system, we are saying implicitly that the control signal, u, can control
the behavior of each state variable in x. If any one of the state variables cannot be
controlled by the control u, then we cannot place the poles of the system where we
desire. For example, in Figure 12.6(b), if x1 were not controllable by the control
signal and if x1 also exhibited an unstable response due to a nonzero initial condition,
there would be no way to effect a state-feedback design to stabilize x1; x1 would
perform in its own way regardless of the control signal, u. Thus, in some systems, a
state-feedback design is not possible.

We now make the following definition based upon the previous discussion:

If an input to a system can be found that takes every state variable from a desired
initial state to a desired final state, the system is said to be controllable; otherwise,
the system is uncontrollable.

Pole placement is a viable design technique only for systems that are controllable.
This section shows how to determine, a priori, whether pole placement is a viable
design technique for a controller.

TryIt 12.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to solve for
the phase-variable feedback
gains to place the poles of the
system in Skill-Assessment
Exercise 12.1 at
�3 þ j5; � 3 � j5, and �10.

A=[0 1 0
0 0 1
0 -36 -15]

B=[0;0;1]
poles=[-3+5j,...
-3-5j,-10]
K=acker(A,B,poles)
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Controllability by Inspection
We can explore controllability from another viewpoint: that of the state equation
itself. When the system matrix is diagonal, as it is for the parallel form, it is apparent
whether or not the system is controllable. For example, the state equation for
Figure 12.6(a) is

_x ¼
�a1 0 0

0 �a2 0

0 0 �a3

2
64

3
75xþ

1

1

1

2
64
3
75u ð12:21Þ

or

_x1 ¼ �a1x1 þ u ð12:22aÞ

_x2 ¼ �a2x2 þ u ð12:22bÞ

_x3 ¼ �a3x3 þ u ð12:22cÞ

u  

x1

y
1

1

1

(a)

–a3

x3

–a2

– a1

K2

u  

x1

y
1

1

(b)

–a6

x3 

x2

–a5

–a4

K3

K5

K4

K6

K1

x2

1
s

1
s

1
s

1
s

1
s

1
s

FIGURE 12.6 Comparison of
a. controllable and b. un-
controllable systems
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Since each of Eqs. (12.22) is independent and decoupled from the rest, the control u
affects each of the state variables. This is controllability from another perspective.

Now let us look at the state equations for the system of Figure 12.6(b):

_x ¼
�a4 0 0

0 �a5 0

0 0 �a6

2
64

3
75xþ

0

1

1

2
64
3
75u ð12:23Þ

or

_x1 ¼ �a4x1 ð12:24aÞ

_x2 ¼ �a5x2 þ u ð12:24bÞ

_x3 ¼ �a6x3 þ u ð12:24cÞ
From the state equations in (12.23) or (12.24), we see that state variable x1 is not
controlled by the control u. Thus, the system is said to be uncontrollable.

In summary, a system with distinct eigenvalues and a diagonal system matrix is
controllable if the input coupling matrix B does not have any rows that are zero.

The Controllability Matrix
Tests for controllability that we have so far explored cannot be used for representa-
tions of the system other than the diagonal or parallel form with distinct eigenvalues.
The problem of visualizing controllability gets more complicated if the system has
multiple poles, even though it is represented in parallel form. Further, one cannot
always determine controllability by inspection for systems that are not represented
in parallel form. In other forms, the existence of paths from the input to the state
variables is not a criterion for controllability since the equations are not decoupled.

In order to be able to determine controllability or, alternatively, to design state
feedback for a plant under any representation or choice of state variables, a matrix
can be derived that must have a particular property if all state variables are to be
controlled by the plant input, u. We now state the requirement for controllability,
including the form, property, and name of this matrix.2

An nth-order plant whose state equation is

_x ¼ Axþ Bu ð12:25Þ
is completely controllable3 if the matrix

CM ¼ ½B AB A2B � � � An�1B � ð12:26Þ

is of rank n, where CM is called the controllability matrix.4 As an example, let us
choose a system represented in parallel form with multiple roots.

2 See the work listed in the Bibliography by Ogata (1990: 699–702) for the derivation.
3Completely controllable means that all state variables are controllable. This textbook uses controllable to
mean completely controllable.
4 See Appendix G at www.wiley.com/college/nise for the definition of rank. For single-input systems,
instead of specifying rank n, we can say that CM must be nonsingular, possess an inverse, or have linearly
independent rows and columns.
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Example 12.2

Controllability via the Controllability Matrix

PROBLEM: Given the system of Figure 12.7, represented by a signal-flow diagram,
determine its controllability.

SOLUTION: The state equation for the system written from the signal-flow diagram is

_x ¼ Axþ Bu ¼
�1 1 0

0 �1 0

0 0 �2

2
64

3
75 xþ

0

1

1

2
64
3
75 u ð12:27Þ

At first it would appear that the system is not controllable because of the zero in the
Bmatrix. Remember, though, that this configuration leads to uncontrollability only
if the poles are real and distinct. In this case, we have multiple poles at �1.

The controllability matrix is

CM ¼ B AB A2B
� � ¼

0 1 �2

1 �1 1

1 �2 4

2
64

3
75 ð12:28Þ

The rank of CM equals the number of linearly independent rows or columns. The
rank can be found by finding the highest-order square submatrix that is non-
singular. The determinant of CM ¼ �1. Since the determinant is not zero, the 3 � 3
matrix is nonsingular, and the rank of CM is 3. We conclude that the system is
controllable since the rank of CM equals the system order. Thus, the poles of the
system can be placed using state-variable feedback design.

Students who are using MATLAB should now run ch12p2 in Appendix B.
You will learn how to use MATLAB to test a system for controlla-
bility. This exercise solves Example 12.2 using MATLAB.

In the previous example, we found that even though an element of the input
coupling matrix was zero, the system was controllable. If we look at Figure 12.7, we
can see why. In this figure, all of the state variables are driven by the input u.

On the other hand, if we disconnect the input at either dx1=dt; dx2=dt, or
dx3=dt, at least one state variable would not be controllable. To see the effect, let us

–1–1
–10

10

–2

1

u

1
1

10

y

x3

x1x2

1
s

1
s

1
s

FIGURE 12.7 System for Example 12.2
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disconnect the input at dx2=dt. This causes the B matrix to become

B ¼
0

0

1

2
64
3
75 ð12:29Þ

We can see that the system is now uncontrollable, since x1 and x2 are no longer controlled
by the input. This conclusion is borne out by the controllability matrix, which is now

CM ¼ B AB A2B
� � ¼

0 0 0

0 0 0

1 �2 4

2
64

3
75 ð12:30Þ

Not only is the determinant of this matrix equal to zero, but so is the determinant of
any 2 � 2 submatrix. Thus, the rank of Eq. (12.30) is 1. The system is uncontrollable
because the rank of CM is 1, which is less than the order, 3, of the system.

Skill-Assessment Exercise 12.2

PROBLEM: Determine whether the system

_x ¼ Axþ Bu ¼
�1 1 2

0 �1 5

0 3 �4

2
64

3
75 xþ

2

1

1

2
64
3
75 u

is controllable.

ANSWER: Controllable

The complete solution is located at www.wiley.com/college/nise.

In summary, then, pole-placement design through state-variable feedback is
simplified by using the phase-variable form for the plant’s state equations. However,
controllability, the ability for pole-placement design to succeed, can be visualized
best in the parallel form, where the system matrix is diagonal with distinct roots. In
any event, the controllability matrix will always tell the designer whether the
implementation is viable for state-feedback design.

The next section shows how to design state-variable feedback for systems not
represented in phase-variable form. We use the controllability matrix as a tool for
transforming a system to phase-variable form for the design of state-variable feedback.

12.4 Alternative Approaches to Controller Design

Section 12.2 showed how to design state-variable feedback to yield desired closed-
loop poles. We demonstrated this method using systems represented in phase-
variable form and saw how simple it was to calculate the feedback gains. Many
times the physics of the problem requires feedback from state variables that are not
phase variables. For these systems we have some choices for a design methodology.

TryIt 12.2

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 12.2.

A=[-1 1 2
0 -1 5
0 3 -4]

B=[2;1;1]
Cm=ctrb(A,B)
Rank=rank(Cm)
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The first method consists of matching the coefficients of detðsI� ðA� BKÞÞ
with the coefficients of the desired characteristic equation, which is the same method
we used for systems represented in phase variables. This technique, in general, leads
to difficult calculations of the feedback gains, especially for higher-order systems not
represented with phase variables. Let us illustrate this technique with an example.

Example 12.3

Controller Design by Matching Coefficients

PROBLEM: Given a plant, YðsÞ=UðsÞ ¼ 10=½ðsþ 1Þðsþ 2Þ�, design state feedback
for the plant represented in cascade form to yield a 15% overshoot with a settling
time of 0.5 second.

SOLUTION: The signal-flow diagram for the plant in cascade form is shown in
Figure 12.8(a). Figure 12.8(b) shows the system with state feedback added. Writing
the state equations from Figure 12.8(b), we have

_x ¼ �2 1
�k1 �ðk2 þ 1Þ
� �

xþ 0
1

� �
r ð12:31aÞ

y ¼ ½ 10 0 �x ð12:31bÞ
where the characteristic equation is

s2 þ ðk2 þ 3Þsþ ð2k2 þ k1 þ 2Þ ¼ 0 ð12:32Þ
Using the transient response requirements stated in the problem, we obtain the
desired characteristic equation

s2 þ 16sþ 239:5 ¼ 0 ð12:33Þ
Equating the middle coefficients of Eqs. (12.32) and (12.33), we find k2 ¼ 13.
Equating the last coefficients of these equations along with the result for k2 yields
k1 ¼ 211:5.

u
1

x2

1

x1

10
y

–1

x2

11

u

1
r

x1

10
y

–1 –2

–k2

–k1

(a)

(b)

–2

1
s

1
s

1
s

1
s

FIGURE 12.8 a. Signal-flow
graph in cascade form for
GðsÞ ¼ 10=½ðsþ 1Þðsþ 2Þ�;
b. system with state feedback
added
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The second method consists of transforming the system to phase variables,
designing the feedback gains, and transforming the designed system back to its
original state-variable representation.5 This method requires that we first develop
the transformation between a system and its representation in phase-variable form.

Assume a plant not represented in phase-variable form,

_z ¼ Azþ Bu ð12:34aÞ

y ¼ Cz ð12:34bÞ
whose controllability matrix is

CMz ¼ ½B AB A2B � � �An�1B � ð12:35Þ
Assume that the system can be transformed into the phase-variable (x) representa-
tion with the transformation

z ¼ Px ð12:36Þ

Substituting this transformation into Eqs. (12.34), we get

_x ¼ P�1APxþ P�1Bu ð12:37aÞ

y ¼ CPx ð12:37bÞ
whose controllability matrix is

CMx ¼ ½P�1B ðP�1APÞðP�1BÞ ðP�1APÞ2ðP�1BÞ � � � ðP�1APÞn�1ðP�1BÞ�
¼ ½P�1B ðP�1APÞðP�1BÞ ðP�1APÞðP�1APÞðP�1BÞ � � � ðP�1APÞ

ðP�1APÞðP�1APÞ � � � ðP�1APÞðP�1BÞ�
¼ P�1½B AB A2B � � � An�1B� ð12:38Þ

Substituting Eq. (12.35) into (12.38) and solving for P, we obtain

P ¼ CMzC
�1

Mx ð12:39Þ

Thus, the transformation matrix, P, can be found from the two controllability
matrices.

After transforming the system to phase variables, we design the feedback gains
as in Section 12.2. Hence, including both feedback and input, u ¼ �Kxxþ r, Eqs.
(12.37) becomes

_x ¼ P�1APx� P�1BKxxþ P�1Br

¼ ðP�1AP� P�1BKxÞxþ P�1Br ð12:40aÞ
y ¼ CPx ð12:40bÞ

Since this equation is in phase-variable form, the zeros of this closed-loop system are
determined from the polynomial formed from the elements of CP, as explained in
Section 12.2.

5 See the discussions of Ackermann’s formula in Franklin (1994) and Ogata (1990), listed in the
Bibliography.
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Using x ¼ P�1z, we transform Eqs. (12.40) from phase variables back to the
original representation and get

_z ¼ Az� BKxP
�1zþ Br ¼ ðA� BKxP

�1Þzþ Br ð12:41aÞ
y ¼ Cz ð12:41bÞ

Comparing Eqs. (12.41) with (12.3), the state variable feedback gain, Kz, for the
original system is

Kz ¼ KxP
�1 ð12:42Þ

The transfer function of this closed-loop system is the same as the transfer function
for Eqs. (12.40), since Eqs. (12.40) and (12.41) represent the same system. Thus, the
zeros of the closed-loop transfer function are the same as the zeros of the un-
compensated plant, based upon the development in Section 12.2. Let us demonstrate
with a design example.

Example 12.4

Controller Design by Transformation

PROBLEM: Design a state-variable feedback controller to yield a 20.8% overshoot
and a settling time of 4 seconds for a plant,

GðsÞ ¼ ðsþ 4Þ
ðsþ 1Þðsþ 2Þðsþ 5Þ ð12:43Þ

that is represented in cascade form as shown in Figure 12.9.

SOLUTION: First find the state equations and the controllability matrix. The state
equations written from Figure 12.9 are

_z ¼ Azzþ Bzu ¼
�5 1 0

0 �2 1

0 0 �1

2
64

3
75 zþ

0

0

1

2
64
3
75 u ð12:44aÞ

y ¼ Czz ¼ ½�1 1 0 �z ð12:44bÞ
from which the controllability matrix is evaluated as

CMz ¼ Bz AzBz A2
zBz

� � ¼
0 0 1

0 1 �3

1 �1 1

2
64

3
75 ð12:45Þ

Since the determinant of CMz is �1, the system is controllable.

u
z3

1

z2

1

z1

4

–1 –2 –5

y

1

1
1
s

1
s

1
s

FIGURE 12.9 Signal-flow
graph for plant of Example
12.4
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We now convert the system to phase variables by first finding the character-
istic equation and using this equation to write the phase-variable form. The
characteristic equation, detðsI�AzÞ, is

detðsI�AzÞ ¼ s3 þ 8s2 þ 17sþ 10 ¼ 0 ð12:46Þ
Using the coefficients of Eq. (12.46) and our knowledge of the phase-variable form,
we write the phase-variable representation of the system as

_x ¼ Axxþ Bxu ¼
0 1 0

0 0 1

�10 �17 �8

2
64

3
75 xþ

0

0

1

2
64
3
75 u ð12:47aÞ

y ¼ ½ 4 1 0 �x ð12:47bÞ
The output equation was written using the coefficients of the numerator of
Eq. (12.43), since the transfer function must be the same for the two representa-
tions. The controllability matrix, CMx, for the phase-variable system is

CMx ¼ Bx AxBx A2
xBx

� � ¼
0 0 1

0 1 �8

1 �8 47

2
64

3
75 ð12:48Þ

Using Eq. (12.39), we can now calculate the transformation matrix between the two
systems as

P ¼ CMzC
�1
Mx ¼

1 0 0

5 1 0

10 7 1

2
64

3
75 ð12:49Þ

We now design the controller using the phase-variable representation and then
use Eq. (12.49) to transform the design back to the original representation. For a
20.8% overshoot and a settling time of 4 seconds, a factor of the characteristic
equation of the designed closed-loop system is s2 þ 2sþ 5. Since the closed-loop zero
will be at s ¼ �4, we choose the third closed-loop pole to cancel the closed-loop zero.
Hence, the total characteristic equation of the desired closed-loop system is

DðsÞ ¼ ðsþ 4Þðs2 þ 2sþ 5Þ ¼ s3 þ 6s2 þ 13sþ 20 ¼ 0 ð12:50Þ
The state equations for the phase-variable form with state-variable feedback are

_x ¼ ðAx � BxKxÞx ¼
0 1 0

0 0 1

�ð10 þ k1xÞ �ð17 þ k2xÞ �ð8 þ k3xÞ

2
64

3
75x ð12:51aÞ

y ¼ ½ 4 1 0 �x ð12:51bÞ
The characteristic equation for Eqs. (12.51) is

detðsI� ðAx � BxKxÞÞ ¼ s3 þ ð8 þ k3xÞs2 þ ð17 þ k2xÞsþ ð10 þ k1xÞ
¼ 0

ð12:52Þ

Comparing Eq. (12.50) with (12.52), we see that

Kx ¼ ½ k1x k2x k3x � ¼ ½ 10 �4 �2 � ð12:53Þ
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Using Eqs. (12.42) and (12.49), we can transform the controller back to the original
system as

Kz ¼ KxP
�1 ¼ ½�20 10 �2 � ð12:54Þ

The final closed-loop system with state-variable feedback is shown in Figure 12.10,
with the input applied as shown.

Let us now verify our design. The state equations for the designed system
shown in Figure 12.10 with input r are

_z ¼ ðAz � BzKzÞzþ Bzr ¼
�5 1 0

0 �2 1

20 �10 1

2
64

3
75zþ

0

0

1

2
64
3
75r ð12:55aÞ

y ¼ Czz ¼ ½�1 1 0 �z ð12:55bÞ
Using Eq. (3.73) to find the closed-loop transfer function, we obtain

TðsÞ ¼ ðsþ 4Þ
s3 þ 6s2 þ 13sþ 20

¼ 1

s2 þ 2sþ 5
ð12:56Þ

The requirements for our design have been met.

Students who are using MATLAB should now run ch12p3 in Appendix B.
You will learn how to use MATLAB to design a controller for a plant
not represented in phase-variable form. You will see that MATLAB
does not require transformation to phase-variable form. This
exercise solves Example 12.4 using MATLAB.

Skill-Assessment Exercise 12.3

PROBLEM: Design a linear state-feedback controller to yield 20% overshoot and a
settling time of 2 seconds for a plant,

GðsÞ ¼ ðsþ 6Þ
ðsþ 9Þðsþ 8Þðsþ 7Þ

–1 –2

20

–10

–5

r
1

u

1 1

z3

1

z2

4

z1

y

1

2

1
s

1
s

1
s

FIGURE 12.10 Designed
system with state-variable
feedback for Example 12.4
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that is represented in state space in cascade form by

_z ¼ Azþ Bu ¼
�7 1 0

0 �8 1

0 0 �9

2
64

3
75 zþ

0

0

1

2
64
3
75 u

y ¼ Cz ¼ �1 1 0½ �z

ANSWER: Kz ¼ ½�40:23 62:24 �14 �
The complete solution is located at www.wiley.com/college/nise.

In this section, we saw how to design state-variable feedback for plants not
represented in phase-variable form. Using controllability matrices, we were able to
transform a plant to phase-variable form, design the controller, and finally transform the
controller design back to the plant’s original representation. The design of the controller
relies on the availability of the states for feedback. In the next section, we discuss the
design of state-variable feedback when some or all of the states are not available.

12.5 Observer Design

Controller design relies upon access to the state variables for feedback through
adjustable gains. This access can be provided by hardware. For example, gyros can
measure position and velocity on a space vehicle. Sometimes it is impractical to use this
hardware for reasons of cost, accuracy, or availability. For example, in powered flight of
space vehicles, inertial measuring units can be used to calculate the acceleration.
However, their alignment deteriorates with time; thus, other means of measuring
acceleration may be desirable (Rockwell International, 1984). In other applications,
some of the state variables may not be available at all, or it is too costly to measure them
or send them to the controller. If the state variables are not available because of system
configuration or cost, it is possible to estimate the states. Estimated states, rather than
actual states, are then fed to the controller. One scheme is shown in Figure 12.11(a).
An observer, sometimes called an estimator, is used to calculate state variables that are
not accessible from the plant. Here the observer is a model of the plant.

Let us look at the disadvantages of such a configuration. Assume a plant,

_x ¼ Axþ Bu ð12:57aÞ
y ¼ Cx ð12:57bÞ

and an observer,

_̂x ¼ Ax̂þ Bu ð12:58aÞ
ŷ ¼ Cx̂ ð12:58bÞ

Subtracting Eqs. (12.58) from (12.57), we obtain

_x� _̂x ¼ Aðx� x̂Þ ð12:59aÞ
y� ŷ ¼ Cðx� x̂Þ ð12:59bÞ
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Thus, the dynamics of the difference between the actual and estimated states is
unforced, and if the plant is stable, this difference, due to differences in initial state
vectors, approaches zero. However, the speed of convergence between the actual
state and the estimated state is the same as the transient response of the plant since
the characteristic equation for Eq. (12.59a) is the same as that for Eq. (12.57a).
Since the convergence is too slow, we seek a way to speed up the observer and
make its response time much faster than that of the controlled closed-loop system, so
that, effectively, the controller will receive the estimated states instantaneously.

To increase the speed of convergence between the actual and estimated states,
we use feedback, shown conceptually in Figure 12.11(b) and in more detail in
Figure 12.11(c). The error between the outputs of the plant and the observer is fed
back to the derivatives of the observer’s states. The system corrects to drive this error
to zero. With feedback we can design a desired transient response into the observer
that is much quicker than that of the plant or controlled closed-loop system.

When we implemented the controller, we found that the phase-variable or
controller canonical form yielded an easy solution for the controller gains. In
designing an observer, it is the observer canonical form that yields the easy solution
for the observer gains. Figure 12.12(a) shows an example of a third-order plant
represented in observer canonical form. In Figure 12.12(b), the plant is configured as
an observer with the addition of feedback, as previously described.

The design of the observer is separate from the design of the controller. Similar
to the design of the controller vector, K, the design of the observer consists of
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output,

y

+

Controller

u

+
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+
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FIGURE 12.11 State-feedback
design using an observer to
estimate unavailable state
variables: a. open-loop ob-
server; b. closed-loop observer;
c. exploded view of a closed-
loop observer, showing feed-
back arrangement to reduce
state-variable estimation error

12.5 Observer Design 683



Apago PDF Enhancer

E1C12 11/02/2010 10:37:10 Page 684

evaluating the constant vector, L, so that the transient response of the observer is
faster than the response of the controlled loop in order to yield a rapidly updated
estimate of the state vector. We now derive the design methodology.

We will first find the state equations for the error between the actual state
vector and the estimated state vector, ðx� x̂Þ. Then we will find the characteristic
equation for the error system and evaluate the required L to meet a rapid transient
response for the observer.

Writing the state equations of the observer from Figure 12.11(c), we have

_̂x ¼ Ax̂þ Buþ Lðy� ŷÞ ð12:60aÞ
ŷ ¼ Cx̂ ð12:60bÞ

But the state equations for the plant are

_x ¼ Axþ Bu ð12:61aÞ
y ¼ Cx ð12:61bÞ

FIGURE 12.12 Third-order observer
in observer canonical form:
a. before the addition of
feedback; b. after the addition
of feedback
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Subtracting Eqs. (12.60) from (12.61), we obtain

ð _x� _̂xÞ ¼ Aðx� x̂Þ � Lðy� ŷÞ ð12:62aÞ
ðy� ŷÞ ¼ Cðx� x̂Þ ð12:62bÞ

where x� x̂ is the error between the actual state vector and the estimated state
vector, and y� ŷ is the error between the actual output and the estimated out-put.

Substituting the output equation into the state equation, we obtain the state
equation for the error between the estimated state vector and the actual state vector:

ð _x� _̂xÞ ¼ ðA� LCÞðx� x̂Þ ð12:63aÞ
ðy� ŷÞ ¼ Cðx� x̂Þ ð12:63bÞ

Letting ex ¼ ðx� x̂Þ, we have

_ex ¼ ðA� LCÞex ð12:64aÞ

y� ŷ ¼ Cex ð12:64bÞ

Equation (12.64a) is unforced. If the eigenvalues are all negative, the estimated
state vector error, ex, will decay to zero. The design then consists of solving for the
values ofL to yield a desired characteristic equation or response for Eqs. (12.64). The
characteristic equation is found from Eqs. (12.64) to be

det½lI� ðA� LCÞ� ¼ 0 ð12:65Þ

Now we select the eigenvalues of the observer to yield stability and a desired
transient response that is faster than the controlled closed-loop response. These
eigenvalues determine a characteristic equation that we set equal to Eq. (12.65) to
solve for L.

Let us demonstrate the procedure for an nth-order plant represented in
observer canonical form. We first evaluate A� LC. The form of A, L, and C can
be derived by extrapolating the form of these matrices from a third-order plant,
which you can derive from Figure 12.12. Thus,

A� LC ¼

�an�1 1 0 0 � � � 0

�an�2 0 1 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

�a1 0 0 0 � � � 1

�a0 0 0 0 � � � 0

2
66666664

3
77777775
�

l1

l2

..

.

ln�1

ln

2
66666664

3
77777775

1 0 0 0 � � � 0½ �

¼

�ðan�1 þ l1Þ 1 0 0 � � � 0

�ðan�2 þ l2Þ 0 1 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

�ða1 þ ln�1Þ 0 0 0 � � � 1

�ða0 þ lnÞ 0 0 0 � � � 0

2
66666664

3
77777775

ð12:66Þ
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The characteristic equation for A� LC is

sn þ ðan�1 þ l1Þsn�1 þ ðan�2 þ l2Þsn�2 þ � � � þ ða1 þ ln�1Þs
þ ða0 þ lnÞ ¼ 0 ð12:67Þ

Notice the relationship between Eq. (12.67) and the characteristic equation,
detðsI�AÞ ¼ 0, for the plant, which is

sn þ an�1s
n�1 þ an�2s

n�2 þ � � � þ a1sþ a0 ¼ 0 ð12:68Þ
Thus, if desired, Eq. (12.67) can be written by inspection if the plant is represented in
observer canonical form. We now equate Eq. (12.67) with the desired closed-loop
observer characteristic equation, which is chosen on the basis of a desired transient
response. Assume the desired characteristic equation is

sn þ dn�1s
n�1 þ dn�2s

n�2 þ � � � þ d1sþ d0 ¼ 0 ð12:69Þ
We can now solve for the li’s by equating the coefficients of Eqs. (12.67) and (12.69):

li ¼ dn�i � an�i i ¼ 1; 2; . . . ; n ð12:70Þ
Let us demonstrate the design of an observer using the observer canonical form. In
subsequent sections we will show how to design the observer for other than observer
canonical form.

Example 12.5

Observer Design for Observer Canonical Form

PROBLEM: Design an observer for the plant

GðsÞ ¼ ðsþ 4Þ
ðsþ 1Þðsþ 2Þðsþ 5Þ ¼

sþ 4

s3 þ 8s2 þ 17sþ 10
ð12:71Þ

which is represented in observer canonical form. The observer will respond 10 times
faster than the controlled loop designed in Example 12.4.

SOLUTION:

1. First represent the estimated plant in observer canonical form. The result is
shown in Figure 12.13(a).

2. Now form the difference between the plant’s actual output, y, and the observer’s
estimated output, ŷ, and add the feedback paths from this difference to the
derivative of each state variable. The result is shown in Figure 12.13(b).

3. Next find the characteristic polynomial. The state equations for the estimated
plant shown in Figure 12.13(a) are

_̂x ¼ Ax̂þ Bu ¼
�8 1 0

�17 0 1

�10 0 0

2
64

3
75x̂þ

0

1

4

2
64
3
75u ð12:72aÞ

ŷ ¼ Cx̂ ¼ ½ 1 0 0 �x̂ ð12:72bÞ
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From Eqs. (12.64) and (12.66), the observer error is

_ex ¼ ðA� LCÞex ¼
�ð8 þ l1Þ 1 0

�ð17 þ l2Þ 0 1

�ð10 þ l3Þ 0 0

2
64

3
75ex ð12:73Þ

Using Eq. (12.65), we obtain the characteristic polynomial

s3 þ ð8 þ l1Þs2 þ ð17 þ l2Þsþ ð10 þ l3Þ ð12:74Þ

4. Now evaluate the desired polynomial, set the coefficients equal to those of
Eq. (12.74), and solve for the gains, li. From Eq. (12.50), the closed-loop
controlled system has dominant second-order poles at �1 � j2. To make our
observer 10 times faster, we design the observer poles to be at �10 � j20. We

1
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ŷ

–8

–17

–10

u
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FIGURE 12.13 a. Signal-flow graph of a system using observer canonical form variables; b. additional feedback to
create observer
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select the third pole to be 10 times the real part of the dominant second-order
poles, or �100. Hence, the desired characteristic polynomial is

ðsþ 100Þðs2 þ 20sþ 500Þ ¼ s3 þ 120s2 þ 2500sþ 50;000 ð12:75Þ

Equating Eqs. (12.74) and (12.75), we find l1 ¼ 112; l2 ¼ 2483, and l3 ¼ 49;990.
A simulation of the observer with an input of rðtÞ ¼ 100t is shown in

Figure 12.14. The initial conditions of the plant were all zero, and the initial
condition of x̂1 was 0.5.

Since the dominant pole of the observer is �10 � j20, the expected settling
time should be about 0.4 second. It is interesting to note the slower response in
Figure 12.14(b), where the observer gains are disconnected, and the observer is
simply a copy of the plant with a different initial condition.

Students who are using MATLAB should now run ch12p4 in Appendix B.
You will learn how to use MATLAB to design an observer using pole
placement. This exercise solves Example 12.5 using MATLAB.

FIGURE 12.14 Simulation showing
response of observer: a. closed-loop;
b. open-loop with observer gains
disconnected

0.5
0.4
0.3
0.2
0.1

0
–0.1
–0.2
–0.3
–0.4
–0.5

y,
 y

0 0.1 0.2 0.3

Time (seconds)

y

0.5
0.4
0.3
0.2
0.1

0
–0.1
–0.2
–0.3
–0.4
–0.5

y,
 y

0 0.1 0.2 0.3

y

y

(a)

Time (seconds)

(b)

ˆ

ˆ

ˆ

ŷ
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Skill-Assessment Exercise 12.4

PROBLEM: Design an observer for the plant

GðsÞ ¼ ðsþ 6Þ
ðsþ 7Þðsþ 8Þðsþ 9Þ

whose estimated plant is represented in state space in observer canonical form as

_̂x ¼ Ax̂þ Bu ¼
�24 1 0

�191 0 1

�504 0 0

2
64

3
75x̂þ

0

1

6

2
64
3
75u

ŷ ¼ Cx̂ ¼ 1 0 0½ �x̂
The observer will respond 10 times faster than the controlled loop designed in Skill-
Assessment Exercise 12.3.

ANSWER: L ¼ ½ 216 9730 383; 696 �T, where T signifies vector transpose

The complete solution is located at www.wiley.com/college/nise.

In this section, we designed an observer in observer canonical form that uses
the output of a system to estimate the state variables. In the next section, we examine
the conditions under which an observer cannot be designed.

12.6 Observability

Recall that the ability to control all of the state variables is a requirement for the
design of a controller. State-variable feedback gains cannot be designed if any state
variable is uncontrollable. Uncontrollability can be viewed best with diagonalized
systems. The signal-flow graph showed clearly that the uncontrollable state variable
was not connected to the control signal of the system.

A similar concept governs our ability to create a design for an observer.
Specifically, we are using the output of a system to deduce the state variables. If any
state variable has no effect upon the output, then we cannot evaluate this state
variable by observing the output.

The ability to observe a state variable from the output is best seen from the
diagonalized system. Figure 12.15(a) shows a system where each state variable can
be observed at the output since each is connected to the output. Figure 12.15(b) is
an example of a system where all state variables cannot be observed at the output.
Here x1 is not connected to the output and could not be estimated from a
measurement of the output. We now make the following definition based upon
the previous discussion:

If the initial-state vector, x(t0), can be found from u(t) and y(t) measured over a
finite interval of time from t0, the system is said to be observable; otherwise the
system is said to be unobservable.

TryIt 12.3

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 12.4.

A=[-24 1 0
-191 0 1
-504 0 0]

C=[l 0 0]
pos=20
Ts=2
z=(-log(pos/100))/...
(sqrt(pi^2 +...
log(pos/100)^2));
wn=4/(z*Ts);
r=roots([1,2*z*wn,...
wn^2]);
poles=10*[r’ 10*...
real(r(1))]
l=acker(A’,C’,poles)’
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Simply stated, observability is the ability to deduce the state variables from a
knowledge of the input, u(t), and the output, y(t). Pole placement for an observer is a
viable design technique only for systems that are observable. This section shows how
to determine, a priori, whether or not pole placement is a viable design technique for
an observer.

Observability by Inspection
We can also explore observability from the output equation of a diagonalized
system. The output equation for the diagonalized system of Figure 12.15(a) is

y ¼ Cx ¼ ½ 1 1 1 �x ð12:76Þ
On the other hand, the output equation for the unobservable system of Figure 12.15(b) is

y ¼ Cx ¼ ½ 0 1 1 �x ð12:77Þ
Notice that the first column of Eq. (12.77) is zero. For systems represented in parallel
form with distinct eigenvalues, if any column of the output coupling matrix is zero, the
diagonal system is not observable.

FIGURE 12.15 Comparison of
a. observable, and b. unobservable
systems
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The Observability Matrix
Again, as for controllability, systems represented in other than diagonalized form
cannot be reliably evaluated for observability by inspection. In order to determine
observability for systems under any representation or choice of state variables, a
matrix can be derived that must have a particular property if all state variables are to
be observed at the output. We now state the requirements for observability,
including the form, property, and name of this matrix.

An nth-order plant whose state and output equations are, respectively,

_x ¼ Axþ Bu ð12:78aÞ
y ¼ Cx ð12:78bÞ

is completely observable6 if the matrix

OM ¼

C

CA

..

.

CAn�1

2
66664

3
77775 ð12:79Þ

is of rank n, where OM is called the observability matrix.7

The following two examples illustrate the use of the observability matrix.

Example 12.6

Observability via the Observability Matrix

PROBLEM: Determine if the system of Figure 12.16 is observable.

SOLUTION: The state and output equations for the system are

_x ¼ Axþ Bu ¼
0 1 0

0 0 1

�4 �3 �2

2
64

3
75xþ

0

0

1

2
64
3
75u ð12:80aÞ

y ¼ Cx ¼ ½ 0 5 1 �x ð12:80bÞ

6Completely observable means that all state variables are observable. This textbook uses observable to
mean completely observable.
7 See Ogata (1990: 706–708) for a derivation.
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FIGURE 12.16 System of Example 12.6
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Thus, the observability matrix, OM, is

OM ¼
C

CA

CA2

2
64

3
75 ¼

0 5 1

�4 �3 3

�12 �13 �9

2
64

3
75 ð12:81Þ

Since the determinant of OM equals �344, OM is of full rank equal to 3. The
system is thus observable.

You might have been misled and concluded by inspection that the system is
unobservable because the state variable x1 is not fed directly to the output.
Remember that conclusions about observability by inspection are valid only for
diagonalized systems that have distinct eigenvalues.

Students who are using MATLAB should now run ch12p5 in Appendix B.
You will learn how to use MATLAB to test a system for observabil-
ity. This exercise solves Example 12.6 using MATLAB.

Example 12.7

Unobservability via the Observability Matrix

PROBLEM: Determine whether the system of Figure 12.17 is observable.

SOLUTION: The state and output equations for the system are

_x ¼ Axþ Bu ¼ 0 1

�5 �21=4

� �
xþ 0

1

� �
u ð12:82aÞ

y ¼ Cx ¼ ½ 5 4 �x ð12:82bÞ
The observability matrix, OM, for this system is

OM ¼ C

CA

� �
¼ 5 4

�20 �16

� �
ð12:83Þ

1

x2

u
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– 21
4

5
1
s

1
s

FIGURE 12.17 System of Example 12.7
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The determinant for this observability matrix equals 0. Thus, the observability
matrix does not have full rank, and the system is not observable.

Again, you might conclude by inspection that the system is observable
because all states feed the output. Remember that observability by inspection
is valid only for a diagonalized representation of a system with distinct
eigenvalues.

Skill-Assessment Exercise 12.5

PROBLEM: Determine whether the system

_x ¼ Axþ Bu ¼
�2 �1 �3

0 �2 1

�7 �8 �9

2
64

3
75xþ

2

1

2

2
64
3
75u

y ¼ Cx ¼ 4 6 8½ �x
is observable.

ANSWER: Observable

The complete solution is located at www.wiley.com/college/nise.

Now that we have discussed observability and the observability matrix, we are
ready to talk about the design of an observer for a plant not represented in observer
canonical form.

12.7 Alternative Approaches
to Observer Design

Earlier in the chapter, we discussed how to design controllers for systems not
represented in phase-variable form. One method is to match the coefficients of
det½sI� ðA� BKÞ� with the coefficients of the desired characteristic polynomial.
This method can yield difficult calculations for higher-order systems. Another
method is to transform the plant to phase-variable form, design the controller,
and transfer the design back to its original representation. The transformations were
derived from the controllability matrix.

In this section, we use a similar idea for the design of observers not re-
presented in observer canonical form. One method is to match the coefficients of
det½sI� ðA� LCÞ� with the coefficients of the desired characteristic polynomial.
Again, this method can yield difficult calculations for higher-order systems.
Another method is first to transform the plant to observer canonical form so that
the design equations are simple, then perform the design in observer canonical
form, and finally transform the design back to the original representation.

Let us pursue this second method. First we will derive the transformation
between a system representation and its representation in observer canonical form.

TryIt 12.4

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 12.5.

A = [-2 -1 -3
0 -2 1

-7 -8 -9]
C=[4 6 8]
Om=obsv(A,C)
Rank=rank(Om)
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Assume a plant not represented in observer canonical form,

_z ¼ Azþ Bu ð12:84aÞ
y ¼ Cz ð12:84bÞ

whose observability matrix is

OMz ¼

C

CA

CA2

..

.

CAn�2

CAn�1

2
6666666664

3
7777777775

ð12:85Þ

Now assume that the system can be transformed to the observer canonical
form, x, with the transformation

z ¼ Px ð12:86Þ
Substituting Eq. (12.86) into Eqs. (12.84) and premultiplying the state equation by
P�1, we find that the state equations in observer canonical form are

_x ¼ P�1APxþ P�1Bu ð12:87aÞ
y ¼ CPx ð12:87bÞ

whose observability matrix, OMx, is

OMx ¼

CP

CPðP�1APÞ
CPðP�1APÞðP�1APÞ

..

.

CPðP�1APÞðP�1APÞ � � � ðP�1APÞ

2
66666664

3
77777775
¼

C

CA

CA2

..

.

CAn�1

2
6666664

3
7777775
P ð12:88Þ

Substituting Eq. (12.85) into (12.88) and solving for P, we obtain

P ¼ O �1
Mz OMx ð12:89Þ

Thus, the transformation, P, can be found from the two observability matrices.
After transforming the plant to observer canonical form, we design the feed-

back gains, Lx, as in Section 12.5. Using the matrices from Eqs. (12.87) and the form
suggested by Eqs. (12.64), we have

_ex ¼ ðP�1AP� LxCPÞex ð12:90aÞ
y� ŷ ¼ CPex ð12:90bÞ

Since x ¼ P�1z, and x̂ ¼ P�1 ẑ, then ex ¼ x� x̂ ¼ P�1ez. Substituting ex ¼ P�1ez into
Eqs. (12.90) transforms Eqs. (12.90) back to the original representation. The result is

_ez ¼ ðA� PLxCÞez ð12:91aÞ
y� ŷ ¼ Cez ð12:91bÞ
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Comparing Eq. (12.91a) to (12.64a), we see that the observer gain vector is

Lz ¼ LPx ð12:92Þ
We now demonstrate the design of an observer for a plant not represented in

observer canonical form. The first example uses transformations to and from observer
canonical form. The second example matches coefficients without the transformation.
This method, however, can become difficult if the system order is high.

Example 12.8

Observer Design by Transformation

PROBLEM: Design an observer for the plant

GðsÞ ¼ 1

ðsþ 1Þðsþ 2Þðsþ 5Þ ð12:93Þ

represented in cascade form. The closed-loop performance of the observer is
governed by the characteristic polynomial used in Example 12.5: s3 þ 120s2þ
2500sþ 50;000.

SOLUTION: First represent the plant in its original cascade form.

_z ¼ Azþ Bu ¼
�5 1 0

0 �2 1

0 0 �1

2
64

3
75 zþ

0

0

1

2
64
3
75 u ð12:94aÞ

y ¼ Cz ¼ ½ 1 0 0 �z ð12:94bÞ
The observability matrix, OMz, is

OMz ¼
C

CA

CA2

2
64

3
75 ¼

1 0 0

�5 1 0

25 �7 1

2
64

3
75 ð12:95Þ

whose determinant equals 1. Hence, the plant is observable.
The characteristic equation for the plant is

detðsI�AÞ ¼ s3 þ 8s2 þ 17sþ 10 ¼ 0 ð12:96Þ
We can use the coefficients of this characteristic polynomial to form the observer
canonical form:

_x ¼ Axxþ Bxu ð12:97aÞ
y ¼ Cxx ð12:97bÞ

where

Ax ¼
�8 1 0

�17 0 1

�10 0 0

2
64

3
75; Cx ¼ 1 0 0½ � ð12:98Þ

12.7 Alternative Approaches to Observer Design 695



Apago PDF Enhancer

E1C12 11/02/2010 10:37:13 Page 696

The observability matrix for the observer canonical form is

OMx ¼
Cx

CxAx

CxA
2
x

2
64

3
75 ¼

1 0 0

�8 1 0

47 �8 1

2
64

3
75 ð12:99Þ

We now design the observer for the observer canonical form. First form
ðAx � LxCxÞ,

Ax � LxCx ¼
�8 1 0

�17 0 1

�10 0 0

2
64

3
75�

l1

l2

l3

2
64

3
75 1 0 0½ � ¼

�ð8 þ l1Þ 1 0

�ð17 þ l2Þ 0 1

�ð10 þ l3Þ 0 0

2
64

3
75

ð12:100Þ

whose characteristic polynomial is

det½sI� ðAx � LxCxÞ� ¼ s3 þ ð8 þ l1Þs2 þ ð17 þ l2Þsþ ð10 þ l3Þ ð12:101Þ

Equating this polynomial to the desired closed-loop observer characteristic
equation, s3 þ 120s2 þ 2500sþ 50;000, we find

Lx ¼
112

2483

49;990

2
64

3
75 ð12:102Þ

Now transform the design back to the original representation. Using
Eq. (12.89), the transformation matrix is

P ¼ O �1
Mz OMx ¼

1 0 0

�3 1 0

1 �1 1

2
64

3
75 ð12:103Þ

Transforming Lx to the original representation, we obtain

Lz ¼ PLx ¼
112

2147

47;619

2
64

3
75 ð12:104Þ

The final configuration is shown in Figure 12.18.
A simulation of the observer is shown in Figure 12.19(a). To demonstrate the

effect of the observer design, Figure 12.19(b) shows the reduced speed if the
observer is simply a copy of the plant and all observer feedback paths are
disconnected.

Students who are using MATLAB should now run ch12p6 in Appendix B.
You will learn how to use MATLAB to design an observer for a plant
not represented in observer canonical form. You will see that
MATLAB does not require transformation to observer canonical
form. This exercise solves Example 12.8 using MATLAB.
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Example 12.9

Observer Design by Matching Coefficients

PROBLEM: A time-scaled model for the body’s blood glucose level is shown in Eq.
(12.105). The output is the deviation in glucose concentration from its mean value
in mg/100 ml, and the input is the intravenous glucose injection rate in g/kg/hr
(Milhorn, 1966).

GðsÞ ¼ 407ðsþ 0:916Þ
ðsþ 1:27Þðsþ 2:69Þ ð12:105Þ

Design an observer for the phase variables with a transient response described by
z ¼ 0:7 and vn ¼ 100.

SOLUTION: We can first model the plant in phase-variable form. The result is
shown in Figure 12.20(a).

For the plant,

A ¼ 0 1

�3:42 �3:96

� �
; C ¼ 372:81 407½ � ð12:106Þ

FIGURE 12.20 a. Plant;
b. designed observer for
Example 12.9
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Calculation of the observability matrix, OM ¼ ½C CA �T , shows that the plant is
observable and we can proceed with the design. Next find the characteristic
equation of the observer. First we have

A� LC ¼ 0 1

�3:42 �3:96

" #
� l1

l2

" #
372:81 407½ �

¼ �372:81l1 ð1 � 407l1Þ
�ð3:42 þ 372:81l2Þ �ð3:96 þ 407l2Þ

" #

ð12:107Þ

Now evaluate det½lI� ðA� LCÞ� ¼ 0 in order to obtain the characteristic equation:

det lI� ðA� LCÞ½ � ¼ det
ðlþ 372:81l1Þ �ð1 � 407l1Þ

ð3:42 þ 372:81l2Þ ðlþ 3:96 þ 407l2Þ

� �

¼ l2 þ ð3:96 þ 372:81l1 þ 407l2Þlþ ð3:42 þ 84:39l1 þ 372:81l2Þ
¼ 0

ð12:108Þ
From the problem statement, we want z ¼ 0:7 and vn ¼ 100. Thus,

l2 þ 140lþ 10;000 ¼ 0 ð12:109Þ
Comparing the coefficients of Eqs. (12.108) and (12.109), we find the values l1 and
l2 to be �38.397 and 35.506, respectively. Using Eq. (12.60), where

A ¼ 0 1

�3:42 �3:96

" #
; B ¼ 0

1

" #
; C ¼ 372:81 407½ �;

L ¼ �38:397

35:506

" #

ð12:110Þ
the observer is implemented and shown in Figure 12.20(b).

Skill-Assessment Exercise 12.6

PROBLEM: Design an observer for the plant

GðsÞ ¼ 1

ðsþ 7Þðsþ 8Þðsþ 9Þ
whose estimated plant is represented in state space in cascade form as

_̂z ¼ Aẑþ Bu ¼
�7 1 0

0 �8 1

0 0 �9

2
64

3
75ẑþ

0

0

1

2
64
3
75u

ŷ ¼ Cx̂ ¼ 1 0 0½ �ẑ
The closed-loop step response of the observer is to have 10% overshoot with a 0.1
second settling time.
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ANSWER:

Lz ¼
456

28;640

1:54 � 106

2
64

3
75

The complete solution is located at www.wiley.com/college/nise.

Now that we have explored transient response design using state-space
techniques, let us turn to the design of steady-state error characteristics.

12.8 Steady-State Error Design via Integral Control

In Section 7.8, we discussed how to analyze systems represented in state space for
steady-state error. In this section, we discuss how to design systems represented in
state space for steady-state error.

Consider Figure 12.21. The previously designed controller discussed in Section
12.2 is shown inside the dashed box. A feedback path from the output has been
added to form the error, e, which is fed forward to the controlled plant via an
integrator. The integrator increases the system type and reduces the previous finite
error to zero. We will now derive the form of the state equations for the system of
Figure 12.21 and then use that form to design a controller. Thus, we will be able to
design a system for zero steady-state error for a step input as well as design the
desired transient response.

An additional state variable, xN, has been added at the output of the leftmost
integrator. The error is the derivative of this variable. Now, from Figure 12.21,

_xN ¼ r � Cx ð12:111Þ
Writing the state equations from Figure 12.21, we have

_x ¼ Axþ Bu ð12:112aÞ
_xN ¼ �Cxþ r ð12:112bÞ
y ¼ Cx ð12:112cÞ

FIGURE 12.21 Integral control
for steady-state error design
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Eqs. (12.112) can be written as augmented vectors and matrices. Hence,

_x

_xN

� �
¼ A 0

�C 0

� �
x

xN

� �
þ B

0

� �
uþ 0

1

� �
r ð12:113aÞ

y ¼ C 0½ � x
xN

� �
ð12:113bÞ

But

u ¼ �KxþKexN ¼ � K �Ke½ � x
xN

� �
ð12:114Þ

Substituting Eq. (12.114) into (12.113a) and simplifying, we obtain

_x
_xN

� �
¼ ðA� BKÞ BKe

�C 0

� �
x
xN

� �
þ 0

1

� �
r ð12:115aÞ

y ¼ C 0½ � x
xN

� �
ð12:115bÞ

Thus, the system type has been increased, and we can use the characteristic equation
associated with Eq. (12.115a) to design K and Ke to yield the desired transient
response. Realize, we now have an additional pole to place. The effect on the
transient response of any closed-loop zeros in the final design must also be taken into
consideration. One possible assumption is that the closed-loop zeros will be the same
as those of the open-loop plant. This assumption, which of course must be checked,
suggests placing higher-order poles at the closed-loop zero locations. Let us dem-
onstrate with an example.

Example 12.10

Design of Integral Control

PROBLEM: Consider the plant of Eqs. (12.116):

_x ¼ 0 1

�3 �5

� �
xþ 0

1

� �
u ð12:116aÞ

y ¼ ½ 1 0 �x ð12:116bÞ
a. Design a controller without integral control to yield a 10% overshoot and a

settling time of 0.5 second. Evaluate the steady-state error for a unit step
input.

b. Repeat the design of (a) using integral control. Evaluate the steady-state
error for a unit step input.

SOLUTION:

a. Using the requirements for settling time and percent overshoot, we find that
the desired characteristic polynomial is

s2 þ 16sþ 183:1 ð12:117Þ
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Since the plant is represented in phase-variable form, the characteristic polyno-
mial for the controlled plant with state-variable feedback is

s2 þ ð5 þ k2Þsþ ð3 þ k1Þ ð12:118Þ
Equating the coefficients of Eqs. (12.117) and (12.118), we have

K ¼ ½ k1 k2 � ¼ ½ 180:1 11 � ð12:119Þ
From Eqs. (12.3), the controlled plant with state-variable feedback represented in
phase-variable form is

_x ¼ ðA� BKÞxþ Br ¼ 0 1

�183:1 �16

� �
xþ 0

1

� �
r ð12:120aÞ

y ¼ Cx ¼ ½ 1 0 �x ð12:120bÞ
Using Eq. (7.96), we find that the steady-state error for a step input is

eð1Þ ¼ 1 þ CðA� BKÞ�1B

¼ 1 þ 1 0½ � 0 1

�183:1 �16

� ��1 0

1

� �

¼ 0:995

ð12:121Þ

b. We now use Eqs. (12.115) to represent the integral-controlled plant as
follows:

_x1

_x2

_xN

2
64

3
75¼

�
0 1

�3 �5

� �
� 0

1

� �
k1 k2½ �

�
0

1

� �
Ke

� 1 0½ � 0

2
64

3
75

x1

x2

xN

2
64

3
75þ

0

0

1

2
64
3
75r

¼
0 1 0

�ð3 þ k1Þ �ð5 þ k2Þ Ke

�1 0 0

2
64

3
75

x1

x2

xN

2
64

3
75þ

0

0

1

2
64
3
75r ð12:122aÞ

y ¼ 1 0 0½ �
x1

x2

xN

2
64

3
75 ð12:122bÞ

Using Eq. (3.73) and the plant of Eqs. (12.116), we find that the transfer
function of the plant is GðsÞ ¼ 1=ðs2 þ 5sþ 3Þ. The desired characteristic polyno-
mial for the closed-loop integral-controlled system is shown in Eq. (12.117). Since
the plant has no zeros, we assume no zeros for the closed-loop system and augment
Eq. (12.117) with a third pole, ðsþ 100Þ, which has a real part greater than five
times that of the desired dominant second-order poles. The desired third-order
closed-loop system characteristic polynomial is

ðsþ 100Þðs2 þ 16sþ 183:1Þ ¼ s3 þ 116s2 þ 1783:1sþ 18,310 ð12:123Þ
The characteristic polynomial for the system of Eqs. (12.112) is

s3 þ ð5 þ k2Þs2 þ ð3 þ k1ÞsþKe ð12:124Þ
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Matching coefficients from Eqs. (12.123) and (12.124), we obtain

k1 ¼ 1780:1 ð12:125aÞ
k2 ¼ 111 ð12:125bÞ
ke ¼ 18,310 ð12:125cÞ

Substituting these values into Eqs. (12.122) yields this closed-loop integral-
controlled system:

_x1

_x2

_xN

2
64

3
75 ¼

0 1 0

�1783:1 �116 18;310

�1 0 0

2
64

3
75

x1

x2

xN

2
64

3
75þ

0

0

1

2
64
3
75r ð12:126aÞ

y ¼ 1 0 0½ �
x1

x2

xN

2
4

3
5 ð12:126bÞ

In order to check our assumption for the zero, we now apply Eq. (3.73) to
Eqs. (12.126) and find the closed-loop transfer function to be

TðsÞ ¼ 18,310

s3 þ 116s2 þ 1783:1sþ 18,310
ð12:127Þ

Since the transfer function matches our design, we have the desired transient
response.

Now let us find the steady-state error for a unit step input. Applying
Eq. (7.96) to Eqs. (12.126), we obtain

eð1Þ ¼ 1 þ 1 0 0½ �
0 1 0

�1783:1 �116 18;310

�1 0 0

2
64

3
75
�1 0

0

1

2
64
3
75 ¼ 0 ð12:128Þ

Thus, the system behaves like a Type 1 system.

Skill-Assessment Exercise 12.7

PROBLEM: Design an integral controller for the plant

_x ¼ 0 1

�7 �9

" #
xþ 0

1

" #
u

y ¼ 4 1½ �x
to yield a step response with 10% overshoot, a peak time of 2 seconds, and zero
steady-state error.

ANSWER: K ¼ ½ 2:21 �2:7 �; Ke ¼ 3:79

The complete solution is located at www.wiley.com/college/nise.
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Now that we have designed controllers and observers for transient response
and steady-state error, we summarize the chapter with a case study demonstrating
the design process.

Case Study

Antenna Control: Design of Controller and Observer

In this case study, we use our ongoing antenna azimuth position control system to
demonstrate the combined design of a controller and an observer. We will assume
that the states are not available and must be estimated from the output. The block
diagram of the original system is shown on the front endpapers, Configuration 1.
Arbitrarily setting the preamplifier gain to 200 and removing the existing feedback,
the forward transfer function is simplified to that shown in Figure 12.22.

The case study will specify a transient response for the system and a faster
transient response for the observer. The final design configuration will consist of
the plant, the observer, and the controller, as shown conceptually in Figure 12.23.
The design of the observer and the controller will be separate.

C

A

x x
∫

r = 0 +

+
B

+

u

B

Plant

A

x x
∫

Observer

+ +

–K

C
y +

ye

Controller

+

+

–ˆu yˆ

L

ˆ

FIGURE 12.23 Conceptual state-space design configuration, showing plant, observer, and
controller

1325
s(s + 1.71)(s + 100)

U(s) = E(s) Y(s) =   o(s)θ

FIGURE 12.22 Simplified block diagram of antenna control system shown on the front
endpapers (Configuration 1) with K ¼ 200
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PROBLEM: Using the simplified block diagram of the plant for the antenna
azimuth position control system shown in Figure 12.22, design a controller to yield
a 10% overshoot and a settling time of 1 second. Place the third pole 10 times as
far from the imaginary axis as the second-order dominant pair.

Assume that the state variables of the plant are not accessible and design an
observer to estimate the states. The desired transient response for the observer is a
10% overshoot and a natural frequency 10 times as great as the system response
above. As in the case of the controller, place the third pole 10 times as far from the
imaginary axis as the observer’s dominant second-order pair.

SOLUTION: Controller Design: We first design the controller by finding the desired
characteristic equation. A 10% overshoot and a settling time of 1 second yield
z ¼ 0:591 and vn ¼ 6:77. Thus, the characteristic equation for the dominant poles is
s2 þ 8sþ 45:8 ¼ 0, where the dominant poles are located at �4 � j5:46. The third
pole will be 10 times as far from the imaginary axis, or at �40. Hence, the desired
characteristic equation for the closed-loop system is

ðs2 þ 8sþ 45:8Þðsþ 40Þ ¼ s3 þ 48s2 þ 365:8sþ 1832 ¼ 0 ð12:129Þ
Next we find the actual characteristic equation of the closed-loop system. The

first step is to model the closed-loop system in state space and then find its
characteristic equation. From Figure 12.22, the transfer function of the plant is

GðsÞ ¼ 1325

sðsþ 1:71Þðsþ 100Þ ¼
1325

sðs2 þ 101:71sþ 171Þ ð12:130Þ

Using phase variables, this transfer function is converted to the signal-flow graph
shown in Figure 12.24, and the state equations are written as follows:

_x ¼
0 1 0

0 0 1

0 �171 �101:71

2
64

3
75xþ

0

0

1

2
64
3
75u ¼ Axþ Bu ð12:131aÞ

y ¼ ½ 1325 0 0 �x ¼ Cx ð12:131bÞ
We now pause in our design to evaluate the controllability of the system. The

controllability matrix, CM, is

CM ¼ B AB A2B
� � 0 0 1

0 1 �101:71

1 �101:71 10; 173:92

2
64

3
75 ð12:132Þ

The determinant of CM is �1; thus, the system is controllable.

u
1

x3 x2 x1

1325
y

–101.71

–171

1
s

1
s

1
s

FIGURE 12.24 Signal-flow graph for
GðsÞ ¼ 1325=½sðs2 þ 101:71sþ 171Þ�
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Continuing with the design of the controller, we show the controller’s configu-
ration with the feedback from all state variables in Figure 12.25. We now find the
characteristic equation of the system of Figure 12.25. From Eq. (12.7) and Eq.
(12.131a), the system matrix, A� BK, is

A� BK ¼
0 1 0

0 0 1

�k1 �ð171 þ k2Þ �ð101:71 þ k3Þ

2
64

3
75 ð12:133Þ

Thus, the closed-loop system’s characteristic equation is

det½sI� ðA� BKÞ� ¼ s3 þ ð101:71 þ k3Þs2 þ ð171 þ k2Þsþ k1 ¼ 0 ð12:134Þ
Matching the coefficients of Eq. (12.129) with those of Eq. (12.134), we evaluate
the ki’s as follows:

k1 ¼ 1832 ð12:135aÞ
k2 ¼ 194:8 ð12:135bÞ
k3 ¼ �53:71 ð12:135cÞ

Observer Design: Before designing the observer, we test the system for observability.
Using the A and C matrices from Eqs. (12.131), the observability matrix, OM, is

OM ¼
C

CA

CA2

2
64

3
75 ¼

1325 0 0

0 1325 0

0 0 1325

2
64

3
75 ð12:136Þ

The determinant ofOM is 13253. Thus, OM is of rank 3, and the system is observable.
We now proceed to design the observer. Since the order of the system is not high, we

will design the observer directly without first converting to observer canonical form.
From Eq. (12.64a) we need first to findA� LC.A andC from Eqs. (12.131) along with

L ¼
l1
l2
l3

2
4

3
5 ð12:137Þ

u
1

x3 x2 x1

1325
y

–101.71

–171

–k1

–k2

–k3

1
s

1
s

1
s

FIGURE 12.25 Plant with state-variable feedback for controller design
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are used to evaluate A� LC as follows:

A� LC ¼
�1325l1 1 0

�1325l2 0 1

�1325l3 �171 �101:71

2
64

3
75 ð12:138Þ

The characteristic equation for the observer is now evaluated as

det½lI� ðA� LCÞ� ¼ l3 þ ð1325l1 þ 101:71Þl2

þ ð134;800l1 þ 1325l2 þ 171Þl
þ ð226;600l1 þ 134;800l2 þ 1325l3Þ

¼ 0 ð12:139Þ
From the problem statement, the poles of the observer are to be placed to

yield a 10% overshoot and a natural frequency 10 times that of the system’s
dominant pair of poles. Thus, the observer’s dominant poles yield ½s2 þ ð2 � 0:591
� 67:7Þsþ 67:72� ¼ ðs2 þ 80sþ 4583Þ. The real part of the roots of this polynomial
is �40. The third pole is then placed 10 times farther from the imaginary axis at
�400. The composite characteristic equation for the observer is

ðs2 þ 80sþ 4583Þðsþ 400Þ ¼ s3 þ 480s2 þ 36,580sþ 1,833,000 ¼ 0 ð12:140Þ
Matching coefficients from Eqs. (12.139) and (12.140), we solve for the observer
gains:

l1 ¼ 0:286 ð12:141aÞ
l2 ¼ �1:57 ð12:141bÞ
l3 ¼ 1494 ð12:141cÞ

Figure 12.26, which follows the general configuration of Figure 12.23, shows the
completed design, including the controller and the observer.

Case Study 707
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azimuth position control
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and observer



Apago PDF Enhancer

E1C12 11/02/2010 10:37:16 Page 708

The results of the design are shown in Figure 12.27. Figure 12.27(a) shows the
impulse response of the closed-loop system without any difference between the
plant and its modeling as an observer. The undershoot and settling time approxi-
mately meet the requirements set forth in the problem statement of 10% and
1 second, respectively. In Figure 12.27(b), we see the response designed into
the observer. An initial condition of 0.006 was given to x1 in the plant to make
the modeling of the plant and observer different. Notice that the observer’s
response follows the plant’s response by the time 0.06 second is reached.

CHALLENGE: You are now given a case study to test your knowledge of this
chapter’s objectives: You are given the antenna azimuth position control system
shown on the front endpapers, Configuration 3. If the preamplifier gain K ¼ 20, do
the following:

a. Design a controller to yield 15% overshoot and a settling time of 2 seconds.
Place the third pole 10 times as far from the imaginary axis as the second-order
dominant pole pair. Use physical variables as follows: power amplifier output,
motor angular velocity, and motor displacement.

b. Redraw the schematic shown on the front endpapers, showing a tachometer that
yields rate feedback along with any added gains or attenuators required to
implement the state-variable feedback gains.

FIGURE 12.27 Designed response
of antenna azimuth position
control system: a. impulse
response—plant and observer
with the same initial conditions,
x1ð0Þ ¼ x̂1ð0Þ ¼ 0; b. portion of
impulse response—plant and
observer with different initial
conditions, x̂1ð0Þ ¼ 0:006 for the
plant, x̂1ð0Þ ¼ 0 for the observer
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c. Assume that the tachometer is not available to provide rate feedback. Design an
observer to estimate the physical variables’ states. The observer will respond
with 10% overshoot and a natural frequency 10 times as great as the system
response. Place the observer’s third pole 10 times as far from the imaginary axis
as the observer’s dominant second-order pole pair.

d. Redraw the schematic on the front endpapers, showing the implementation of
the controller and the observer.

e. Repeat Parts a and c using MATLAB.

Summary

This chapter has followed the path established by Chapters 9 and 11—control system
design. Chapter 9 used root locus techniques to design a control system with a
desired transient response. Sinusoidal frequency response techniques for design
were covered in Chapter 11, and in this chapter we used state-space design
techniques.

State-space design consists of specifying the system’s desired pole locations
and then designing a controller consisting of state-variable feedback gains to meet
these requirements. If the state variables are not available, an observer is designed to
emulate the plant and provide estimated state variables.

Controller design consists of feeding back the state variables to the input, u,
of the system through specified gains. The values of these gains are found
by matching the coefficients of the system’s characteristic equation with the
coefficients of the desired characteristic equation. In some cases the control
signal, u, cannot affect one or more state variables. We call such a system
uncontrollable. For this system, a total design is not possible. Using the controlla-
bility matrix, a designer can tell whether or not a system is controllable prior to
the design.

Observer design consists of feeding back the error between the actual output
and the estimated output. This error is fed back through specified gains to the
derivatives of the estimated state variables. The values of these gains are also found
by matching the coefficients of the observer’s characteristic equation with the
coefficients of the desired characteristic equation. The response of the observer
is designed to be faster than that of the controller, so the estimated state variables
effectively appear instantaneously at the controller. For some systems, the state
variables cannot be deduced from the output of the system, as is required by the
observer. We call such systems unobservable. Using the observability matrix, the
designer can tell whether or not a system is observable. Observers can be designed
only for observable systems.

Finally, we discussed ways of improving the steady-state error performance of
systems represented in state space. The addition of an integration before the
controlled plant yields improvement in the steady-state error. In this chapter,
this additional integration was incorporated into the controller design.

Three advantages of state-space design are apparent. First, in contrast to the
root locus method, all pole locations can be specified to ensure a negligible effect of
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the nondominant poles upon the transient response. With the root locus, we were
forced to justify an assumption that the nondominant poles did not appreciably
affect the transient response. We were not always able to do so. Second, with the use
of an observer, we are no longer forced to acquire the actual system variables for
feedback. The advantage here is that sometimes the variables cannot be physically
accessed, or it may be too expensive to provide that access. Finally, the methods
shown lend themselves to design automation using the digital computer.

A disadvantage of the design methods covered in this chapter is the designer’s
inability to design the location of open- or closed-loop zeros that may affect the
transient response. In root locus or frequency response design, the zeros of the lag or
lead compensator can be specified. Another disadvantage of state-space methods
concerns the designer’s ability to relate all pole locations to the desired response; this
relationship is not always apparent. Also, once the design is completed, we may not
be satisfied with the sensitivity to parameter changes.

Finally, as previously discussed, state-space techniques do not satisfy our
intuition as much as root locus techniques, where the effect of parameter changes
can be immediately seen as changes in closed-loop pole locations.

In the next chapter we return to the frequency domain and design digital
systems using gain adjustment and cascade compensation.

Review Questions

1. Briefly describe an advantage that state-space techniques have over root locus
techniques in the placement of closed-loop poles for transient response design.

2. Briefly describe the design procedure for a controller.

3. Different signal-flow graphs can represent the same system. Which form facili-
tates the calculation of the variable gains during controller design?

4. In order to effect a complete controller design, a system must be controllable.
Describe the physical meaning of controllability.

5. Under what conditions can inspection of the signal-flow graph of a system yield
immediate determination of controllability?

6. In order to determine controllability mathematically, the controllability matrix
is formed, and its rank evaluated. What is the final step in determining
controllability if the controllability matrix is a square matrix?

7. What is an observer?

8. Under what conditions would you use an observer in your state-space design of a
control system?

9. Briefly describe the configuration of an observer.

10. What plant representation lends itself to easier design of an observer?

11. Briefly describe the design technique for an observer, given the configuration
you described in Question 9.

12. Compare the major difference in the transient response of an observer to that of
a controller. Why does this difference exist?

13. From what equation do we find the characteristic equation of the controller-
compensated system?

14. From what equation do we find the characteristic equation of the observer?
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15. In order to effect a complete observer design, a system must be observable.
Describe the physical meaning of observability.

16. Under what conditions can inspection of the signal-flow graph of a system yield
immediate determination of observability?

17. In order to determine observability mathematically, the observability matrix is
formed and its rank evaluated. What is the final step in determining observ-
ability if the observability matrix is a square matrix?

Problems

1. Consider the following open-loop transfer func-
tions, where GðsÞ ¼ YðsÞ=UðsÞ, Y(s) is the Laplace
transform of the output, and U(s) is the Laplace
transform of the input control signal:

i. GðsÞ ¼ ðsþ 3Þ
ðsþ 4Þ2

ii. GðsÞ ¼ s

ðsþ 5Þðsþ 7Þ
iii.GðsÞ ¼ 20sðsþ 7Þ

ðsþ 3Þðsþ 7Þðsþ 9Þ
iv. GðsÞ ¼ 30ðsþ 2Þðsþ 3Þ

ðsþ 4Þðsþ 5Þðsþ 6Þ
v. GðsÞ ¼ s2 þ 8sþ 15

ðs2 þ 4sþ 10Þðs2 þ 3sþ 12Þ
For each of these transfer functions, do the follow-
ing: [Section: 12.2]

a. Draw the signal-flow graph in phase-variable
form.

b. Add state-variable feedback to the signal-flow
graph.

c. For each closed-loop signal-flow graph, write the
state equations.

d. Write, by inspection, the closed-loop transfer
function, T(s), for your closed-loop signal-flow
graphs.

e. Verify your answers for T(s) by finding the
closed-loop transfer functions from the state
equations and Eq. (3.73).

2. The following open-loop transfer
functions can be represented by
signal-flow graphs in cascade form.

i. GðsÞ ¼ 30ðsþ 2Þðsþ 7Þ
sðsþ 3Þðsþ 5Þ

ii. GðsÞ ¼ 5ðs2 þ 3sþ 7Þ
ðsþ 2Þðs2 þ 2sþ 10Þ

For each, do the following: [Section: 12.4]

a. Draw the signal-flow graph and show the state-
variable feedback.

b. Find the closed-loop transfer function with state-
variable feedback.

3. The following open-loop transfer functions can be
represented by signal-flow graphs in parallel form.

i. GðsÞ ¼ 50ðs2 þ 7sþ 25Þ
sðsþ 10Þðsþ 20Þ

ii. GðsÞ ¼ 50ðsþ 3Þðsþ 4Þ
ðsþ 5Þðsþ 6Þðsþ 7Þ

For each, do the following: [Section: 12.4]

a. Draw the signal-flow graph and show the state-
variable feedback.

b. Find the closed-loop transfer function with state-
variable feedback.

4. Given the following open-loop plant, [Section: 12.2]

GðsÞ ¼ 20

ðsþ 2Þðsþ 4Þðsþ 8Þ
design a controller to yield a 15% overshoot and a
settling time of 0.75 second. Place the third pole 10
times as far from the imaginary axis as the dominant
pole pair. Use the phase variables for state-variable
feedback.

5. Section 12.2 showed that controller design is easier
to implement if the uncompensated system is rep-
resented in phase-variable form with its typical
lower companion matrix. We alluded to the fact
that the design can just as easily progress using the
controller canonical form with its upper companion
matrix. [Section: 12.2]
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a. Redo the general controller design covered in
Section 12.2, assuming that the plant is repre-
sented in controller canonical form rather than
phase-variable form.

b. Apply your derivation to Example 12.1 if the
uncompensated plant is represented in controller
canonical form.

6. Given the following open-loop plant:
[Section: 12.2]

GðsÞ ¼ 100ðsþ 2Þðsþ 20Þ
ðsþ 1Þðsþ 3Þðsþ 4Þ

design a controller to yield 15% overshoot with a
peak time of 0.5 second. Use the controller canoni-
cal form for state-variable feedback.

7. Given the following open-loop plant: [Section: 12.2]

GðsÞ ¼ 20ðsþ 2Þ
sðsþ 5Þðsþ 7Þ

design a controller to yield a 10% overshoot and a
settling time of 2 seconds. Place the third pole 10 times
asfarfromtheimaginaryaxisasthedominantpolepair.
Use the phase variables for state-variable feedback.

8. Repeat Problem 4 assuming that the plant is repre-
sented in the cascade form. Do not convert to phase-
variable form. [Section: 12.4]

9. Repeat Problem 7 assuming that the plant is repre-
sented in the parallel form. Do not convert to phase-
variable form. [Section: 12.4]

10. Given the plant shown in Figure P12.1,
what relationship exists between b1 and
b2 to make the system uncontrollable?
[Section: 12.3]

11. For each of the plants represented by signal-
flow graphs in Figure P12.2, determine the con-
trollability. If the controllability can be determined
by inspection, state that it can and then verify your
conclusions using the controllability matrix.
[Section: 12.3]

12. Use MATLAB to determine the
controllabilityofthesystems
of Figure P12.2(d) and (f).

13. In Section 12.4, we discussed how to design a con-
troller for systems not represented in phase-variable
form with its typical lower companion matrix. We
described how to convert the system to phase-
variable form, design the controller, and convert
back to the original representation. This technique
can be applied just as easily if the original represen-
tation is converted to controller canonical form with
its typical upper companion matrix. Redo Example
12.4 in the text by designing the controller after
converting the uncompensated plant to controller
canonical form. [Section: 12.4]

14. Consider the following transfer function:

GðsÞ ¼ ðsþ 6Þ
ðsþ 3Þðsþ 8Þðsþ 10Þ

If the system is represented in cascade form, as
shown in Figure P12.3, design a controller to yield
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a closed-loop response of 10% overshoot with a
settling time of 1 second. Design the controller
by first transforming the plant to phase variables.
[Section: 12.4]

15. Use MATLAB to design the
controller gains for the
system given in Problem 14.

16. Repeat Problem 14 assuming that the plant is rep-
resented in parallel form. [Section: 12.4]

17. The open-loop system of Problem 14
is represented as shown in Figure P12.4.
If the output of each block
is assigned to be a state variable,
design the controller gains for feedback from these
state variables. [Section: 12.4]
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18. If an open-loop plant,

GðsÞ ¼ 100

sðsþ 5Þðsþ 9Þ
is represented in parallel form, design a controller
to yield a closed-loop response of 15% overshoot
and a peak time of 0.2 second. Design the controller
by first transforming the plant to controller canoni-
cal form. [Section: 12.4]

19. For a specific individual, the
lineartime-invariantmodelof
the hypothalamic-pituitary-
adrenal axis of the endocrine system with
five state variables has been found to be
(Kyrylov, 2005)

_x1

_x2

_x3

_x4

_x5

2
6666664

3
7777775
¼

�0:014 0 �1:4 0 0

0:023 �0:023 �0:023 0 0

0:134 0:67 �0:67 0:38 0:003264

0 0 0:06 �0:06 0

0 0 0:0017 0 �0:001

2
6666664

3
7777775

�

x1

x2

x3

x4

x5

2
6666664

3
7777775
þ

1

0

0

0

0

2
6666664

3
7777775
d0

The state-variable definitions were
given in Problem 25, Chapter 3.

a. Use MATLAB to determine if the system
is controllable.

b. Use MATLAB to express the matrices A
and B in phase-variable form.

20. Consider the plant

GðsÞ ¼ 1

sðsþ 3Þðsþ 7Þ
whose state variables are not available. Design an
observer for the observer canonical variables to
yield a transient response described by z ¼ 0:4
and vn ¼ 75. Place the third pole 10 times farther

from the imaginary axis than the dominant poles.
[Section: 12.5]

21. Design an observer for the plant

GðsÞ ¼ 10

ðsþ 3Þðsþ 7Þðsþ 15Þ
operating with 10% overshoot and 2 seconds peak
time. Design the observer to respond 10 times as fast
as the plant. Place the observer third pole 20 times
as far from the imaginary axis as the observer
dominant poles. Assume the plant is represented
in observer canonical form. [Section: 12.5]

22. Repeat Problem 20 assuming that the plant is rep-
resented in phase-variable form. Do not convert to
observer canonical form. [Section: 12.7]

23. Consider the plant

GðsÞ ¼ ðsþ 2Þ
ðsþ 5Þðsþ 9Þ

whose phase variables are not available. Design an
observer for the phase variables with a transient
response described by z ¼ 0:6 and vn ¼ 120. Do not
convert to observer canonical form. [Section: 12.7]

24. Determine whether or not each of the systems
shown in Figure P12.2 is observable. [Section: 12.6]

25. Use MATLAB to determine the
observability of the systems
of Figure P12.2(a) and (f).

26. Given the plant of Figure P12.5, what relationship
must exist between c1 and c2 in order for the system
to be unobservable? [Section: 12.6]
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27. Design an observer for the plant

GðsÞ ¼ 1

ðsþ 5Þðsþ 13Þðsþ 20Þ
represented in cascade form. Transform the plant to
observer canonical form for the design. Then trans-
form the design back to cascade form. The charac-
teristic polynomial for the observer is to be
s3 þ 600s2þ 40;000sþ 1;500;000.

28. Use MATLAB to design the
observer gains for the system
given in Problem 27.

29. Repeat Problem 27 assuming that the plant is rep-
resented in parallel form. [Section: 12.7]

30. Design an observer for

GðsÞ ¼ 50

ðsþ 3Þðsþ 6Þðsþ 9Þ
represented in phase-variable form with a desired
performance of 10% overshoot and a settling time
of 0.5 second. The observer will be 10 times as fast as
the plant, and the observer’s nondominant pole will
be 10 times as far from the imaginary axis as the
observer’s dominant poles. Design the observer
by first converting to observer canonical form.
[Section: 12.7]

31. Observability and controllability properties depend
on the state-space representation chosen for a given
system. In general, observability and controllability
are affected when pole-zero cancellations are pres-
ent in the transfer function. Consider the following
two systems with representations:

_xi ¼ Aixi ¼ Bir

y ¼ Cixi;

A1 ¼
�

0 1

�2 �3

�
; B1 ¼

�
0

1

�
; C1 ¼ � 2 0

�

A2 ¼
0 1 0

0 0 1

�6 �11 �6

2
4

3
5; B2 ¼

0

0

1

2
4
3
5; C2 ¼ ½ 6 2 0 �

a. Show that both systems have the same

transfer function GiðsÞ ¼ YðsÞ
RðsÞ after pole-zero

cancellations.

b. Evaluate the observability of both systems.

32. Given the plant

_x ¼ �1 1
0 2

� �
xþ 0

1

� �
u; y ¼ 1 1½ �x

design an integral controller to yield a 10% over-
shoot, 0.5-second settling time, and zero steady-
state error for a step input. [Section: 12.8]

33. Repeat Problem 32 for the following plant:
[Section: 12.8]

_x ¼ �2 1
0 �5

� �
xþ 0

1

� �
u; y ¼ 1 1½ �x

DESIGN PROBLEMS
34. A magnetic levitation system is described in Problem

50 in Chapter 9 (Cho, 1993). Remove the photocell in
Figure P9.14(b) and design a controller for phase
variables to yield a step response with 5% overshoot
and a settling time of 0.5 second.

35. Problem 24 in Chapter 3 introduced the model for
patients treated under a regimen of a single day of
Glargine insulin (Tar�ın, 2005). The model to find the
response for a specific patient to medication can be
expressed in phase-variable form with

A ¼
0 1 0

0 0 1

�501:6 � 10�6 �128:8 � 10�3 �854 � 10�3

2
64

3
75;

B ¼
1

0

0

2
64
3
75; C ¼ 0:78 � 10�4 41:4 � 10�4 0:01

� �
;

D ¼ 0

The state variables will take on a different signifi-
cance in this expression, but the input and the
output remain the same. Recall that u ¼ external
insulin flow, and y ¼ plasma insulin concentration.

a. Obtain a state-feedback gain matrix so that the
closed-loop system will have two of its poles
placed at �1=15 and the third pole at �1=2.

b. Use MATLAB to verify that the
poles appear at the positions
specified in Part a.

36. Figure P12.6 shows a continuous stirred tank reactor
in which an aqueous solution of sodium acetate
(CH3COONa) is neutralized in the mixing tank
with hydrochloric acid (HCl) to maintain a particu-
lar pH in the mixing tank.

The amount of acid in the mix is controlled by
varying the rotational speed of a feeding peristaltic
pump. A nominal linearized transfer function
from HCl flowrate to pH has been shown to be
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(Tadeo, 2000)

GðsÞ ¼ �0:9580 � 10�4s� 0:01197 � 10�4

s3 þ 0:5250s2 þ 0:01265sþ 0:000078

a. Writethesysteminstate-spacephase-variableform.

b. Use state-feedback methods to design a matrix K
that will yield an overdamped output pH re-
sponse with a settling time of Ts � 5 min for a
step input change in pH.

c. Simulate the step response
of the resulting closed-loop
system using MATLAB.

37. In the dc-dc converter of Problem 67, Chapter 4
(Van Dijk, 1995) with L ¼ 6 mH, C ¼ 1 mF, R ¼
100 V, a 50% PWM duty cycle, and assuming the
system’s output is the voltage across the capacitor,
the model can be expressed as

_iL
_uC

" #
¼ 0 �83:33

500 �10

� �
iL

uC

� �
þ 166:67

0

� �
Es

y¼ 0 1½ � iL

uC

� �

a. Find the system’s transfer function.

b. Express the system’s state equations in phase-
variable form.

c. Find a set of state-feedback gains to obtain 20%
overshoot and a settling time of 0.5 second in the
phase-variable system.

d. Obtain the corresponding set of state-feedback
gains in the original system.

e. Verify that the set of gains in Part d places the
closed-loop poles at the desired positions.

f. Simulate the unit step
response of the system using
MATLAB.

38. a. Design an observer for the dc-dc converter of
Problem 37. The observer should have time
constants 10 times smaller than those of the
original system.

b. Simulate your system and
observer for a unit step input
using Simulink. Assume that
the initial conditions for the original

system are xð0Þ ¼ 2
1

� �
. The observer

should have initial conditions

x̂ð0Þ ¼ 0
0

� �
.

39. a. Design an observer for the neutralization system
using the continuous stirred tank reactor of

Inlet stream

pH
measurement

Control
signal

Control acid stream

Peristaltic
pump

Acid tankMixing tankLiquid pump

Liquid tank

FIGURE P12.6 (# 2000 IEEE)
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Problem 36. The observer should have time
constants 10 times smaller than those of the
original system. Assume that the original state
variables are those obtained in the phase-
variable representation.

b. Simulate your system and
observer for a unit step in-
putusingSimulink.Assumethattheini-
tial conditions for the original system

are xð0Þ ¼
�1
�10
3

2
4

3
5. The observer should

have initial conditions x̂ð0Þ ¼
0
0
0

2
4

3
5.

40. The conceptual block diagram of a gas-fired heater
is shown in Figure P12.7. The commanded fuel
pressure is proportional to the desired temperature.
The difference between the commanded fuel pres-
sure and a measured pressure related to the output
temperature is used to actuate a valve and release
fuel to the heater. The rate of fuel flow determines
the temperature. When the output temperature
equals the equivalent commanded temperature as
determined by the commanded fuel pressure, the
fuel flow is stopped and the heater shuts off (Tyner,
1968).

If the transfer function of the heater, GH(s), is

GHðsÞ ¼ 1

ðsþ 0:4Þðsþ 0:8Þ
degrees F

ft3/min

and the transfer function of the fuel valve, Gv(s), is

GvðsÞ ¼ 5

sþ 5

ft3/min

psi

replace the temperature feedback path with a
phase-variable controller that yields a 5% over-
shoot and a settling time of 10 minutes. Also,
design an observer that will respond 10 times
faster than the system but with the same percent
overshoot.

41. a. Redesign the dc-dc converter system of Problem
37 to include integral control.

b. Simulate your system for a
step input using Simulink
and verify that the specifi-
cations are met. In particular, verify
that the system has zero steady-state
error.

42. The floppy disk drive of Problem 57
in Chapter 8 is to be redesigned
using state-variable feedback. The
controller is replaced by a unity dc gain amplifier,
GaðsÞ ¼ 800=ðsþ 800Þ. The plant, GpðsÞ ¼ 20;000=
½sðsþ 100Þ�, is in cascade with the amplifier.

a. Design a controller to yield 10% overshoot and a
settling time of 0.05 second. Assume that the
state variables are the output position, output
velocity, and amplifier output.

b. Evaluate the steady-state error and redesign
the system with an integral controller to re-
duce the steady-state error to zero. (Use of a
program with symbolic capability is highly
recommended.)

c. Simulate the step response
for both the controller-
compensated and integral
controller-compensated systems.
Use MATLAB or any other computer
program.

Commanded
fuel

pressure
Fuel
valve Heater

Temperature
sensor and gain

Fuel
pressure

error Temperature

Fuel
volume

flow
rate

+

–

FIGURE P12.7 Block diagram of a gas-fired heater
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43. Given the angle of attack
control system for the AFTI/
F-16 aircraft shown in Figure
P9.15 (Monahemi, 1992), use MATLAB to
design a controller for the plant to
yield 10% overshoot with a settling
time of 0.5 second. Assume that the phase
variables are accessible. Have the pro-
gram display the step response of the
compensated system.

44. For the angle of attack control
system of Problem 43, use MATLAB
to design an observer for the
phase variables that is 15 times faster
than the controller designed system.

45. For the angle of attack control system of Problem
43, do the following:

a. Design an integral control using phase variables
to reduce the steady-state error to zero. (Use of a
program with symbolic capability is highly
recommended.)

b. Use MATLAB to obtain the step
response.

46. The use of feedback control to vary the pitch angle
in the blades of a variable speed wind turbine allows
power generation optimization under variable wind
conditions (Liu, 2008). At a specific operating point,
it is possible to linearize turbine models. For exam-
ple, the model of a three-blade turbine with a 15 m
radius working in 12 m/s wind-speed and generating
220 V can be expressed as:

_x ¼

� 5 0 0 0 0

0 0 1 0 0

�10:5229 �1066:67 �3:38028 23:5107 0

0 993:804 3:125 �23:5107 0

0 0 0 10 �10

2
66666664

3
77777775
x

þ

5

0

0

0

0

2
66666666664

3
77777777775
u

y ¼ 0 0 0 1:223x105 0
� �

x

where the state variable vector is given by

x ¼ b j _j vg vgm

� �

Here, b ¼ pitch angle of the wind turbine blades,
j ¼ relative angle of the secondary shaft, vg ¼
generator speed, and vgm ¼ generator measure-
ment speed. The system input is u, the pitch angle
reference, and the output is y, the active power
generated.

a. Find a state feedback vector gain such that the
system responds with a 10% overshoot and a
settling time of 2 seconds for a step input.

b. Use MATLAB to verify the
operation of the system
under state feedback.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
47. High-speed rail pantograph.Problem 21 in Chapter 1

discusses active control of a pantograph mechanism
for high-speed rail systems (O’Connor, 1997). In
Problem 79(a), Chapter 5, you found the block dia-
gram for the active pantograph control system. For
the open-loop portion of the pantograph system
modeled in Chapter 5, do the following:

a. Design a controller to yield 20% overshoot and a
1-second settling time.

b. Repeat Part a with a zero steady-state error.

48. Control of HIV/AIDS. The linearized model of HIV
infection when RTIs are used for treatment was
introduced in Chapter 4 and repeated here for
convenience (Craig, 2004):

_T

_T
	

_v

2
664

3
775 ¼

�0:04167 0 �0:0058

0:0217 �0:24 0:0058

0 100 �2:4

2
64

3
75

T

T	

v

2
64

3
75

þ
5:2

�5:2

0

2
64

3
75u1

y ¼ 0 0 1½ �
T

T	

v

2
64

3
75
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T represents the number of healthy T-cells, T	 the
number of infected cells, and v the number of free
viruses.

a. Design a state-feedback scheme to obtain

(1) zero steady-state error for step inputs

(2) 10% overshoot

(3) a settling time of approximately 100 days

(Hint: the system’s transfer function has an open-
loop zero at approximately �0.02. Use one of the
poles in the desired closed-loop-pole polynomial to
eliminate this zero. Place the higher-order pole 6.25
times further than the dominant pair.)

b. Simulate the unit step
response of your design
using Simulink.

49. Hybrid vehicle. In Problem 3.32, we introduced the
idea that when an electric motor is the sole motive
force provider for a hybrid electric vehicle (HEV),
the forward paths of all HEV topologies are simi-
lar. It was noted that, in general, the forward path
of an HEV cruise control system can be repre-
sented by a block diagram similar to that of Figure
P3.19 (Preitl, 2007). The diagram is shown in
Figure P12.8, with the parameters substituted by
their numerical values from Problem 6.69; the
motor armature represented as a first-order system

with a unity steady-state gain and a time constant
of 50 ms; and the power amplifier gain set to 50.
Whereas the state variables remain as the motor
angular speed, v tð Þ, and armature current, Ia tð Þ, we
assume now that we have only one input variable,
uc tð Þ, the command voltage from the electronic
control unit, and one output variable, car speed,
v ¼ rv=itot ¼ 0:06154v. The change in the load
torque, Tc tð Þ, is represented as an internal feed-
back proportional to v tð Þ.

Looking at the diagram, the state equations may
be written as:

_Ia

_v

" #
¼ �20 �40

0:2491 �0:0191

� �
Ia

v

� �
þ 0

1000

� �
ucðtÞ

yðtÞ ¼ vðtÞ ¼ ½0 0:05154� Ia

v

� �

a. Design an integral controller for %OS 
 4.32%, a
settling time, Ts
 4.4 sec, and a zero steady-state
error for a step input (Hint: To account for the effect
of the integral controller on the transient response,
use Ts ¼ 4 seconds in your calculation of the value
of the natural frequency, vn, of the required domi-
nant poles).

b. Use MATLAB to verify that the
design requirements are met.

2

0.03787

20
50 1.8

+ +
– –

–

0.1

0.06154
s + 20ua(t)

Ia(t)

Ia(t)

Tf  (t)

Tc (t)

ω (t) ν (t)

ω (t)

T(t)
uc(t)

eb(t)

1
7.226 s

FIGURE P12.8

Cyber Exploration Laboratory

Experiment 12.1

Objective To simulate a system that has been designed for transient response via
a state-space controller and observer.
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Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. This experiment is based upon your design of a controller and observer
as specified in the Case Study Challenge problem in Chapter 12. Once you
have completed the controller and observer design in that problem, go on to
Prelab 2.

2. What is the controller gain vector for your design of the system specified in the
Case Study Challenge problem in Chapter 12?

3. What is the observer gain vector for your design of the system specified in the
Case Study Challenge problem in Chapter 12?

4. Draw a Simulink diagram to simulate the system. Show the system, the controller,
and the observer using the physical variables specified in the Case Study
Challenge problem in Chapter 12.

Lab

1. Using Simulink and your diagram from Prelab 4, produce the Simulink diagram
from which you can simulate the response.

2. Produce response plots of the system and the observer for a step input.

3. Measure the percent overshoot and the settling time for both plots.

Postlab

1. Make a table showing the design specifications and the simulation results for
percent overshoot and settling time.

2. Compare the design specifications with the simulation results for both the system
response and the observer response. Explain any discrepancies.

3. Describe any problems you had implementing your design.

Experiment 12.2

Objective To use LabVIEW to design a controller and observer

Minimum Required Software Packages LabVIEW, the Control Design
and Simulation Module, and the MathScript RT Module.

Prelab Design a LabVIEW VI that will design the controller and observer for the
Antenna Control Case Study in this chapter. Your VI will have the following inputs:
phase-variable form of the plant, the controller poles, and the observer poles to meet
the requirements. Your indicators will display the following: the phase-variable
equation of the plant, whether or not the system is controllable, the observer
canonical equation of the observer, whether or not the system is observable, the
gains for the controller, and the gains for the observer. Also provide the impulse
response and initial response curves shown in Figure 12.27. In addition, provide
similar response curves for the state variables.
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Lab Run your VI and collect the data from which to compare the results of the
case study with those found from your VI.

Postlab Compare and summarize the results found from your VI with those of the
Chapter 12 Antenna Control Case Study.

Bibliography
Cho, D., Kato, Y., and Spilman, D. Sliding Mode and Classical Controllers in Magnetic

Levitation Systems. IEEE Control Systems, February 1993, pp. 42–48.

Craig, I. K, Xia, X., and Venter, J. W. Introducing HIV/AIDS Education into the Electrical
Engineering Curriculum at the University of Pretoria. IEEE Transactions on Education,
vol. 47, no. 1, February 2004, pp. 65–73.

D’Azzo, J. J., and Houpis, C. H. Linear Control SystemAnalysis and Design: Conventional and
Modern, 3d ed. McGraw-Hill, New York, 1988.

Franklin, G. F, Powell, J. D, and Emami-Naeini, A. Feedback Control of Dynamic Systems,
3d ed. Addison-Wesley, Reading, MA, 1994.

Hostetter, G. H, Savant, C. J. Jr., and Stefani, R. T. Design of Feedback Control Systems, 2d ed.
Saunders College Publishing, New York, 1989.

Kailath, T. Linear Systems. Prentice Hall, Upper Saddle River, NJ, 1980.

Kyrylov, V., Severyanova, L. A., and Vieira, A. Modeling Robust Oscillatory Behavior of the
Hypothalamic-Pituitary-Adrenal Axis. IEEE Transactions on Biomedical Engineering,
vol. 52, no. 12, 2005, pp. 1977–1983.

Liu, J.-H., Xu, D.-P., and Yang, X.-Y. Multi-Objective Power Control of a Variable Speed Wind
Turbine Based on Theory. Proceedings of the Seventh International Conference on Machine
Learning and Cybernetics, July 2008, pp. 2036–2041.

Luenberger, D. G. Observing the State of a Linear System. IEEE Transactions on Military
Electronics, vol. MIL-8, April 1964, pp. 74–80.

Milhorn, H. T. Jr., The Application of Control Theory to Physiological Systems. W. B.
Saunders, Philadelphia, 1966.

Monahemi, M. M, Barlow, J. B, and O’Leary, D. P. Design of Reduced-Order Observers with
Precise Loop Transfer Recovery. Journal of Guidance, Control, andDynamics, vol. 15, no. 6,
November–December 1992, pp. 1320–1326.

O’ Connor, D. N, Eppinger, S. D., Seering, W. P., and Wormly, D. N. Active Control of a High-
Speed Pantograph. Journal of Dynamic Systems, Measurements, and Control, vol. 119,
March 1997, pp. 1–4.

Ogata, K. Modern Control Engineering, 2d ed. Prentice Hall, Upper Saddle River, NJ, 1990.

Ogata, K. State Space Analysis of Control Systems. Prentice Hall, Upper Saddle River, NJ,
1967.

Preitl, Z., Bauer, P., and Bokor, J. A Simple Control Solution for Traction Motor Used in
Hybrid Vehicles. Fourth International Symposium on Applied Computational Intelligence
and Informatics. IEEE, 2007.

Rockwell International. Space Shuttle Transportation System. 1984 (press information).

Shinners, S. M. Modern Control System Theory and Design. Wiley, New York, 1992.

Sinha, N. K. Control Systems. Holt, Rinehart & Winston, New York, 1986.

Tadeo, F., P�erez L�opez, O., and Alvarez, T., Control of Neutralization Processes by Robust
Loop-shaping. IEEE Transactions on Control Systems Technology, vol. 8, no. 2, 2000,
pp. 236–246.

Bibliography 721



Apago PDF Enhancer

E1C12 11/02/2010 10:37:25 Page 722

Tar�ın, C., Teufel, E., Pic�o, J., Bondia, J., and Pfleiderer, H. J. Comprehensive Pharmacokinetic
Model of Insulin Glargine and Other Insulin Formulations. IEEE Transactions on Bio-
medical Engineering, vol. 52, no. 12, 2005, pp. 1994–2005.

Timothy, L. K, and Bona, B. E. State Space Analysis: An Introduction. McGraw-Hill, New
York, 1968.

Tyner, M., and May, F. P. Process Engineering Control. Ronald Press, New York, 1968.

Van Dijk, E., Spruijt, J. N., O’ Sullivan, D. M., and Klaasens, J. B. PWM-Switch Modeling of
DC-DC Converters. IEEE Transactions on Power Electronics, vol. 10, 1995, pp. 659–665.

722 Chapter 12 Design via State Space



Apago PDF Enhancer

E1C13 10/26/2010 15:5:38 Page 723

Digital Control Systems

13

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Model the digital computer in a feedback system (Sections 13.1–13.2)

� Find z- and inverse z-transforms of time and Laplace functions (Section 13.3)

� Find sampled-data transfer functions (Section 13.4)

� Reduce an interconnection of sampled-data transfer functions to a single sampled-
data transfer function (Section 13.5)

� Determine whether a sampled-data system is stable and determine sampling rates
for stability (Section 13.6)

� Design digital systems to meet steady-state error specification (Section 13.7)

� Design digital systems to meet transient response specifications using gain adjust-
ment (Sections 13.8–13.9)

� Design cascade compensation for digital systems (Sections 13.10–13.11)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with a case
study as follows:

� Given the analog antenna azimuth position control system shown on the front
endpapers and in Figure 13.1(a), you will be able to convert the system to a digital
system as shown in Figure 13.1(b) and then design the gain to meet a transient
response specification.
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� Given the digital antenna azimuth position control system shown in Figure 13.1(b),
you will be able to design a digital cascade compensator to improve the transient
response.

13.1 Introduction

This chapter is an introduction to digital control systems and will cover only
frequency-domain analysis and design. You are encouraged to pursue the study
of state-space techniques in an advanced course in sampled-data control systems. In
this chapter, we introduce analysis and design of stability, steady-state error, and
transient response for computer-controlled systems.

With the development of the minicomputer in the mid-1960s and the micro-
computer in the mid-1970s, physical systems need no longer be controlled by
expensive mainframe computers. For example, milling operations that required
mainframe computers in the past can now be controlled by a personal computer.

The digital computer can perform two functions: (1) supervisory—external to
the feedback loop; and (2) control—internal to the feedback loop. Examples of

Cable
A/D

D/A

(b)

Computer

i(t)

Desired
azimuth angle

input

θ

Potentiometer

o(t)
Azimuth 

angle
output

θ

(a)

o(t)
Azimuth 

angle
output

θ

Antenna

Antenna

FIGURE 13.1 Conversion of antenna azimuth position control system from a. analog control
to b. digital control
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supervisory functions consist of scheduling tasks, monitoring parameters and var-
iables for out-of-range values, or initiating safety shutdown. Control functions are of
primary interest to us, since a computer that performs within the feedback loop
replaces the methods of compensation heretofore discussed. Examples of control
functions are lead and lag compensation.

Transfer functions, representing compensators built with analog components,
are now replaced with a digital computer that performs calculations that emulate the
physical compensator. What advantages are there to replacing analog components
with a digital computer?

Advantages of Digital Computers
The use of digital computers in the loop yields the following advantages over analog
systems: (1) reduced cost, (2) flexibility in response to design changes, and (3) noise
immunity. Modern control systems require control of numerous loops at the same
time—pressure, position, velocity, and tension, for example. In the steel industry, a
single digital computer can replace numerous analog controllers with a subsequent
reduction in cost. Where analog controllers implied numerous adjustments and
resulting hardware, digital systems are now installed. Banks of equipment, meters,
and knobs are replaced with computer terminals, where information about settings
and performance is obtained through menus and screen displays. Digital computers
in the loop can yield a degree of flexibility in response to changes in design. Any
changes or modifications that are required in the future can be implemented with
simple software changes rather than expensive hardware modifications. Finally,
digital systems exhibit more noise immunity than analog systems by virtue of the
methods of implementation.

Where then is the computer placed in the loop? Remember that the digital
computer is controlling numerous loops; thus, its position in the loop depends upon
the function it performs. Typically, the computer replaces the cascade compensator
and is thus positioned at the place shown in Figure 13.2(a).

The signals r, e, f, and c shown in Figure 13.2(a) can take on two forms: digital or
analog. Up to this point we have used analog signals exclusively. Digital signals,
which consist of a sequence of binary numbers, can be found in loops containing
digital computers.

r

–

+

r c

–

+ Digital
computer

Plant
fe

A/D
Digital

computer D/A Plant
c

(a)

(b)

FIGURE 13.2 a. Placement of the digital computer within the loop; b. detailed block diagram
showing placement of A/D and D/A converters

13.1 Introduction 725



Apago PDF Enhancer

E1C13 10/26/2010 15:5:38 Page 726

Loops containing both analog and digital signals must provide a means for
conversion from one form to the other as required by each subsystem. A device that
converts analog signals to digital signals is called an analog-to-digital (A/D) converter.
Conversely, a device that converts digital signals to analog signals is called a digital-to-
analog (D/A) converter. For example, in Figure 13.2(b), if the plant output, c, and the
system input, r, are analog signals, then an analog-to-digital converter must be provided
at the input to the digital computer. Also, if the plant input, f, is an analog signal, then a
digital-to-analog converter must be provided at the output of the digital computer.

Digital-to-Analog Conversion
Digital-to-analog conversion is simple and effectively instan-
taneous. Properly weighted voltages are summed together to
yield the analog output. For example, in Figure 13.3, three
weighted voltages are summed. The three-bit binary code is
represented by the switches. Thus, if the binary number is
1102, the center and bottom switches are on, and the analog
output is 6 volts. In actual use, the switches are electronic and
are set by the input binary code.

Analog-to-Digital Conversion
Analog-to-digital conversion, on the other hand, is a two-step
process and is not instantaneous. There is a delay between the

input analog voltage and the output digital word. In an analog-to-digital converter,
the analog signal is first converted to a sampled signal and then converted to a
sequence of binary numbers, the digital signal.

The sampling rate must be at least twice the bandwidth of the signal, or else there
will be distortion. This minimum sampling frequency is called theNyquist sampling rate.1

In Figure 13.4(a), we start with the analog signal. In Figure 13.4(b), we see the
analog signal sampled at periodic intervals and held over the sampling interval by a
device called a zero-order sample-and-hold (z.o.h.) that yields a staircase approxi-
mation to the analog signal. Higher-order holds, such as a first-order hold, generate
more complex and more accurate waveshapes between samples. For example, a first-
order hold generates a ramp between the samples. Samples are held before being
digitized because the analog-to-digital converter converts the voltage to a digital
number via a digital counter, which takes time to reach the correct digital number.
Hence, the constant analog voltage must be present during the conversion process.

After sampling and holding, the analog-to-digital converter converts the
sample to a digital number (as shown in Figure 13.4(c)), which is arrived at in
the following manner. The dynamic range of the analog signal’s voltage is divided
into discrete levels, and each level is assigned a digital number. For example, in
Figure 13.4(b), the analog signal is divided into eight levels. A three-bit digital
number can represent each of the eight levels as shown in the figure. Thus, the
difference between quantization levels is M=8 volts, where M is the maximum analog
voltage. In general, for any system, this difference is M=2n volts, where n is the
number of binary bits used for the analog-to-digital conversion.

Looking at Figure 13.4(b), we can see that there will be an associated error for
each digitized analog value except the voltages at the boundaries such as M=8 and
2M=8. We call this error the quantization error. Assuming that the quantization
process rounds off the analog voltage to the next higher or lower level, the maximum

1

2

4

1 volt

Most significant bit

Least significant bit

Analog
output

++

+

FIGURE 13.3 Digital-to-analog converter

1 See Ogata (1987: 170–177) for a detailed discussion.
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value of the quantization error is 1=2 the difference between quantization levels in
the range of analog voltages from 0 to 15M=16. In general, for any system using
roundoff, the quantization error will be ð1=2ÞðM=2nÞ ¼M=2nþ1.

We have now covered the basic concepts of digital systems. We found out why
they are used, where the digital computer is placed in the loop, and how to convert
between analog and digital signals. Since the computer can replace the compensator,
we have to realize that the computer is working with a quantized amplitude
representation of the analog signal formed from values of the analog signal at
discrete intervals of time. Ignoring the quantization error, we see that the computer
performs just as the compensator does, except that signals pass through the
computer only at the sampled intervals of time. We will find that the sampling of
data has an unusual effect upon the performance of a closed-loop feedback system,
since stability and transient response are now dependent upon the sampling rate; if it
is too slow, the system can be unstable since the values are not being updated rapidly
enough. If we are to analyze and design feedback control systems with digital
computers in the loop, we must be able to model the digital computer and associated
digital-to-analog and analog-to-digital converters. The modeling of the digital
computer along with associated converters is covered in the next section.

13.2 Modeling the Digital Computer

If we think about it, the form of the signals in a loop is not as important as what
happens to them. For example, if analog-to-digital conversion could happen instan-
taneously, and time samples occurred at intervals of time that approached zero, there
would be no need to differentiate between the digital signals and the analog signals.
Thus, previous analysis and design techniques would be valid regardless of the
presence of the digital computer.
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FIGURE 13.4 Steps in analog-
to-digital conversion: a. analog
signal; b. analog signal after
sample-and-hold; c. conversion
of samples to digital numbers
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The fact that signals are sampled at specified intervals and held causes the
system performance to change with changes in sampling rate. Basically, then, the
computer’s effect upon the signal comes from this sampling and holding. Thus, in
order to model digital control systems, we must come up with a mathematical
representation of this sample-and-hold process.

Modeling the Sampler
Our objective at this point is to derive a mathematical model for the digital computer
as represented by a sampler and zero-order hold. Our goal is to represent the
computer as a transfer function similar to that for any subsystem. When signals are
sampled, however, the Laplace transform that we have dealt with becomes a bit
unwieldy. The Laplace transform can be replaced by another related transform
called the z-transform. The z-transform will arise naturally from our development of
the mathematical representation of the computer.

Consider the models for sampling shown in Figure 13.5. The model in Figure
13.5(a) is a switch turning on and off at a uniform sampling rate. In Figure 13.5(b),
sampling can also be considered to be the product of the time waveform to be
sampled, f(t), and a sampling function, s(t). If s(t) is a sequence of pulses of width TW ,
constant amplitude, and uniform rate as shown, the sampled output, f �TW

ðtÞ, will
consist of a sequence of sections of f(t) at regular intervals. This view is equivalent to
the switch model of Figure 13.5(a).

We can now write the time equation of the sampled waveform, f �TW
ðtÞ. Using

the model shown in Figure 13.5(b), we have

f �TW
ðtÞ ¼ f ðtÞsðtÞ ¼ f ðtÞ

X1
k¼�1

uðt � kTÞ � uðt � kT � TwÞ ð13:1Þ

where k is an integer between�1 andþ1, T is the period of the pulse train, and TW

is the pulse width.

FIGURE 13.5 Two views of
uniform-rate sampling:
a. switch opening and closing;
b. product of time waveform
and sampling waveform

f(t) *
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Since Eq. (13.1) is the product of two time functions, taking the Laplace
transform in order to find a transfer function is not simple. A simplification can be
made if we assume that the pulse width, TW , is small in comparison to the period, T,
such that f(t) can be considered constant during the sampling interval. Over the
sampling interval, then, f ðtÞ ¼ f ðkTÞ. Hence,

f �TW
ðtÞ ¼

X1
k¼�1

f ðkTÞ½uðt � kTÞ � uðt � kT � TWÞ� ð13:2Þ

for small TW .
Equation (13.2) can be further simplified through insight provided by the

Laplace transform. Taking the Laplace transform of Eq. (13.2), we have

F�TW
ðsÞ ¼

X1
k¼�1

f ðkTÞ e�kTs

s
� e�kTs�TWs

s

� �
¼
X1

k¼�1
f ðkTÞ 1� e�TWs

s

� �
e�kTs ð13:3Þ

Replacing e�TWS with its series expansion, we obtain

F�TW
ðsÞ ¼

X1
k¼�1

f ðkTÞ
1� 1� TWsþ ðTWsÞ2

2!
� . . .

( )

s

2
66664

3
77775e
�kTs ð13:4Þ

For small TW , Eq. (13.4) becomes

F�TW
ðsÞ ¼

X1
k¼�1

f ðkTÞ TWs

s

� �
e�kTs ¼

X1
k¼�1

f ðkTÞTWe�kTs ð13:5Þ

Finally, converting back to the time domain, we have

f �TW
ðtÞ ¼ TW

X1
k¼�1

f ðkTÞdðt � kTÞ ð13:6Þ

where dðt � kTÞ are Dirac delta functions.
Thus, the result of sampling with rectangular pulses can be thought of as a

series of delta functions whose area is the product of the rectangular pulse width and
the amplitude of the sampled waveform, or TWf ðkTÞ.

Equation (13.6) is portrayed in Figure 13.6. The sampler is divided into two
parts: (1) an ideal sampler described by the portion of Eq. (13.6) that is not
dependent upon the sampling waveform characteristics,

f �ðtÞ
X1

k¼�1
f ðkTÞdðt � kTÞ ð13:7Þ

and (2) the portion dependent upon the sampling waveform’s characteristics, TW .

Modeling the Zero-Order Hold
The final step in modeling the digital computer is modeling the zero-order hold that
follows the sampler. Figure 13.7 summarizes the function of the zero-order hold,

f *(t)

Ideal
sampler

f(t)
TW

Σ–Σ
∞
∞ ∞

∞
–

=      f(kT) =  TW       f(kT)

*fTW
(t)

δ(t – kT) δ(t – kT)

FIGURE 13.6 Model of
sampling with a uniform
rectangular pulse train
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which is to hold the last sampled value of f(t). If we assume an ideal sampler
(equivalent to setting TW ¼ 1), then f �ðtÞ is represented by a sequence of delta
functions. The zero-order hold yields a staircase approximation to f(t). Hence, the
output from the hold is a sequence of step functions whose amplitude is f(t) at the
sampling instant, or f (kT). We have previously seen that the transfer function of any
linear system is identical to the Laplace transform of the impulse response since the
Laplace transform of a unit impulse or delta function input is unity. Since a single
impulse from the sampler yields a step over the sampling interval, the Laplace
transform of this step, Gh(s), which is the impulse response of the zero-order hold, is
the transfer function of the zero-order hold. Using an impulse at zero time, the
transform of the resulting step that starts at t ¼ 0 and ends at t ¼ T is

GhðsÞ ¼ 1� e�Ts

s
ð13:8Þ

In a physical system, samples of the input time waveform, f(kT), are held over
the sampling interval. We can see from Eq. (13.8) that the hold circuit integrates the
input and holds its value over the sampling interval. Since the area under the delta
functions coming from the ideal sampler is f(kT), we can then integrate the ideal
sampled waveform and obtain the same result as for the physical system. In other
words, if the ideal sampled signal, f �ðtÞ, is followed by a hold, we can use the ideal
sampled waveform as the input, rather than f �TW

ðtÞ.
In this section, we modeled the digital computer by cascading two elements:

(1) an ideal sampler and (2) a zero-order hold. Together, the model is known as a
zero-order sample-and-hold. The ideal sampler is modeled by Eq. (13.7), and the
zero-order hold is modeled by Eq. (13.8). In the next section, we start to create a
transform approach to digital systems by introducing the z-transform.

13.3 The z-Transform
The effect of sampling within a system is pronounced. Whereas the stability and
transient response of analog systems depend upon gain and component values,
sampled-data system stability and transient response also depend upon sampling
rate. Our goal is to develop a transform that contains the information of sampling
from which sampled-data systems can be modeled with transfer functions, analyzed,
and designed with the ease and insight we enjoyed with the Laplace transform. We
now develop such a transform and use the information from the last section to obtain
sampled-data transfer functions for physical systems.

FIGURE 13.7 Ideal sampling
and the zero-order hold

Ideal sampler

f *(t)f(t)
Hold

fh(t)

ttt

f(t) f *(t)

f(kT)   (t     kT)  –

fh(t)

δ
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Equation (13.7) is the ideal sampled waveform. Taking the Laplace transform
of this sampled time waveform, we obtain

F�ðsÞ ¼
X1
k¼0

f ðkTÞe�kTs ð13:9Þ

Now, letting z ¼ eTs, Eq. (13.9) can be written as

FðzÞ ¼
X1
k¼0

f ðkTÞz�k ð13:10Þ

Equation (13.10) defines the z-transform. That is, an F(z) can be transformed
to f(kT), or an f(kT) can be transformed to F(z). Alternately, we can write

f ðkTÞ ����!FðzÞ ð13:11Þ
Paralleling the development of the Laplace transform, we can form a table relating
f(kT), the value of the sampled time function at the sampling instants, to F(z). Let
us look at an example.

Example 13.1

z-Transform of a Time Function

PROBLEM: Find the z-transform of a sampled unit ramp.

SOLUTION: For a unit ramp, f ðkTÞ ¼ kT. Hence the ideal sampled step can be
written from Eq. (13.7) as

f �t ¼
X1
k¼0

ktdðt � kTÞ ð13:12Þ

Taking the Laplace transform, we obtain

F�ðsÞ ¼
X1
k¼0

kTe�kTs ð13:13Þ

Converting to the z-transform by letting e�kTs ¼ z�k, we have

FðzÞ ¼
X1
k¼0

kTz�k ¼ T
X1
k¼0

kz�k ¼ Tðz�1 þ 2z�2 þ 3z�3 þ � � �Þ ð13:14Þ

Equation (13.14) can be converted to a closed form by forming the series for zF(z)
and subtracting F(z). Multiplying Eq. (13.14) by z, we get

zFðzÞ ¼ Tð1þ 2z�1 þ 3z�2 þ � � �Þ ð13:15Þ
Subtracting Eq. (13.14) from Eq. (13.15), we obtain

zFðzÞ � FðzÞ ¼ ðz� 1ÞFðzÞ ¼ Tð1þ z�1 þ z�2 þ � � �Þ ð13:16Þ
But

1

1� z�1
¼ 1þ z�1 þ z�2 þ z�3 þ � � � ð13:17Þ
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which can be verified by performing the indicated division. Substituting Eq. (13.17)
into (13.16) and solving for F(z) yields

FðzÞ ¼ T
z

ðz� 1Þ2 ð13:18Þ

as the z-transform of fðkTÞ ¼ kT.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch13sp1 in Appendix F located at www.wiley.com/
college/nise. You will learn how to find the z-transform of time
functions. Example 13.1 will be solved using MATLAB and the
Symbolic Math Toolbox.

The example demonstrates that any function of s, F�ðsÞ, that represents a
sampled time waveform can be transformed into a function of z, F(z). The final
result, FðzÞ ¼ Tz=ðz� 1Þ2, is in a closed form, unlike F�ðsÞ. If this is the case for
numerous other sampled time waveforms, then we have the convenient transform
that we were looking for. In a similar way, z-transforms for other waveforms can be
obtained that parallel the table of Laplace transforms in Chapter 2. A partial table of
z-transforms is shown in Table 13.1, and a partial table of z-transform theorems is

TABLE 13.1 Partial table of z- and s-transforms

f(t) F(s) F(z) f(kT)

1. u(t) 1

s
z

z� 1
u(kT)

2. t 1

s2

Tz

ðz� 1Þ2
kT

3. tn n!

snþ1 lim
a!0
ð�1Þn dn

dan
z

z� e�aT

� �
ðkTÞn

4. e�at 1

sþ a

z

z� e�aT
e�akT

5. tne�at n!

ðsþ aÞnþ1 ð�1Þn dn

dan
z

z� e�aT

� �
ðkTÞne�akT

6. sinvt
v

s2 þ v2

z sin vT

z2 � 2z cos vT þ 1
sinvkT

7. cosvt s

s2 þ v2

zðz� cosvTÞ
z2 � 2z cosvT þ 1

cosvkT

8. e�atsinvt v

ðsþ aÞ2 þ v2

ze�aTsinvT

z2 � 2ze�aTcosvT þ e�2aT
e�akTsinvkT

9. e�atcosvt sþ a

ðsþ aÞ2 þ v2

z2 � ze�aT cos vT

z2 � 2ze�aT cos vT þ e�2aT
e�akTcosvkT
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shown in Table 13.2. For functions not in the table, we must perform an inverse
z-transform calculation similar to the inverse Laplace transform by partial-fraction
expansion. Let us now see how we can work in the reverse direction and find the time
function from its z-transform.

The Inverse z-Transform
Two methods for finding the inverse z-transform (the sampled time function from its
z-transform) will be described: (1) partial-fraction expansion and (2) the power
series method. Regardless of the method used, remember that since the z-transform
came from the sampled waveform, the inverse z-transform will yield only the values
of the time function at the sampling instants. Keep this in mind as we proceed,
because even as we obtain closed-form time functions as results, they are valid only
at sampling instants.

Inverse z-Transforms via Partial-Fraction Expansion Recall that the Laplace trans-
form consists of a partial fraction that yields a sum of terms leading to exponentials,
that is, A=ðsþ aÞ. Taking this lead and looking at Table 13.1, we find that sampled
exponential time functions are related to their z-transforms as follows:

e�akT ����!
z

z� eaT
ð13:19Þ

We thus predict that a partial-fraction expansion should be of the following form:

FðzÞ ¼ Az

z� z1
þ Bz

z� z2
þ � � � ð13:20Þ

Since our partial-fraction expansion of F(s) did not contain terms with s in the
numerator of the partial fractions, we first form FðzÞ=z to eliminate the z terms in
the numerator, perform a partial-fraction expansion of FðzÞ=z, and finally
multiply the result by z to replace the z’s in the numerator. An example follows.

Example 13.2

Inverse z-Transform via Partial-Fraction Expansion

PROBLEM: Given the function in Eq. (13.21), find the sampled time function.

FðzÞ ¼ 0:5z

ðz� 0:5Þðz� 0:7Þ ð13:21Þ

TABLE 13.2 z-transform theorems

Theorem Name

1. zfaf ðtÞg ¼ aFðzÞ Linearity theorem

2. zf f 1ðtÞ þ f 2ðtÞg ¼ F1ðzÞ þ F2ðzÞ Linearity theorem

3. zfe�aTf ðtÞg ¼ FðeaTzÞ Complex differentiation

4. zff ðt � nTÞg ¼ z�nFðzÞ Real translation

5. zft f ðtÞg ¼ �TzdFðzÞ
dz

Complex differentiation

6. f ð0Þ ¼ lim
z!1FðzÞ Initial value theorem

7. f ð1Þ ¼ lim
z!1
ð1� z�1ÞFðzÞ Final value theorem

Note: kT may be substituted for t in the table.
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SOLUTION: Begin by dividing Eq. (13.21) by z and performing a partial-fraction
expansion.

FðzÞ
z
¼ 0:5

ðz� 0:5Þðz� 0:7Þ ¼
A

z� 0:5
þ B

z� 0:7
¼ �2:5

z� 0:5
þ 2:5

z� 0:7
ð13:22Þ

Next, multiply through by z.

FðzÞ ¼ 0:5z

ðz� 0:5Þðz� 0:7Þ ¼
�2:5z

z� 0:5
þ 2:5z

z� 0:7
ð13:23Þ

Using Table 13.1, we find the inverse z-transform of each partial fraction. Hence,
the value of the time function at the sampling instants is

f ðkTÞ ¼ �2:5ð0:5Þk þ 2:5ð0:7Þk ð13:24Þ

Also, from Eqs. (13.7) and (13.24), the ideal sampled time function is

f �ðtÞ ¼
X1

k¼�1
f ðkTÞdðt � kTÞ ¼

X1
k¼�1

½�2:5ð0:5Þk þ 2:5ð0:7Þk�dðt � kTÞ ð13:25Þ

If we substitute k ¼ 0; 1; 2, and 3, we can find the first four samples of the ideal
sampled time waveform. Hence,

f �ðtÞ ¼ 0dðtÞ þ 0:5dðt � TÞ þ 0:6dðt � 2TÞ þ 0:545dðt � 3TÞ ð13:26Þ
Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch13sp2 in Appendix F located at www.wiley.com/
college/nise. You will learn how to find the inverse z-transform
of sampled time functions. Example 13.2 will be solved using
MATLAB and the Symbolic Math Toolbox.

Inverse z-Transform via the Power Series Method The values of the sampled time
waveform can also be found directly from F(z). Although this method does not yield
closed-form expressions for f (kT), it can be used for plotting. The method consists of
performing the indicated division, which yields a power series for F(z). The power
series can then be easily transformed into F �(s) and f �(t).

Example 13.3

Inverse z-Transform via Power Series

PROBLEM: Given the function in Eq. (13.21), find the sampled time function.

SOLUTION: Begin by converting the numerator and denominator of F(z) to
polynomials in z.

FðzÞ ¼ 0:5z

ðz� 0:5Þðz� 0:7Þ ¼
0:5z

z2 � 1:2zþ 0:35
ð13:27Þ
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Now perform the indicated division.

z2 � 1:2zþ 0:35
�
0:5z

0:5z�1 þ 0:6z�2 þ 0:545z�3

0:5z� 0:6þ 0:175z�1

0:6� 0:175z�1

0:6� 0:720z�1 þ 0:21

0:545z�1 � 0:21

ð13:28Þ

Using the numerator and the definition of z, we obtain

F�ðsÞ ¼ 0:5e�Ts þ 0:6e�2Ts þ 0:545e�3Ts þ � � � ð13:29Þ
from which

f �ðtÞ ¼ 0:5dðt � TÞ þ 0:6dðt � 2TÞ þ 0:545dðt � 3TÞ þ � � � ð13:30Þ
You should compare Eq. (13.30) with Eq. (13.26), the result obtained via

partial expansion.

Skill-Assessment Exercise 13.1

PROBLEM: Derive the z-transform for f ðtÞ ¼ sin vt uðtÞ.

ANSWER: FðzÞ ¼ z�1sinðvTÞ
1� 2z�1cosðvTÞ þ z�2

The complete solution is located at www.wiley.com/college/nise.

Skill-Assessment Exercise 13.2

PROBLEM: Find f ðkTÞ if FðzÞ ¼ zðzþ 1Þðzþ 2Þ
ðz� 0:5Þðz� 0:7Þðz� 0:9Þ.

ANSWER: f ðkTÞ ¼ 46:875ð0:5Þk � 114:75ð0:7Þk þ 68:875ð0:9Þk

The complete solution is located at www.wiley.com/college/nise.

13.4 Transfer Functions

Now that we have established the z-transform, let us apply it to physical systems by
finding transfer functions of sampled-data systems. Consider the continuous system
shown in Figure 13.8 (a). If the input is sampled as shown in Figure 13.8(b), the output is
still a continuous signal. If, however, we are satisfied with finding the output at the
sampling instants and not in between, the representation of the sampled-data system
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can be greatly simplified. Our assumption is visually described in Figure 13.8(c), where
the output is conceptually sampled in synchronization with the input by a phantom
sampler. Using the concept described in Figure 13.8(c), we derive the pulse transfer
function of G(s).

Derivation of the Pulse Transfer Function
Using Eq. (13.7), we find that the sampled input, r �(t), to the system of Figure 13.8(c) is

r�ðtÞ ¼
X1
n¼0

rðnTÞdðt � nTÞ ð13:31Þ

which is a sum of impulses. Since the impulse response of a system, G(s), is g(t), we
can write the time output of G(s) as the sum of impulse responses generated by the
input, Eq. (13.31). Thus,

cðtÞ ¼
X1
n¼0

rðnTÞgðt � nTÞ ð13:32Þ

From Eq. (13.10),

CðzÞ ¼
X1
k¼0

cðkTÞz�k ð13:33Þ

Using Eq. (13.32) with t ¼ kT, we obtain

cðkTÞ ¼
X1
n¼0

rðnTÞgðkT � nTÞ ð13:34Þ

Substituting Eq. (13.34) into Eq. (13.33), we obtain

CðzÞ ¼
X1
k¼0

X1
n¼0

rðnTÞg½ðk� nÞT�z�k ð13:35Þ

FIGURE 13.8 Sampled-data
systems: a. continuous;
b. sampled input; c. sampled
input and output

G(s)
C(s)R(s)

G(s)
C(s)R(s)

(a)

(b)

G(s)
C(s)R(s)

(c)

R  (s)

R  (s) C  (s)

Note:  Phantom sampler is shown in color.

*

*

*
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Letting m ¼ k� n, we find

CðzÞ ¼
X1

mþn¼0

X1
n¼0

rðnTÞgðmTÞz�ðmþnÞ

¼
X1
m¼0

gðmTÞz�m
( ) X1

n¼0

rðnTÞz�n
( ) ð13:36Þ

where the lower limit, mþ n, was changed to m. The reasoning is that mþ n ¼ 0
yields negative values of m for all n > 0. But, since gðmTÞ ¼ 0 for all m < 0, m is not
less than zero. Alternately, gðtÞ ¼ 0 for t < 0. Thus, n ¼ 0 in the first sum’s lower limit.

Using the definition of the z-transform, Eq. (13.36) becomes

CðzÞ ¼
X1
m¼0

gðmTÞz�m
X1
n¼0

rðnTÞz�n ¼ GðzÞRðzÞ ð13:37Þ

Equation (13.37) is a very important result, since it shows that the transform of the
sampled output is the product of the transforms of the sampled input and the pulse
transfer function of the system. Remember that although the output of the system is
a continuous function, we had to make an assumption of a sampled output (phantom
sampler) in order to arrive at the compact result of Eq. (13.37).

One way of finding the pulse transfer function, G(z), is to start with G(s), find
g(t), and then use Table 13.1 to find G(z). Let us look at an example.

Example 13.4

Converting G1(s) in Cascade with z.o.h. to G(z)

PROBLEM: Given a z.o.h. in cascade with G1ðsÞ ¼ ðsþ 2Þ=ðsþ 1Þ or

GðsÞ ¼ 1� e�Ts

s

ðsþ 2Þ
ðsþ 1Þ ð13:38Þ

find the sampled-data transfer function, G(z), if the sampling time, T, is 0.5 second.

SOLUTION: Equation (13.38) represents a common occurrence in digital control
systems, namely a transfer function in cascade with a zero-order hold. Specifically,
G1ðsÞ ¼ ðsþ 2Þ=ðsþ 1Þ is in cascade with a zero-order hold, ð1� e�TsÞ=s. We can
formulate a general solution to this type of problem by moving the s in the
denominator of the zero-order hold to G1ðsÞ, yielding

GðsÞ ¼ ð1� e�TsÞG1ðsÞ
s

ð13:39Þ

from which

GðzÞ ¼ ð1� z�1Þz G1ðsÞ
s

� �
¼ z� 1

z
z

G1ðsÞ
s

� �
ð13:40Þ

Thus, begin the solution by finding the impulse response (inverse Laplace trans-
form) of G1ðsÞ=s. Hence,

G2ðsÞ ¼ G1ðsÞ
s
¼ sþ 2

sðsþ 1Þ ¼
A

s
þ B

sþ 1
¼ 2

s
� 1

sþ 1
ð13:41Þ
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Taking the inverse Laplace transform, we get

g2ðtÞ ¼ 2� e�t ð13:42Þ
from which

g2ðkTÞ ¼ 2� e�kt ð13:43Þ
Using Table 13.1, we find

G2ðzÞ ¼ 2z

z� 1
� z

z� e�T
ð13:44Þ

Substituting T ¼ 0:5 yields

G2ðzÞ ¼ z
G1ðsÞ

s

� �
¼ 2z

z� 1
� z

z� 0:607
¼ z2 � 0:213z

ðz� 1Þðz� 0:607Þ ð13:45Þ

From Eq. (13.40),

GðzÞ ¼ z� 1

z
G2ðzÞ ¼ z� 0:213

z� 0:607
ð13:46Þ

StudentswhoareusingMATLABshouldnowrunch13p1inAppendixB.You
will learn how to use MATLAB to convert G1(s) in cascade with a zero-
order hold to G(z). This exercise solves Example 13.4 using MATLAB.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch13sp3 in Appendix F located at www.wiley.com/
college/nise. MATLAB’s Symbolic Math Toolbox yields an alterna-
tive method of finding the z-transform of a transfer function in
cascade with a zero-order hold. Example 13.4 will be solved using
MATLAB and the Symbolic Math Toolbox with a method that follows
closely the hand calculation shown in that example.

Students who are using MATLAB should now run ch13p2 in Appendix B.
You will learn how to use MATLAB to convert G(s) to G(z) when G(s) is
not in cascade with a zero-order hold. This is the same as finding
the z-transform of G(s).

Students who are using MATLAB should now run ch13p3 in Appendix B.
You will learn how to create digital transfer functions directly.

Students who are using MATLAB should now run ch13p4 in Appendix B.
You will learn how to use MATLAB to convert G(z) to G(s) when G(s) is
not in cascade with a zero-order hold. This is the same as finding
the Laplace transform of G(z).

Skill-Assessment Exercise 13.3

PROBLEM: Find G(z) for GðsÞ ¼ 8=ðsþ 4Þ in cascade with a zero-
order sample and hold. The sampling period is 0.25 second.

ANSWER: GðzÞ ¼ 1:264=ðz� 0:3679Þ
The complete solution is located at www.wiley.com/college/nise.

TryIt 13.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find
G1ðsÞ in Example 13.4 given
G(z) in Eq. (13.46)

num=0.213;
den=0.607;
k=1;
T=0.5;
Gz=zpk(num,den,K,T)
Gs=d2c(Gz, ’zoh ’)

TryIt 13.2

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to solve
Skill-Assessment Exercise 13.3.

Gs=zpk([],-4,8)
Gz=c2d(Gs,0.25,’zoh ’)
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The major discovery in this section is that once the pulse transfer function,G(z),
of a system is obtained, the transform of the sampled output response,C(z), for a given
sampled input can be evaluated using the relationship CðzÞ ¼ RðzÞGðzÞ. Finally, the
time function can be found by taking the inverse z-transform, as covered in Section
13.3. In the next section, we look at block diagram reduction for digital systems.

13.5 Block Diagram Reduction

Up to this point, we have defined the z-transform and the sampled-data system
transfer function and have shown how to obtain the sampled response. Basically, we
are paralleling our discussions of the Laplace transform in Chapters 2 and 4. We now
draw a parallel with some of the objectives of Chapter 5, namely block diagram
reduction. Our objective here is to be able to find the closed-loop sampled-data
transfer function of an arrangement of subsystems that have a computer in the loop.

When manipulating block diagrams for sampled-data systems, you must be careful
to remember the definition of the sampled-data system transfer function (derived in the
last section) to avoid mistakes. For example, zfG1ðsÞG2ðsÞg 6¼ G1ðzÞG2ðzÞ, where
zfG1ðsÞG2ðsÞg denotes the z-transform. The s-domain functions have to be multiplied
together before taking the z-transform. In the ensuing discussion, we use the notation
G1G2ðsÞ to denote a single function that is G1ðsÞG2ðsÞ after evaluating the product.
Hence, zfG1ðsÞG2ðsÞg ¼ zfG1G2ðsÞg ¼ G1G2ðzÞ 6¼ G1ðzÞG2ðzÞ.

Let us look at the sampled-data systems shown in Figure 13.9. The sampled-
data systems are shown under the column marked s. Their z-transforms are shown
under the column marked z. The standard system that we derived earlier is shown in
Figure 13.9(a), where the transform of the output, C(z), is equal to R(z)G(z). This
system forms the basis for the other entries in Figure 13.9.

InFigure13.9(b), thereisnosamplerbetweenG1ðsÞandG2ðsÞ.Thus,wecanthinkof
a single function, G1ðsÞG2ðsÞ, denoted G1G2ðsÞ, existing between the two samplers and
yielding a single transfer function, as shown in Figure 13.9(a). Hence, the pulse transfer
function is zfG1G2ðsÞg ¼ G1G2ðzÞ. The transform of the output,CðzÞ ¼ RðzÞG1G2ðzÞ.

In Figure 13.9(c), we have the cascaded two subsystems of the type shown in Figure
13.9(a). For this case, then, the z-transform is the product of the two z-transforms, or
G2ðzÞG1ðzÞ. Hence the transform of the output CðzÞ ¼ RðzÞG2ðzÞG1ðzÞ.

R(s) R*(s)
G(s)

C(s) C*(s)

(a)

(b)

(c)

(d)

R(s) R*(s) C(s) C*(s)

R(s) R*(s)
G2(s)

C(s) C*(s)
G1(s)

R(s)
G2(s)

C(s) C*(s)
G1(s)

R(s)G1(s) [R(s)G1(s)]*

G(z)

G2(z)G1(z)

G2(z)

R(z)

R(z)

R(z)

RG1(z)

C(z)

C(z)

C(z)

C(z)

G2G1(z)G2(s)G1(s)

s z

FIGURE 13.9 Sampled-data
systems and their z-transforms
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Finally, in Figure 13.9(d), we see that the continuous signal entering the
sampler is RðsÞG1ðsÞ. Thus, the model is the same as Figure 13.9(a) with R(s)
replaced by RðsÞG1ðsÞ, and G2ðsÞ in Figure 13.9(d) replacing G(s) in Figure 13.9(a).
The z-transform of the input to G2ðsÞ is zfRðsÞG1ðsÞg ¼ zfRG1ðsÞg ¼ RG1ðzÞ. The
pulse transfer function for the system G2ðsÞ is G2ðzÞ. Hence, the output
CðzÞ ¼ RG1ðzÞG2ðzÞ.

Using the basic forms shown in Figure 13.9, we can now find the z-transform of
feedback control systems. We have shown that any system, G(s), with sampled input
and sampled output, such as that shown in Figure 13.9(a), can be represented as a
sampled-data transfer function, G(z). Thus, we want to perform block diagram
manipulations that result in subsystems, as well as the entire feedback system, that
have sampled inputs and sampled outputs. Then we can make the transformation to
sampled-data transfer functions. An example follows.

Example 13.5

Pulse Transfer Function of a Feedback System

PROBLEM: Find the z-transform of the system shown in Figure 13.10(a).

SOLUTION: The objective of the problem is to proceed in an orderly fashion,
starting with the block diagram of Figure 13.10(a) and reducing it to the one shown
in Figure 13.10(f).

One operation we can always perform is to place a phantom sampler at the
output of any subsystem that has a sampled input, provided that the nature of the
signal sent to any other subsystem is not changed. For example in Figure 13.10(b),
phantom sampler S4 can be added. The justification for this, of course, is that the

FIGURE 13.10 Steps in block
diagram reduction of a
sampled-data system
(figure continues)

(b)

C(s)R*(s) +

– S1

R(s)

S2
G(s)

C*(s)

S4

S1S3
G(s)H(s)

(c)

C(s)R*(s) +

– S1

R(s)

S2
G(s)

C*(s)

S4

S3
H(s)

(a)

C(s)+

– S1

R(s)
G(s)

H(s)

Note:  Phantom samplers are shown in color.
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output of a sampled-data system can only be found at the sampling instants
anyway, and the signal is not an input to any other block.

Another operation that can be performed is to add phantom samplers S2 and
S3 at the input to a summing junction whose output is sampled. The justification for
this operation is that the sampled sum is equivalent to the sum of the sampled
inputs, provided, of course, that all samplers are synchronized.

Next, move sampler S1 and G(s) to the right past the pickoff point, as shown
in Figure 13.10(c). The motivation for this move is to yield a sampler at the input of
G(s)H(s) to match Figure 13.9(b). Also, G(s) with sampler S1 at the input and
sampler S4 at the output matches Figure 13.9(a). The closed-loop system now has a
sampled input and a sampled output.

G(s)H(s) with samplers S1 and S3 becomes GH(z), and G(s) with samplers S1
and S4 becomes G(z), as shown in Figure 13.10(d). Also, converting R�(s) to R(z)
and C�(s) to C(z), we now have the system represented totally in the z-domain.

The equations derived in Chapter 5 for transfer functions represented with
the Laplace transform can be used for sampled-data transfer functions with only a
change in variables from s to z.Thus, using the feedback formula, we obtain the first
block of Figure 13.10(e). Finally, multiplication of the cascaded sampled-data
systems yields the final result shown in Figure 13.10(f).

Skill-Assessment Exercise 13.4

PROBLEM: Find TðzÞ ¼ CðzÞ=RðzÞ for the system shown in Figure 13.11.

ANSWER: TðzÞ ¼ G1G2ðzÞ
1þHG1G2ðzÞ

The complete solution is located at www.wiley.com/college/nise.

C(z)R(z) +

–
G(z)

GH(z)

(d)

C(z)G(z)
1 + GH(z)

( f )

R(z)C(z)1
1 + GH(z)

(e)

R(z)
G(z)

FIGURE 13.10 (Continued)

R(s)
G1(s)

+

–
G2(s)

C(s)

H(s)

FIGURE 13.11 Digital system
for Skill-Assessment Exercise
13.4
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This section paralleled Chapter 5 by showing how to obtain the closed-loop,
sampled-data transfer function for a collection of subsystems. The next section
parallels the discussion of stability in Chapter 6.

13.6 Stability

The glaring difference between analog feedback control systems and digital feed-
back control systems, such as the one shown in Figure 13.12, is the effect that the
sampling rate has on the transient response. Changes in sampling rate not only
change the nature of the response from overdamped to underdamped, but also can
turn a stable system into an unstable one. As we proceed with our discussion, these
effects will become apparent. You are encouraged to be on the lookout.

We now discuss the stability of digital systems from two perspectives:
(1) z-plane and (2) s-plane. We will see that the Routh-Hurwitz criterion can be
used only if we perform our analysis and design on the s-plane.

Digital System Stability via the z-Plane
In the s-plane, the region of stability is the left half-plane. If the transfer function, G(s),
is transformed into a sampled-data transfer function,G(z), the region of stability on the
z-plane can be evaluated from the definition, z ¼ eTs. Letting s ¼ aþ jv, we obtain

z ¼ eTs ¼ eTðaþjvÞ ¼ eaTe jvT

¼ eaTðcos vT þ j sin vTÞ
¼ eaT—vT ð13:47Þ

since ðcos vT þ j sin vTÞ ¼ 1—vT.
Each region of the s-plane can be mapped into a corresponding region on the

z-plane (see Figure 13.13). Points that have positive values of a are in the right half

FIGURE 13.12 A lathe using digital numerical control (# David J. Green—Industry/Alamy)
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of the s-plane, region C. From Eq. (13.47), the magnitudes of the mapped points are
eaT > 1. Thus points in the right half of the s-plane map into points outside the unit
circle on the z-plane.

Points on the jv-axis, region B, have zero values of a and yield points on the
z-plane with magnitude¼ 1, the unit circle. Hence, points on the jv-axis in the
s-plane map into points on the unit circle on the z-plane.

Finally, points on the s-plane that yield negative values of a a(left–half-plane
roots, region A) map into the inside of the unit circle on the z-plane.

Thus, a digital control system is (1) stable if all poles of the closed-loop transfer
function, T(z), are inside the unit circle on the z-plane, (2) unstable if any pole is
outside the unit circle and/or there are poles of multiplicity greater than one on the
unit circle, and (3) marginally stable if poles of multiplicity one are on the unit circle
and all other poles are inside the unit circle. Let us look at an example.

Example 13.6

Modeling and Stability

PROBLEM: The missile shown in Figure 13.14(a) can be aerodynamically controlled
by torques created by the deflection of control surfaces on the missile’s body. The
commands to deflect these control surfaces come from a computer that uses tracking
data along with programmed guidance equations to determine whether the missile is
on track. The information from the guidance equations is used to develop flight-
control commands for the missile. A simplified model is shown in Figure 13.14(b).
Here the computer performs the function of controller by using tracking information
to develop input commands to the missile. An accelerometer in the missile detects the
actual acceleration, which is fed back to the computer. Find the closed-loop digital
transfer function for this system and determine if the system is stable for K ¼ 20 and
K ¼ 100 with a sampling interval of T ¼ 0:1 second.

SOLUTION: The input to the control system is an acceleration command developed
by the computer. The computer can be modeled by a sample-and-hold. The s-plane
model is shown in Figure 13.14(c). The first step in finding the z-plane model is to
find G(z), the forward-path transfer function. From Figure 13.14(c) or (d),

GðsÞ ¼ 1� e�Ts

s

Ka

sðsþ aÞ ð13:48Þ

C

Im

s-plane

Re

Im

z-plane

Re

C

A A

B

B

FIGURE 13.13 Mapping
regions of the s-plane onto the
z-plane
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where a ¼ 27. The z-transform, G(z), is ð1� z�1ÞzfKa=½s2ðsþ aÞ�g.
The term Ka=½s2ðsþ aÞ� is first expanded by partial fractions, after which we

find the z-transform of each term from Table 13.1. Hence,

z
Ka

s2ðsþ aÞ
� �

¼ Kz
a

s2ðsþ aÞ
� �

¼ Kz
1

s2
� 1=a

s
þ 1=a

sþ a

� �

¼ K
Tz

ðz� 1Þ2 �
z=a

z� 1
þ z=a

z� e�aT

( )

¼ K
Tz

ðz� 1Þ2 �
ð1� e�aTÞz

aðz� 1Þðz� e�aTÞ

( )
ð13:49Þ

Thus,

GðzÞ ¼ K

Tðz� e�aTÞ � ðz� 1Þ 1� e�aT

a

� �

ðz� 1Þðz� e�aTÞ

8>><
>>:

9>>=
>>;

ð13:50Þ

FIGURE 13.14 Finding stability
of a missile control system:
a. missile; b. conceptual block
diagram; c. block diagram;
d. block diagram with
equivalent single sampler

Control
surfaces

A/D Computer D/A
Amplifier

K
Airframe
dynamics

A/D

Tracking
data

Missile
acceleration

K1 – e – Ts

s
27

s(s + 27)

+

–

Acceleration
command

Sample Hold Amplifier
Airframe
dynamics Missile

acceleration

K
s

27
s(s + 27)

+

–

Acceleration
command

Sample Amplifier
Airframe
dynamics Missile

acceleration

(b)

(c)

(d)

(a)

1 – e– Ts

Sample

Hold
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Letting T ¼ 0:1 and a ¼ 27, we have

GðzÞ ¼ Kð0:0655zþ 0:02783Þ
ðz� 1Þðz� 0:0672Þ ð13:51Þ

Finally, we find the closed-loop transfer function,T(z), for a unity feedback system:

TðzÞ ¼ GðzÞ
1þGðzÞ ¼

Kð0:0655zþ 0:02783Þ
z2 þ ð0:0655K � 1:0672Þzþ ð0:02783K þ 0:0672Þ ð13:52Þ

The stability of the system is found by finding the roots of the denominator.
For K ¼ 20, the roots of the denominator are 0:12� j0:78. The system is thus stable
for K ¼ 20, since the poles are inside the unit circle. For K ¼ 100, the poles are at
�0.58 and �4.9. Since one of the poles is outside the unit circle, the system is
unstable for K ¼ 100.

Students who are using MATLAB should now run ch13p5 in Appendix B.
You will learn how to use MATLAB to determine the range of K for
stability in a digital system. This exercise solves Example 13.6
using MATLAB.

In the case of continuous systems, the determination of stability hinges upon
our ability to determine whether the roots of the denominator of the closed-loop
transfer function are in the stable region of the s-plane. The problem for high-order
systems is complicated by the fact that the closed-loop transfer function denomina-
tor is in polynomial form, not factored form. The same problem surfaces with closed-
loop sampled-data transfer functions.

Tabular methods for determining stability, such as the Routh-Hurwitz method
used for higher-order continuous systems, exist for sampled-data systems. These
methods, which are not covered in this introductory chapter to digital control systems,
can be used to determine stability in higher-order digital systems. If you wish to go
further into the area of digital system stability, you are encouraged to look at Raible’s
tabular method or Jury’s stability test for determining the number of a sampled-data
system’s closed-loop poles that exist outside the unit circle and thus indicate instability.2

The following example demonstrates the effect of sampling rate on the stability
of a closed-loop feedback control system. All parameters are constant except for the
sampling interval, T. We will see that varying T will lead us through regions of
stability and instability just as though we were varying the forward-path gain, K.

Example 13.7

Range of T for Stability

PROBLEM: Determine the range of sampling interval, T, that will make the system
shown in Figure 13.15 stable, and the range that will make it unstable.

SOLUTION: Since HðsÞ ¼ 1, the z-transform of the closed-loop system, T(z), is
found from Figure 13.10 to be

TðzÞ ¼ GðzÞ
1þGðzÞ ð13:53Þ

2 A discussion of Raible’s tabular method and Jury’s stability test can be found in Kuo (1980: 278–286).
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To find G(z), first find the partial-fraction expansion of G(s).

GðsÞ ¼ 10
1� e�Ts

sðsþ 1Þ ¼ 10ð1� e�TsÞ 1

s
� 1

sþ 1

� �
ð13:54Þ

Taking the z-transform, we obtain

GðzÞ ¼ 10ðz� 1Þ
z

z

z� 1
� z

z� e�T

� �
¼ 10

ð1� e�TÞ
ðz� e�TÞ ð13:55Þ

Substituting Eq. (13.55) into (13.53) yields

TðzÞ ¼ 10ð1� e�TÞ
z� ð11e�T � 10Þ ð13:56Þ

The pole of Eq. (13.56), ð11e�T � 10Þ, monotonically decreases fromþ1 to�1 for
0 < T < 0:2. For 0:2 < T <1; ð11e�T � 10Þmonotonically decreases from�1 to
�10. Thus, the pole of T(z) will be inside the unit circle, and the system will be
stable if 0 < T < 0:2. In terms of frequency, where f ¼ 1=T, the system will be
stable as long as the sampling frequency is 1=0:2 ¼ 5 hertz or greater.

We now have found, via the z-plane, that sampled systems are stable if their
poles are inside the unit circle. Unfortunately, this stability criterion precludes the
use of the Routh-Hurwitz criterion, which detects roots in the right half-plane rather
than outside the unit circle. However, another method exists that allows us to use the
familiar s-plane and the Routh-Hurwitz criterion to determine the stability of a
sampled system. Let us introduce this topic.

Bilinear Transformations
Bilinear transformations give us the ability to apply our s-plane analysis and design
techniques to digital systems. We can analyze and design on the s-plane as we have
done in Chapters 8 and 9 and then, using these transformations, convert the results to
a digital system that contains the same properties. Let us look further into this topic.

We can consider z ¼ eTs and its inverse, s ¼ ð1=TÞ ln z, as the exact transfor-
mations between z and s. Thus, if we have G(z) and substitute z ¼ eTs, we obtain
GðeTsÞ as the result of converting to s. Similarly, if we have G(s) and substitute
s ¼ ð1=TÞln z, we obtain G((1/T)ln z) as the result of converting to z. Unfortunately,
both transformations yield transcendental functions, which we of course take care of
through the rather complicated z-transform.

What we would like is a simple transformation that would yield linear
arguments when transforming in both directions (bilinear) through direct substitu-
tion and without the complicated z-transform.

Bilinear transformations of the form

z ¼ asþ b

csþ d
ð13:57Þ

FIGURE 13.15 Digital system
for Example 13.7

C(s)R(s) +

–

PlantHold

T

1– e–Ts

s
10

s + 1
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and its inverse,

s ¼ �dzþ b

cz� a
ð13:58Þ

have been derived to yield linear variables in s and z. Different values of a, b, c, and d
have been derived for particular applications and yield various degrees of accuracy
when comparing properties of the continuous and sampled functions.

For example, in the next subsection we will see that a particular choice
of coefficients will take points on the unit circle and map them into points on
the jv-axis. Points outside the unit circle will be mapped into the right half-plane, and
points inside the unit circle will be mapped into the left half-plane. Thus, we will be
able to make a simple transformation from the z-plane to the s-plane and obtain
stability information about the digital system by working in the s-plane.

Since the transformations are not exact, only the property for which they are
designed can be relied upon. For the stability transformation just discussed, we
cannot expect the resulting G(s) to have the same transient response as G(z).
Another transformation will be covered that will retain that property.

Digital System Stability via the s-Plane
In this subsection, we look at a bilinear transformation that maps jv-axis points on
the s-plane to unit-circle points on the z-plane. Further, the transformation maps
right–half-plane points on the s-plane to points outside the unit circle on the z-plane.
Finally, the transformation maps left–half-plane points on the s-plane to points
inside the unit circle on the z-plane. Thus, we are able to transform the denominator
of the pulsed transfer function, D(z), to the denominator of a continuous transfer
function, D(s), and use the Routh-Hurwitz criterion to determine stability.

The bilinear transformation

s ¼ zþ 1

z� 1
ð13:59Þ

and its inverse

z ¼ sþ 1

s� 1
ð13:60Þ

perform the required transformation (Kuo, 1995). We can show this fact as follows:
Letting s ¼ aþ jv and substituting into Eq. (13.60),

z ¼ ðaþ 1Þ þ jv

ða� 1Þ þ jv
ð13:61Þ

from which

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þ2 þ v2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þ2 þ v2

q ð13:62Þ

Thus,

jzj < 1 when a < 0 ð13:63aÞ
jzj > 1 when a > 0 ð13:63bÞ
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and

jzj ¼ 1 when a ¼ 0 ð13:63cÞ
Let us look at an example that shows how the stability of sampled systems can be
found using this bilinear transformation and the Routh-Hurwit criterion.

Example 13.8

Stability via Routh-Hurwitz

PROBLEM: Given TðzÞ ¼ NðzÞ=DðzÞ, where DðzÞ ¼ z3 � z2 � 0:2zþ 0:1, use the
Routh-Hurwitz criterion to find the number of z-plane poles of T(z) inside, outside,
and on the unit circle. Is the system stable?

SOLUTION: Substitute Eq. (13.60) into DðzÞ ¼ 0 and obtain3

s3 � 19s2 � 45s� 17 ¼ 0 ð13:64Þ
The Routh table for Eq. (13.64), Table 13.3, shows one root in the right–half-

plane and two roots in the left–half-plane. Hence, T(z) has one pole outside the unit
circle, no poles on the unit circle, and two poles inside the unit circle. The system is
unstable because of the pole outside the unit circle.

Skill-Assessment Exercise 13.5

PROBLEM: Determine the range of sampling interval, T, that will make the system
shown in Figure 13.16 stable.

ANSWER: 0 < T < 0:1022 second

The complete solution is located at www.wiley.com/college/nise.

TABLE 13.3 Routh table for Example 13.8

s3 1 �45

s2 19 �17

s1 �45.89 0

s0 �17 0

FIGURE 13.16 Digital system
for Skill-Assessment
Exercise 13.5

C(s)R(s) +

–

PlantHold

T

1– e–Ts

s
20

s + 5

3 Symbolic math software, such as MATLAB’s Symbolic Math Toolbox, is recommended to reduce the
labor required to perform the transformation.
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Skill-Assessment Exercise 13.6

PROBLEM: Given TðzÞ ¼ NðzÞ=DðzÞ, where DðzÞ ¼ z3 � z2 � 0:5zþ 0:3, use the
Routh-Hurwitz criterion to find the number of z-plane poles of T(z) inside, outside,
and on the unit circle. Is the system stable?

ANSWER: T(z) has one pole outside the unit circle, no poles on the unit circle, and
two poles inside the unit circle. The system is unstable.

The complete solution is located at www.wiley.com/college/nise.

In this section, we covered the concepts of stability for digital systems. Both
z- and s-plane perspectives were discussed. Using a bilinear transformation, we are
able to use the Routh-Hurwitz criterion to determine stability.

The highlight of the section is that sampling rate (along with system parame-
ters, such as gain and component values) helps to determine or destroy the stability
of a digital system. In general, if the sampling rate is too slow, the closed-loop digital
system will be unstable. We now move from stability to steady-state errors, paral-
leling our previous discussion of steady-state errors in analog systems.

13.7 Steady-State Errors

We now examine the effect of sampling upon the steady-state error for digital systems.
Any general conclusion about the steady-state error is difficult because of the
dependence of those conclusions upon the placement of the sampler in the loop.
Remember that the position of the sampler could change the open-loop transfer
function. In the discussion of analog systems, there was only one open-loop transfer
function, G(s), upon which the general theory of steady-state error was based and from
which came the standard definitions of static error constants. For digital systems,
however, the placement of the sampler changes the open-loop transfer function and
thus precludes any general conclusions. In this section, we assume the typical place-
ment of the sampler after the error and in the position of the cascade controller, and we
derive our conclusions accordingly about the steady-state error of digital systems.

Consider the digital system in Figure 13.17(a), where the digital computer is
represented by the sampler and zero-order hold. The transfer function of the plant is
represented by G1(s) and the transfer function of the z.o.h. by ð1� e�TsÞ=s. Letting G(s)
equal theproductofthez.o.h.andG1(s),andusingtheblockdiagramreductiontechniques
for sampled-data systems, we can find the sampled error,E�ðsÞ ¼ EðzÞ. Adding synchro-
nous samplers at the input and the feedback, we obtain Figure 13.17(b). Pushing G(s)
and its input sampler to the right past the pickoff point yields Figure 13.17(c). Using
Figure 13.9(a), we can convert each block to its z-transform, resulting in Figure 13.17(d).

From this figure, EðzÞ ¼ RðzÞ � EðzÞGðzÞ, or

EðzÞ ¼ RðzÞ
1þGðzÞ ð13:65Þ

The final value theorem for discrete signals states that

e�ð1Þ ¼ lim
z!1
ð1� z�1ÞEðzÞ ð13:66Þ
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where e�ð1Þ is the final sampled value of e(t), or (alternatively) the final value of
e(kT).4

Using the final value theorem on Eq. (13.65), we find that the sampled steady-
state error, e�ð1Þ, for unity negative-feedback systems is

e�ð1Þ ¼ lim
z!1
ð1� z�1ÞEðzÞ ¼ lim

z!1
ð1� z�1Þ RðzÞ

1þGðzÞ ð13:67Þ

Equation (13.67) must now be evaluated for each input: step, ramp, and parabola.

Unit Step Input
For a unit step input, RðsÞ ¼ 1=s. From Table 13.1,

RðzÞ ¼ z

z� 1
ð13:68Þ

Substituting Eq. (13.68) into Eq. (13.67), we have

e�ð1Þ ¼ 1

1þ lim
z!1

GðzÞ ð13:69Þ

FIGURE 13.17 a. Digital
feedback control system for
evaluation of steady-state errors;
b. phantom samplers added;
c. pushing G(s) and its samplers
to the right past the pickoff
point; d. z-transform
equivalent system

(b)

C(s)R*(s) +

– T

R(s)

T
G(s)

C*(s)

T
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G(s)

(c)

C(z)R(z) +

–
G(z)

G(z)

(d)

C(s)R*(s) +

– T

R(s)

T
G(s)

T

T

(a)

C(s)+

– T

R(s)
G1(s)

E*(s)

E*(s) E*(s)

1 – e–Ts

s

E*(s) E*(s)

E(z)

Note:  Phantom samplers are shown in color.

C*(s)

4 See Ogata (1987: 59) for a derivation.
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Defining the static error constant, Kp, as

Kp ¼ lim
z!1

GðzÞ ð13:70Þ

we rewrite Eq. (13.69) as

e�ð1Þ ¼ 1

1þKp
ð13:71Þ

Unit Ramp Input
For a unit ramp input, RðzÞ ¼ Tz=ðz� 1Þ2. Following the procedure for the step
input, you can derive the fact that

e�ð1Þ ¼ 1

Kv
ð13:72Þ

where

Kv ¼ 1

T
lim
z!1
ðz� 1ÞGðzÞ ð13:73Þ

Unit Parabolic Input
For a unit parabolic input, RðzÞ ¼ T2z=ðzþ 1Þ=½2ðz� 1Þ3�. Similarly,

e�ð1Þ ¼ 1

Ka
ð13:74Þ

where

Ka ¼ 1

T2 lim
z!1
ðz� 1Þ2GðzÞ ð13:75Þ

Summary of Steady-State Errors
The equations developed above for e�ð1Þ, Kp, Kv, and Ka are similar to the
equations developed for analog systems. Whereas multiple pole placement at the
origin of the s-plane reduced steady-state errors to zero in the analog case, we can
see that multiple pole placement at z ¼ 1 reduces the steady-state error to zero for
digital systems of the type discussed in this section. This conclusion makes sense
when one considers that s ¼ 0 maps into z ¼ 1 under z ¼ eTs.

For example, for a step input, we see that if G(z) in Eq. (13.69) has one pole at
z ¼ 1, the limit will become infinite, and the steady-state error will reduce to zero.

For a ramp input, if G(z) in Eq. (13.73) has two poles at z ¼ 1, the limit will
become infinite, and the error will reduce to zero.

Similar conclusions can be drawn for the parabolic input and Eq. (13.75). Here,
G(z) needs three poles at z ¼ 1 in order for the steady-state error to be zero. Let us
look at an example.
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Example 13.9

Finding Steady-State Error

PROBLEM: For step, ramp, and parabolic inputs, find the steady-state error for the
feedback control system shown in Figure 13.17(a) if

G1ðsÞ ¼ 10

sðsþ 1Þ ð13:76Þ

SOLUTION: First find G(s), the product of the z.o.h. and the plant.

GðsÞ ¼ 10ð1� e�TsÞ
s2ðsþ 1Þ ¼ 10ð1� e�TsÞ 1

s2
� 1

s
þ 1

sþ 1

� �
ð13:77Þ

The z-transform is then

GðzÞ ¼ 10ð1� z�1Þ Tz

ðz� 1Þ2 �
z

z� 1
þ z

z� e�T

" #

¼ 10
T

z� 1
� 1þ z� 1

z� e�T

� �
ð13:78Þ

For a step input,

Kp ¼ lim
z!1

GðzÞ ¼ 1; e�ð1Þ ¼ 1

1þKp
¼ 0 ð13:79Þ

For a ramp input,

Kv ¼ 1

T
lim
z!1
ðz� 1ÞGðzÞ ¼ 10; e�ð1Þ ¼ 1

Kv
¼ 0:1 ð13:80Þ

For a parabolic input,

Ka ¼ 1

T 2 lim
z!1
ðz� 1Þ2GðzÞ ¼ 0; e�ð1Þ ¼ 1

Ka
¼ 1 ð13:81Þ

You will notice that the answers obtained are the same as the results obtained
for the analog system. However, since stability depends upon the sampling interval,
be sure to check the stability of the system after a sampling interval is established
before making steady-state error calculations.

Students who are using MATLAB should now run ch13p6 in Appendix B.
You will learn how to use MATLAB to determine Kp, Kv, and Ka in a
digital system as well as check the stability. This exercise
solves Example 13.9 using MATLAB.

Skill-Assessment Exercise 13.7

PROBLEM: For step, ramp, and parabolic inputs, find the steady-state error for the
feedback control system shown in Figure 13.17(a) if

G1ðsÞ ¼ 20ðsþ 3Þ
ðsþ 4Þðsþ 5Þ

Let T ¼ 0:1 second. Repeat for T ¼ 0:5 second.

ANSWER: ForT ¼ 0:1 second,Kp ¼ 3; Kv ¼ 0, andKa ¼ 0; forT ¼ 0:5 second, the
system is unstable.

The complete solution is located at www.wiley.com/college/nise.
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In this section, we discussed and evaluated the steady-state error of digital
systems for step, ramp, and parabolic inputs. The equations for steady-state error
parallel those for analog systems. Even the definitions of the static error constants
were similar. Poles at the origin of the s-plane for analog systems were replaced with
poles at þ1 on the z-plane to improve the steady-state error. We continue our
parallel discussion by moving into a discussion of transient response and the root
locus for digital systems.

13.8 Transient Response on the z-Plane
Recall that for analog systems a transient response requirement was specified by
selecting a closed-loop, s-plane pole. In Chapter 8, the closed-loop pole was on the
existing root locus, and the design consisted of a simple gain adjustment. If the
closed-loop pole was not on the existing root locus, then a cascade compensator was
designed to reshape the original root locus to go through the desired closed-loop
pole. A gain adjustment then completed the design.

In the next two sections, we want to parallel the described analog methods and
apply similar techniques to digital systems. For this introductory chapter, we will
parallel the discussion through design via gain adjustment. The design of compen-
sation is left to you to pursue in an advanced course.

Chapter 4 established the relationships between transient response and the
s-plane. We saw that vertical lines on the s-plane were lines of constant settling time,
horizontal lines were lines of constant peak time, and radial lines were lines of
constant percent overshoot. In order to draw equivalent conclusions on the z-plane,
we now map those lines through z ¼ esT .

The vertical lines on the s-plane are lines of constant settling time and are
characterized by the equation s ¼ s1 þ jv, where the real part, s1 ¼ �4=Ts, is constant
and is in the left–half-plane for stability. Substituting this into z ¼ esT, we obtain

z ¼ e s1Te jvT ¼ r1e
jvT ð13:82Þ

Equation (13.82) denotes concentric circles of radius r1. If s1 is positive, the circle has
a larger radius than the unit circle. On the other hand, if s1 is negative, the circle has a
smaller radius than the unit circle. The circles of constant settling time, normalized to
the sampling interval, are shown in Figure 13.18 with radius es1T ¼ e�4=ðTs=TÞ. Also,
Ts=T ¼ �4=lnðrÞ, where r is the radius of the circle of constant settling time.

The horizontal lines are lines of constant peak time. The lines are characterized
by the equation s ¼ s þ jv1, where the imaginary part, v1 ¼ p=Tp, is constant.
Substituting this into z ¼ e sT, we obtain

z ¼ e sTe jv1T ¼ esTe j u1 ð13:83Þ
Equation (13.83) represents radial lines at an angle of u1. If s is negative, that section
of the radial line lies inside the unit circle. If s is positive, that section of the radial
line lies outside the unit circle. The lines of constant peak time normalized to the
sampling interval are shown in Figure 13.18. The angle of each radial line is
v1T ¼ u1 ¼ p=ðTp=TÞ, from which Tp=T ¼ p=u1.

Finally, we map the radial lines of the s-plane onto the z-plane. Remember,
these radial lines are lines of constant percent overshoot on the s-plane. From Figure
13.19, these radial lines are represented by

s

v
¼ �tanðsin�1zÞ ¼ � zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p ð13:84Þ
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Hence,

s ¼ s þ jv ¼ �v zffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p þ jv ð13:85Þ

Transforming Eq. (13.85) to the z-plane yields

z ¼ e sT ¼ e�vT


z/
ffiffiffiffiffiffiffiffi
1�z2
p �

e jvT ¼ e�vT


z/
ffiffiffiffiffiffiffiffi
1�z2
p �

—vT ð13:86Þ

FIGURE 13.18 Constant
damping ratio, normalized
settling time, and normalized
peak time plots on the z-plane
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Thus, given a desired damping ratio, z, Eq. (13.86) can be plotted on the z-plane
through a range of vT as shown in Figure 13.18. These curves can then be used as
constant percent overshoot curves on the z-plane.

This section has set the stage for the analysis and design of transient
response for digital systems. In the next section, we apply the results to digital
systems using the root locus.

13.9 Gain Design on the z-Plane
In this section, we plot root loci and determine the gain required for stability
as well as the gain required to meet a transient response requirement. Since
the open-loop and closed-loop transfer functions for the generic digital
system shown in Figure 13.20 are identical to the continuous system except
for a change in variables from s to z, we can use the same rules for plotting a
root locus.

However, from our previous discussion, the region of stability on the
z-plane is within the unit circle and not the left half-plane. Thus, in order to
determine stability, we must search for the intersection of the root locus with the unit
circle rather than the imaginary axis.

In the last section, we derived the curves of constant settling time, peak time,
and damping ratio. In order to design a digital system for transient response, we find
the intersection of the root locus with the appropriate curves as they appear on the z-
plane in Figure 13.18. Let us look at the following example.

Example 13.10

Stability Design via Root Locus

PROBLEM: Sketch the root locus for the system shown in Figure 13.21. Also,
determine the range of gain, K, for stability from the root locus plot.

SOLUTION: Treat the system as if z were s, and sketch the root locus. The result is
shown in Figure 13.22. Using the root locus program discussed in Appendix H.2 at
www.wiley.com/college/nise, search along the unit circle for 180�. Identification of
the gain, K, at this point yields the range of gain for stability. Using the program, we
find that the intersection of the root locus with the unit circle is 1—60�. The gain at
this point is 0.5. Hence, the range of gain for stability is 0 < K < 0:5.

Students who are using MATLAB should now run ch13p7 in Appendix B.
You will learn how to use MATLAB to plot a root locus on the z-plane
as well as superimpose the unit circle. You will learn how to
select interactively the intersection of the root locus and the
unit circle to obtain the value of gain for stability. This
exercise solves Example 13.10 using MATLAB.

R(z)

–
G(z)

H(z)

C(z)+

FIGURE 13.20 Generic digital feedback
control system

K(z + 1)
(z – 1)(z – 0.5)

+

–

R(z) C(z)
FIGURE 13.21 Digital
feedback control for
Example 13.10
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In the next example, we design the value of gain, K, in Figure 13.21 to meet a
transient response specification. The problem is handled similarly to the analog system
design, where we found the gain at the point where the root locus crossed the specified
damping ratio, settling time, or peak time curve. In digital systems, these curves are as
shown in Figure 13.18. In summary, then, draw the root locus of the digital system and
superimpose the curves of Figure 13.18. Then find out where the root locus intersects the
desired damping ratio, settling time, or peak time curve and evaluate the gain at that
point. In order to simplify the calculations and obtain more accurate results, draw a radial
line through the point where the root locus intersects the appropriate curve. Measure the
angle of this line and use the root locus program in Appendix H.2 at www.wiley.com/
college/nise to search along this radial line for the point of intersection with the root locus.

Example 13.11

Transient Response Design via Gain Adjustment

PROBLEM: For the system of Figure 13.21, find the value of gain, K, to yield a
damping ratio of 0.7.

SOLUTION: Figure 13.23 shows the constant damping ratio curves superimposed
over the root locus for the system as determined from the last example. Draw a
radial line from the origin to the intersection of the root locus with the 0.7 damping
ratio curve (a 16.62� line). The root locus program discussed in Appendix H.2 at
www.wiley.com/college/nise can now be used to obtain the gain by searching along
a 16.62� line for 180�, the intersection with the root locus. The results of the
program show that the gain, K, is 0.0627 at 0:719þ j 0:215, the point where the 0.7
damping ratio curve intersects the root locus.

–3.00 –1.50 0 1.50 3.00

–3.00

–2.25

2.25

3.00

z-plane

Unit circle

Root locus

Re

Im

–0.75

0.75

–1.50

1.50

FIGURE 13.22 Root locus for the system of Figure 13.21
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We can now check our design by finding the unit sampled step response of the
system of Figure 13.21. Using our design, K ¼ 0:0627, along with RðzÞ ¼ z=ðz� 1Þ,
a sampled step input, we find the sampled output to be

CðzÞ ¼ RðzÞGðzÞ
1þGðzÞ ¼

0:0627z2 þ 0:0627z

z3 � 2:4373z2 þ 2z� 0:5627
ð13:87Þ

Performing the indicated division, we obtain the output valid at the sampling
instants, as shown in Figure 13.24. Since the overshoot is approximately 5%, the
requirement of a 0.7 damping ratio has been met. You should remember, however,
that the plot is valid only at integer values of the sampling instants.

Students who are using MATLAB should now run ch13p8 in Appendix B.
YouwilllearnhowtouseMATLABtoplotarootlocusonthez-planeas
well as superimpose a grid of damping ratio curves. You will learn
how to obtain the gain and a closed-loop step response of a digital
system after interactively selecting the operating point on the
root locus. This exercise solves Example 13.11 using MATLAB.

z-plane

ζ = 0.7 Root locus

16.62°
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FIGURE 13.23 Root locus for
the system of Figure 13.21 with
constant 0.7 damping ratio
curve
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FIGURE 13.24 Sampled step
response of the system of
Figure 13.21 with K ¼ 0:0627
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Skill-Assessment Exercise 13.8

PROBLEM: For the system of Figure 13.20 where HðzÞ ¼ 1 and

GðzÞ ¼ Kðzþ 0:5Þ
ðz� 0:25Þðz� 0:75Þ

find the value of gain, K, to yield a damping ratio of 0.5.

ANSWER: K ¼ 0:31

The complete solution is at www.wiley.com/college/nise.

MATLAB’s Simulink provides an alternative method of simulating
digital systems to obtain the time response. Students who are
performing the MATLAB exercises and want to explore the added
capability of Simulink should now consult Appendix C, MATLAB’s
Simulink Tutorial. Example C.4 in the tutorial shows how to use
Simulink to simulate digital systems.

MATLAB’s LTI Viewer provides another method of simulating digital
systems to obtain the time response. Students who are performing
the MATLAB exercises and want to explore the added capability of
MATLAB’s LTI Viewer should now consult Appendix E at www.wiley.
com/college/nise, which contains a tutorial on the LTI Viewer as
well as some examples. One of the illustrative examples, Example
E.5, finds the closed-loop step response of a digital system using
the LTI Viewer.

In this section, we used the root locus and gain adjustment to design the
transient response of a digital system. This method suffers the same drawbacks as
when it was applied to analog systems; namely, if the root locus does not intersect a
desired design point, then a simple gain adjustment will not accomplish the design
objective. Techniques to design compensation for digital systems can then be
applied.

13.10 Cascade Compensation via the s-Plane
In previous sections of this chapter, we analyzed and designed digital systems
directly in the z-domain up to and including design via gain adjustment. We are
now ready to design digital compensators, such as those covered in Chapters 9 and
11. Rather than continuing on this path of design directly in the z-domain, we depart
by covering analysis and design techniques that allow us to make use of previous
chapters by designing on the s-plane and then transforming our s-plane design to a

TryIt 13.3

Use MATLAB, the Control System
Toolbox, and the following statements
to solve Skill-Assessment Exercise
13.8.

Gz=zpk(-0.5,[0.25,0.75],...
1, [])
rlocus(Gz)
zgrid(0.5, [])
[K,p]¼rlocfind (Gz)

Note: When the root locus appears,
click on the intersection of the 0.5
damping ratio curve and the root locus
to calculate the gain.
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digital implementation. We covered one aspect of s-plane analysis in Section 13.6,
where we used a bilinear transformation to analyze stability. We now continue with
s-plane analysis and design by applying it to cascade compensator design. Direct
design of compensators on the z-plane is left for a dedicated course in digital control
systems.

Cascade Compensation
In order to perform design in the s-plane and then convert the continuous
compensator to a digital compensator, we need a bilinear transformation that
will preserve, at the sampling instants, the response of the continuous compen-
sator. The bilinear transformation covered in Section 13.6 will not meet that
requirement. A bilinear transformation that can be performed with hand
calculations and yields a digital transfer function whose output response at
the sampling instants is approximately the same as the equivalent analog
transfer function is called the Tustin transformation. This transformation is
used to transform the continuous compensator, Gc(s), to the digital compensa-
tor, Gc(z). The Tustin transformation is given by5

s ¼ 2ðz� 1Þ
Tðzþ 1Þ ð13:88Þ

and its inverse by

z ¼
� sþ 2

T

� �

s� 2

T

� � ¼
1þ T

2
s

1� T

2
s

ð13:89Þ

As the sampling interval, T, gets smaller (higher sampling rate), the
designed digital compensator’s output yields a closer match to the analog
compensator. If the sampling rate is not high enough, there is a discrepancy
at higher frequencies between the digital and analog filters’ frequency responses.
Methods are available to correct the discrepancy, but they are beyond the scope
of our discussion. The interested reader should investigate the topic of prewarp-
ing, covered in books dedicated to digital control and listed in the Bibliography
at the end of this chapter.

Astrom and Wittenmark (1984) have developed a guideline for selecting the
sampling interval, T. Their conclusion is that the value of T in seconds should be in
the range 0:15=vFM to 0:5=vFM, where vFM is the zero dB frequency (rad/s) of the
magnitude frequency response curve for the cascaded analog compensator and
plant.

In the following example, we will design a compensator, Gc(s), to meet the
required performance specifications. We will then use the Tustin transformation to
obtain the model for an equivalent digital controller. In the next section, we will
show how to implement the digital controller.

5 See Ogata (1987: 315–318) for a derivation.
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Example 13.12

Digital Cascade Compensator Design

PROBLEM: For the digital control system of Figure 13.25(a), where

GpðsÞ ¼ 1

sðsþ 6Þðsþ 10Þ ð13:90Þ

design a digital lead compensator, Gc(z), as shown in Figure 13.25(c), so that the
system will operate with 20% overshoot and a settling time of 1.1 seconds. Create
your design in the s-domain and transform the compensator to the z-domain.

SOLUTION: Using Figure 13.25(b), design a lead compensator using the techniques
described in Chapter 9 or 11. The design was created as part of Example 9.6, where
we found that the lead compensator was

GcðsÞ ¼ 1977ðsþ 6Þ
ðsþ 29:1Þ ð13:91Þ

Gc(z)

Digital
lead

compensator

(c)

Gp(z)

Plant with
sample-and-hold

+

–

R(z) E(z) C(z)

Gc(s)

Lead
compensator

(b)

Gp(s)

Plant

+

–

R(s) E(s) C(s)

D/AA/D Digital
computer

Digital
controller

(a)

Gp(s)

Plant

+

–

R(s) E(s) C(s)

FIGURE 13.25 a. Digital control system showing the digital computer performing compen-
sation; b. continuous system used for design; c. transformed digital system
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Using Eqs. (13.90) and (13.91), we find that the zero dB frequency, vFM , for
Gp(s)Gc(s) is 5.8 rad/s. Using the guideline described by Astrom and Wittenmark
(1984), the lowest value of T should be in the range 0:15=vFM ¼ 0:026 to 0:5=vFM ¼
0:086 second. Let us use T ¼ 0:01 second.

Substituting Eq. (13.88) into Eq. (13.91) with T ¼ 0:01 second yields

GcðzÞ ¼ 1778z� 1674

z� 0:746
ð13:92Þ

The z-transform of the plant and zero-order hold, found by the method discussed in
Section 13.4 with T ¼ 0:01 second, is

GpðzÞ ¼ ð1:602	 10�7z2Þ þ ð6:156	 10�7zÞ þ ð1:478	 10�7Þ
z3 � 2:847z2 þ 2:699z� 0:8521

ð13:93Þ

The time response in Figure 13.26 (T ¼ 0:01 s) shows that the compensated
closed-loop system meets the transient response requirements. The figure also
shows the response for a compensator designed with sampling times at the
extremes of Astrom and Wittenmark’s guideline.

Students who are using MATLAB should now run ch13p9 in Appendix B.
You will learn how to use MATLAB to design a digital lead compen-
sator using the Tustin transformation. This exercise solves
Example 13.12 using MATLAB.

1.4
T = 0.086 s

T = 0.026 s

T = 0.01 s

1.2
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0.8

c*
(t

)
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0.2

0
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Note: Valid only at integer values of sampling instant

1.5 2

FIGURE 13.26 Closed-loop response for the compensated system of Example 13.12
showing effect of three different sampling frequencies
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Skill-Assessment Exercise 13.9

PROBLEM: In Example 11.3, a lead compensator was designed for a unity feed-
back system whose plant was

GðsÞ ¼ 100K

sðsþ 36Þðsþ 100Þ
The design specifications were as follows: percent overshoot¼ 20%, peak time
0.1 second, and Kv ¼ 40. In order to meet the requirements, the design yielded
K ¼ 1440 and a lead compensator,

GcðsÞ ¼ 2:38
sþ 25:3

sþ 60:2

If the system is to be computer controlled, find the digital controller, Gc(z).

ANSWER: GcðzÞ ¼ 2:34
z� 0:975

z� 0:9416
; T ¼ 0:001 second

The complete solution is at www.wiley.com/college/nise.

Now that we have learned how to design a digital cascade compensator, Gc(z),
the next section will teach us how to use the digital computer to implement it.

13.11 Implementing the Digital Compensator

The controller, Gc(z), can be implemented directly via calculations within the digital
computer in the forward path as shown in Figure 13.27. Let us now derive a
numerical algorithm that the computer can use to emulate the compensator. We
will find an expression for the computer’s sampled output, x�ðtÞ, whose transforms
are shown in Figure 13.27 as X(z). We will see that this expression can be used to
program the digital computer to emulate the compensator.

Consider a second-order compensator, Gc(z),

GcðzÞ ¼ XðzÞ
EðzÞ ¼

a3z3 þ a2z2 þ a1zþ a0

b2z2 þ b1zþ b0
ð13:94Þ

Cross-multiplying,

ðb2z
2 þ b1zþ b0ÞXðzÞ ¼ ða3z

3 þ a2z
2 þ a1zþ a0ÞEðzÞ ð13:95Þ

Solving for the term with the highest power of z operating on the output, X(z),

b2z
2XðzÞ ¼ ða3z

3 þ a2z
2 þ a1zþ a0ÞEðzÞ � ðb1zþ b0ÞXðzÞ ð13:96Þ

FIGURE 13.27 Block diagram
showing computer emulation
of a digital compensator

Gc(z) G(z)

Plant with
sample-and-hold

Computer
emulating compensator

E(z) X(z) C(z)
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Dividing by the coefficient of X(z) on the left-hand side of Eq. (13.96) yields

XðzÞ ¼ a3

b2
zþ a2

b2
þ a1

b2
z�1 þ a0

b2
z�2

� �
EðzÞ � b1

b2
z�1 þ b0

b2
z�2

� �
XðzÞ ð13:97Þ

Finally, taking the inverse z-transform,

x�ðtÞ ¼ a3

b2
e�ðt þ TÞ þ a2

b2
e�ðtÞ þ a1

b2
e�ðt � TÞ þ a0

b2
e�ðt � 2TÞ

� b1

b2
x�ðt � TÞ � b0

b2
x�ðt � 2TÞ

ð13:98Þ

We can see from this equation that the present sample of the compensator output,
x�ðtÞ, is a function of future ðe�ðt þ TÞÞ present ðe�ðtÞÞ and past ðe�ðt � TÞÞ and
e�ðt � 2TÞÞ samples of e(t), along with past values of the output, x�ðt � TÞ and
x�ðt � 2TÞ. Obviously, if we are to physically realize this compensator, the output
sample cannot be dependent upon future values of the input. Hence, to be
physically realizable, a3 must equal zero for the future value of e(t) to be zero.
We conclude that the numerator of the compensator’s transfer function must be
of equal or lower order than the denominator in order that the compensator be
physically realizable.

Now assume that a3 does indeed equal zero. Equation (13.98) now becomes

x�ðtÞ ¼ a2

b2
e�ðtÞ þ a1

b2
e�ðt � TÞ þ a0

b2
e�ðt � 2TÞ � b1

b2
x�ðt � TÞ � b0

b2
x�ðt � 2TÞ

ð13:99Þ
Hence, the output sample is a function of current and past input samples of the input
as well as past samples of the output. Figure 13.28 shows the flowchart of the
compensator from which a program can be written for the digital computer.6 The
figure shows that the compensator can be implemented by storing several successive
values of the input and output. The output is then formed by a weighted linear
combination of these stored variables. Let us now look at a numerical example.

Delay
T seconds

e*(t)

e*(t–T)

Delay
T seconds

e*(t–2T)

+ +
+

+

a0

b2

a1

b2

a2

b2

Delay
T seconds

x*(t)

x*(t–T)

Delay
T seconds

x*(t–2T)

–
–

b0

b2

b1

b2

FIGURE 13.28 Flowchart for a
second-order digital
compensator (Reprinted with
permission of John Wiley &
Sons, Inc.)

6 For an excellent discussion on basic flowcharts to represent digital compensators, including the
representation shown in Figure 13.28 and alternative flowcharts with half as many delays, see Chassaing
(1999, pp. 135–143).
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Example 13.13

Digital Cascade Compensator Implementation

PROBLEM: Develop a flowchart for the digital compensator defined by Eq. (13.100).

GcðzÞ ¼ XðzÞ
EðzÞ ¼

zþ 0:5

z2 � 0:5zþ 0:7
ð13:100Þ

SOLUTION: Cross-multiply and obtain

ðz2 � 0:5zþ 0:7ÞXðzÞ ¼ ðzþ 0:5ÞEðzÞ ð13:101Þ
Solve for the highest power of z operating on the output, X(z),

z2XðzÞ ¼ ðzþ 0:5ÞEðzÞ � ð�0:5zþ 0:7ÞXðzÞ ð13:102Þ
Solving for X(z) on the left-hand side,

XðzÞ ¼ ðz�1 þ 0:5z�2ÞEðzÞ � ð�0:5z�1 þ 0:7z�2ÞXðzÞ ð13:103Þ
Implementing Eq. (13.103) with the flowchart of Figure 13.29 completes the design.

Skill-Assessment Exercise 13.10

PROBLEM: Draw a flowchart from which the compensator

GcðzÞ ¼ 1899z2 � 3761zþ 1861

z2 � 1:908zþ 0:9075

can be programmed if the sampling interval is 0.1 second.

ANSWER: The complete solution is at www.wiley.com/college/nise.

FIGURE 13.29 Flowchart to

implement GcðzÞ ¼ zþ 0:5

z2 � 0:5zþ 0:7
(Reprinted with permission of
John Wiley & Sons, Inc.)

+
+

+
–

–

Delay
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Delay
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Delay
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Delay
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e*(t)

e*(t–T) x*(t–T)

x*(t–2T)

x*(t)

e*(t–2T)

1

0.5 0.7
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In this section, we learned how to implement a digital compensator. The
resulting flowchart can serve as the design of a digital computer program for the
computer in the loop. The design consists of delays that can be thought of as storage
for each sampled value of input and output. The stored values are weighted and
added. The engineer then can implement the design with a computer program.

In the next section, we will put together the concepts of this chapter as we apply
the principles of digital control system design to our antenna azimuth control system.

Case Studies

Antenna Control: Transient Design via Gain

We now demonstrate the objectives of this chapter by turning to our ongoing
antenna azimuth position control system. We will show where the computer is
inserted in the loop, model the system, and design the gain to meet a transient
response requirement. Later, we will design a digital cascade compensator.

The computer will perform two functions in the loop. First, the computer will be
used as the input device. It will receive digital signals from the keyboard in the form of
commands, and digital signals from the output for closed-loop control. The keyboard
will replace the input potentiometer, and an analog-to-digital (A/D) converter along
with a unity gain feedback transducer will replace the output potentiometer.

Figure 13.30(a) shows the original analog system, and Figure 13.30(b) shows
the system with the computer in the loop. Here the computer is receiving digital
signals from two sources: (1) the input via the keyboard or other tracking commands
and (2) the output via an A/D converter. The plant is receiving signals from the digital
computer via a digital-to-analog (D/A) converter and the sample-and-hold.

Figure 13.30(b) shows some simplifying assumptions we have made. The
power amplifier’s pole is assumed to be far enough away from the motor’s pole that
we can represent the power amplifier as a pure gain equal to its dc gain of unity.
Also, we have absorbed any preamplifier and potentiometer gain in the computer
and its associated D/A converter.

PROBLEM: Design the gain for the antenna azimuth position control system
shown in Figure 13.30(b) to yield a closed-loop damping ratio of 0.5. Assume a
sampling interval of T ¼ 0:1 second.

0.64 K
100

s + 100
2.083

s(s + 1.71) 0.1
θi

Pot Preamp
Power
amp Motor & load Gears

θo

Sample-and-
hold

0.1

Power
amp Motor & load Gears

θoA/D
θi 1 2.083

s(s + 1.71)

A/D

(a)

(b)

+

–

+

–

Computer
& D/A

FIGURE 13.30 Antenna
control system: a. analog
implementation; b. digital
implementation
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SOLUTION: Modeling the System: Our first objective is to model the system in the
z-domain. The forward transfer function, G(s), which includes the sample-and-
hold, power amplifier, motor and load, and the gears, is

GðsÞ ¼ 1� e�Ts

s

0:2083

sðsþ aÞ ¼
0:2083

a
ð1� eTsÞ a

s2ðsþ aÞ ð13:104Þ

where a ¼ 1:71, and T ¼ 0:1.
Since the z-transform of ð1� e�TsÞ is ð1� z�1Þ and, from Example 13.6, the

z-transform of a=½s2ðsþ aÞ� is

z
a

s2ðsþ aÞ
� �

¼ Tz

ðz� 1Þ2 �
ð1� e�aTÞz

aðz� 1Þðz� e�aTÞ

" #
ð13:105Þ

the z-transform of the plant, G(z), is

GðzÞ ¼ 0:2083

a
ð1� z�1Þz a

s2ðsþ aÞ
� �

¼ 0:2083

a2

½aT � ð1� e�aTÞ�zþ ½ð1� e�aTÞ � aTe�aT �
ðz� 1Þðz� e�aTÞ

� � ð13:106Þ

Substituting the values for a and T, we obtain

GðzÞ ¼ 9:846	 10�4ðzþ 0:945Þ
ðz� 1Þðz� 0:843Þ ð13:107Þ

Figure 13.31 shows the computer and plant as part of the digital feedback control
system.

Designing for Transient Response: Now that the modeling in the z-domain is
complete, we can begin to design the system for the required transient response. We
superimpose the root locus over the constant damping ratio curves in the z-plane,
as shown in Figure 13.32. A line drawn from the origin to the intersection forms an
8.58� angle. Searching along this line for 180�, we find the intersection to be
ð0:915þ j0:138Þ, with a loop gain, 9:846	 10�4K, of 0.0135. Hence, K ¼ 13:71.

Checking the design by finding the unit sampled step response of the closed-loop
system yields the plot of Figure 13.33, which exhibits 20% overshoot ðz ¼ 0:456Þ.
CHALLENGE: We now give you a case study to test your knowledge of this chapter’s
objectives: You are given the antenna azimuth position control system shown on
the front endpapers, Configuration 2. Do the following:

a. Convert the system into a digital system with T ¼ 0:1 second. For the purposes
of the conversion, assume that the potentiometers are replaced with unity gain
transducers. Neglect power amplifier dynamics.

b. Design the gain, K, for 16.3% overshoot.

c. For your designed value of gain, find the steady-state error for a unit ramp input.

d. Repeat Part b using MATLAB.

FIGURE 13.31 Analog
antenna azimuth position
control system converted to a
digital system

9.846 × 10–4(z + 0.945)
(z – 1)(z – 0.843)

K

Computer Plant = G(z)

R(z) +

–

C(z)
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Antenna Control: Digital Cascade Compensator Design

PROBLEM: Design a digital lead compensator to reduce the settling time by a
factor of 2.5 from that obtained for the antenna azimuth control system in the
previous Case Study problem in this chapter.

SOLUTION: Figure 13.34 shows a simplified block diagram of the continuous
system, neglecting power amplifier dynamics and assuming that the potentiometers
are replaced with unity gain transducers as previously explained.

We begin with an s-plane design. From Figure 13.33, the settling time is about 5
seconds. Thus, our design requirements are a settling time of 2 seconds and a
damping ratio of 0.5. The natural frequency is vn ¼ 4=ðzTsÞ ¼ 4 rad/s. The com-

pensated dominant poles are located at �zvn � jvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ �2� j3:464.

Designing a lead compensator zero to cancel the plant pole on the s-plane at
�1.71 yields a lead compensator pole at �4. Hence the lead compensator is
given by

GcðsÞ ¼ sþ 1:71

sþ 4
ð13:108Þ

0.2 0.4 0.6 0.8 1

–0.6

–0.4

–0.2

0.2

z-plane

Root locus   = 0.5

8.58

Im

Re

0.4

0.6

0
0

ζ

FIGURE 13.32 Root locus superimposed over constant
damping ratio curve
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FIGURE 13.33 Sampled step response of the antenna
azimuth position control system

KGc(s)
0.2083

s(s + 1.71)

θi

Lead compensator Plant

θo+

–

(s)(s)
FIGURE 13.34 Simplified
block diagram of antenna
azimuth control system
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Using root locus to evaluate the gain, K, at the design point yields 0:2083K ¼ 16,
or K ¼ 76:81.

We now select an appropriate sampling frequency as described in Section 13.10.
Using the cascaded compensator,

KGcðsÞ ¼ 76:81ðsþ 1:71Þ
ðsþ 4Þ ð13:109Þ

and plant,

GpðsÞ ¼ 0:2083

sðsþ 1:71Þ ð13:110Þ

the equivalent forward-path transfer function, GeðsÞ ¼ KGcðsÞGpðsÞ, is

GeðsÞ ¼ 16

sðsþ 4Þ ð13:111Þ

The magnitude frequency response of Eq. (13.111) is 0 dB at 3.1 rad/s. Thus, from
Section 13.10, the value of the sampling interval, T, should be in the range 0:15=vFM ¼
0:05 to 0:5=vFM ¼ 0:16 second. Let us choose a smaller value, say T ¼ 0:025 second.

Substituting Eq. (13.88) into Eq. (13.111), where T ¼ 0:025, yields the digital
compensator

KGcðzÞ ¼ 74:72z� 71:59

z� 0:9048
ð13:112Þ

In order to simulate the digital system, we calculate the z-transform of the plant in
Figure 13.34 in cascade with a zero-order sample-and-hold. The z-transform of the
sampled plant is evaluated by the method discussed in Section 13.4 using
T ¼ 0:025. The result is

GpðzÞ ¼ 6:418	 10�5zþ 6:327	 10�5

z2 � 1:958zþ 0:9582
ð13:113Þ

The step response in Figure 13.35 shows approximately 20% overshoot and a
settling time of 2.1 seconds for the closed-loop digital system.

FIGURE 13.35 Closed-loop
digital step response for
antenna control system with
a lead compensator
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We conclude the design by obtaining a flowchart for the digital compensator. Using
Eq. (13.112), where we define KGcðzÞ ¼ XðzÞ=EðzÞ, and cross-multiplying yields

ðz� 0:9048ÞXðzÞ ¼ ð74:72z� 71:59ÞEðzÞ ð13:114Þ
Solving for the highest power of z operating on X(z),

zXðzÞ ¼ ð74:72z� 71:59ÞEðzÞ þ 0:9048XðzÞ ð13:115Þ
Solving for X(z),

XðzÞ ¼ ð74:72� 71:59z�1ÞEðzÞ þ 0:9048z�1XðzÞ ð13:116Þ
Implementing Eq. (13.116) as a flowchart yields Figure 13.36.

CHALLENGE: You are now given a case study to test your knowledge of this
chapter’s objectives. You are given the antenna azimuth position control system
shown on the front endpapers, Configuration 2. Replace the potentiometers with
unity gain transducers, neglect power amplifier dynamics, and do the following:

a. Design a digital lead compensator to yield 10% overshoot with a 1-second peak
time. Design in the s-plane and use the Tustin transformation to specify and
implement a digital compensator. Choose an appropriate sampling interval.

b. Draw a flowchart for your digital lead compensator.

c. Repeat Part a using MATLAB.

Summary

In this chapter, we covered the design of digital systems using classical methods.
State-space techniques were not covered. However, you are encouraged to pursue
this topic in a course dedicated to sampled-data control systems.

We looked at the advantages of digital control systems. These systems can
control numerous loops at reduced cost. System modifications can be implemented
with software changes rather than hardware changes.

Typically, the digital computer is placed in the forward path preceding the plant.
Digital-to-analog and analog-to-digital conversion is required within the system to
ensure compatibility of the analog and digital signals throughout the system. The
digital computer in the loop is modeled as a sample-and-hold network along with any
compensation that it performs.

Throughout the chapter, we saw direct parallels to the methods used for
s-plane analysis of transients, steady-state errors, and the stability of analog systems.

+

+ + –

e*(t–0.025) x*(t–0.025)

e*(t) x*(t)

Delay
0.025 second

74.72

–71.59

Delay
0.025 second

–0.9048

FIGURE 13.36 Flowchart for
digital lead compensator.
(Reprinted with permission of
John Wiley & Sons, Inc.)
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The parallel is made possible by the z-transform, which replaces the Laplace
transform as the transform of choice for analyzing sampled-data systems. The
z-transform allows us to represent sampled waveforms at the sampling instants.
We can handle sampled systems as easily as continuous systems, including block
diagram reduction, since both signals and systems can be represented in the
z-domain and manipulated algebraically. Complex systems can be reduced to a
single block through techniques that parallel those used with the s-plane. Time
responses can be obtained through division of the numerator by the denominator
without the partial-fraction expansion required in the s-domain.

Digital systems analysis parallels the s-plane techniques in the area of stability.
The unit circle becomes the boundary of stability, replacing the imaginary axis.

We also found that the concepts of root locus and transient response are easily
carried into the z-plane. The rules for sketching the root locus do not change. We can
map points on the s-plane into points on the z-plane and attach transient response
characteristics to the points. Evaluating a sampled-data system shows that the
sampling rate, in addition to gain and load, determines the transient response.

Cascade compensators also can be designed for digital systems. One method is
to first design the compensator on the s-plane or via frequency response techniques
described in Chapters 9 and 11, respectively. Then the resulting design is transformed
to a digital compensator using the Tustin transformation. Designing cascade com-
pensation directly on the z-plane is an alternative method that can be used.
However, these techniques are beyond the scope of this book.

This introductory control systems course is now complete. You have learned
how to analyze and design linear control systems using frequency-domain and state-
space techniques. This course is only a beginning. You may consider furthering your
study of control systems by taking advanced courses in digital, nonlinear, and
optimal control, where you will learn new techniques for analyzing and designing
classes of systems not covered in this book. We hope we have whetted your appetite
to continue your education in control systems engineering.

Review Questions

1. Name two functions that the digital computer can perform when used with
feedback control systems.

2. Name three advantages of using digital computers in the loop.

3. Name two important considerations in analog-to-digital conversion that yield
errors.

4. Of what does the block diagram model for a computer consist?

5. What is the z-transform?

6. What does the inverse z-transform of a time waveform actually yield?

7. Name two methods of finding the inverse z-transform.

8. What method for finding the inverse z-transform yields a closed-form expression
for the time function?

9. What method for finding the inverse z-transform immediately yields the values
of the time waveform at the sampling instants?

10. In order to find the z-transform of a G(s), what must be true of the input and the
output?

11. If input R(z) to system G(z) yields output C(z), what is the nature of c(t)?
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12. If a time waveform, c(t), at the output of system G(z) is plotted using the inverse
z-transform, and a typical second-order response with damping ratio¼ 0.5
results, can we say that the system is stable?

13. What must exist in order for cascaded sampled-data systems to be represented
by the product of their pulse transfer functions, G(z)?

14. Where is the region for stability on the z-plane?

15. What methods for finding the stability of digital systems can replace the Routh-
Hurwitz criterion for analog systems?

16. To drive steady-state errors in analog systems to zero, a pole can be placed at the
origin of the s-plane. Where on the z-plane should a pole be placed to drive the
steady-state error of a sampled system to zero?

17. How do the rules for sketching the root locus on the z-plane differ from those for
sketching the root locus on the s-plane?

18. Given a point on the z-plane, how can one determine the associated percent
overshoot, settling time, and peak time?

19. Given a desired percent overshoot and settling time, how can one tell which
point on the z-plane is the design point?

20. Describe how digital compensators can be designed on the s-plane.

21. What characteristic is common between a cascade compensator designed on the
s-plane and the digital compensator to which it is converted?

Problems

1. Derive the z-transforms for the time functions listed
below. Do not use any z-transform tables. Use the
plan f ðtÞ ! f �ðtÞ ! F�ðsÞ ! FðzÞ, followed by con-
verting F(z) into closed form making use of the
fact that 1=ð1� z�1Þ ¼ 1þ z�1 þ z�2 þ z�3 þ � � �.
Assume ideal sampling. [Section: 13.3]

a. e�atuðtÞ
b. u(t)

c. t2e�atuðtÞ
d. cos vt uðtÞ

2. Repeat all parts of Problem 1
using MATLAB and MATLAB’s
Symbolic Math Toolbox.

3. For each F(z), find f(kT) using partial-fraction
expansion. [Section: 13.3]

a. FðzÞ ¼ zðzþ 3Þðzþ 5Þ
ðz� 0:4Þðz� 0:6Þðz� 0:8Þ

b. FðzÞ ¼ ðzþ 0:2Þðzþ 0:4Þ
ðz� 0:1Þðz� 0:5Þðz� 0:9Þ

c. FðzÞ ¼ ðzþ 1Þðzþ 0:3Þðzþ 0:4Þ
zðz� 0:2Þðz� 0:5Þðz� 0:7Þ

4. Repeat all parts of Problem 3
using MATLAB and MATLAB’s Sym-
bolic Math Toolbox.

5. For each F(z) in Problem 3, do the following:
[Section: 13.3]

a. Find f(kT) using the power series expansion.

b. Check your results against your answers from
Problem 3.

6. Using partial-fraction expansion and
Table 13.1, find the z-transform for each
G(s) shown below if T ¼ 0:5 second.
[Section: 13.3]

a. GðsÞ ¼ ðsþ 4Þ
ðsþ 2Þðsþ 5Þ

b. GðsÞ ¼ ðsþ 1Þðsþ 2Þ
sðsþ 3Þðsþ 4Þ

c. GðsÞ ¼ 20

ðsþ 3Þðs2 þ 6sþ 25Þ
d. GðsÞ ¼ 15

sðsþ 1Þðs2 þ 10sþ 81Þ
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7. Repeat all parts of Problem 6
using MATLAB and MATLAB’s Sym-
bolic Math Toolbox.

8. Find GðzÞ ¼ CðzÞ=RðzÞ for each of the block dia-
grams shown in Figure P13.1 if T ¼ 0:3 second.
[Section: 13.4]

9. Find TðzÞ ¼ CðzÞ=RðzÞ for each of the systems
shown in Figure P13.2. [Section: 13.5]

10. Find C(z) in general terms for the digital system
shown in Figure P13.3. [Section: 13.5]

11. Find the closed-loop transfer function, TðzÞ ¼
CðzÞ=RðzÞ, for the system shown in Figure P13.4.
[Section: 13.5]

12. Given the system in Figure P13.5,
find the range of sampling interval,
T, that will keep the system stable.
[Section: 13.6]
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13. Write a MATLAB program that can
be used to find the range of sam-
pling time, T, for stability. The pro-
gram will be used for systems of the type
represented in Figure P13.6 and should
meet the following requirements:

a. MATLAB will convert G1(s) cascaded
with a sample-and-hold to G(z).

b. The program will calculate the z-plane
roots of the closed-loop system for a
range of T and determine the value of T,
if any, below which the system will be
stable. MATLAB will display this value
of T along with the z-plane poles of the
closed-loop transfer function.

R(s) +

– Sample-
and-hold

G1(s)
C(s)

FIGURE P13.6

Test the program on

G1 sð Þ ¼ 10ðsþ 7Þ
ðsþ 1Þðsþ 3Þðsþ 4Þðsþ 5Þ

14. Find the range of gain, K, to make the system shown
in Figure P13.7 stable. [Section: 13.6]

R(s) +

– T = 0.2
Hold 3K

s(s + 4)

C(s)

FIGURE P13.7

15. Find the static error constants and the
steady-state error for each of the digital
systems shown in Figure P13.8 if the
inputs are [Section: 13.7]

a. u(t)

b. tu(t)

c.
1

2
t2uðtÞ

R(s) +

– T = 0.5
Hold 1

s + 2

C(s)

System 1

R(s) +

– T = 0.1
Hold 20

s(s + 2)

C(s)

System 2

R(z) +

– T = 0.5

C(z)

System 3

R(z) +

– T = 0.1

0.13(z + 1)
(z – 1)(z – 0.74)

C(z)

System 4

1.28
z – 0.37

FIGURE P13.8

16. Write a MATLAB program that can be
used to find Kp, Kv, and Ka for dig-
ital systems. The program will be used
for systems of the type represented in
Figure P13.6. Test your program for

GðzÞ ¼ 0:04406z3 � 0:03624z2 � 0:03284zþ 0:02857

z4 � 3:394z3 þ 4:29z2 � 2:393zþ 0:4966

where G(z) is the pulse transfer func-
tion for Gð1ÞðsÞ in cascade with the z.o.h.
and T ¼ 0:1 second.

17. For the digital system shown in Figure P13.6, where
G1ðsÞ ¼ K=½ðsþ 1Þ 	 ðsþ 4Þ�, find the value of K to
yield a 16.3% overshoot. Also find the range of K
for stability. Let T ¼ 0:1 second. [Section: 13.9]

18. Use Simulink to simulate the step
response for the system of Prob-
lem 17. Set the value of gain, K, to that
designedinProblem17for16.3%overshoot.

R(s) +

– T
Hold 1

s(s + 1)

C(s)

FIGURE P13.5
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19. Use MATLAB’s LTI Viewer to deter-
mine the peak time and settling
time of the closed-loop step response
for System 4 in Figure P13.8

20. Write a MATLAB program that can be
used to design the gain of a digi-
tal control system to meet a percent over-
shoot requirement. The program will be
used for systems of the type represented
in Figure P13.6 and meet the following
requirements:

a. The user will input the desired per-
cent overshoot.

b. MATLAB will convert G1(s) cascaded
with the sample-and-hold to G(z).

c. MATLAB will display the root locus on
the z-plane along with an overlay of
the percent overshoot curve.

d. The user will click with the mouse at
the intersection of the root locus and
percent overshoot overlay and MATLAB
will respond with the value of gain
followed by a display of the step
response of the closed-loop system.

Apply your program to Problem 17 and
compare results.

21. For the digital system shown in Figure P13.6, where
G1ðsÞ ¼ K=½sðsþ 1Þ�, find the value of K to yield a
peak time of 2 seconds if the sampling interval, T, is
0.1 second. Also, find the range of K for stability.
[Section: 13.9]

22. For the digital system shown in Figure
P13.6, where G1ðsÞ ¼ K=½sðsþ 1Þ
ðsþ 3Þ�, find the value of K to yield a
20% overshoot if the sampling interval, T, is
0.1 second. Also, find the range of K for stability.
[Section: 13.9]

23. For the digital system shown in Figure P13.6, where
G1ðsÞ ¼ Kðsþ 2Þ 
 ½sðsþ 1Þðsþ 3Þ�, find the value
of K to yield a settling time of 15 seconds if
the sampling interval, T, is 1 second. Also, find
the range of K for stability. [Section: 13.9]

24. A PID controller was designed in Example 9.5 for a
continuous system with unity feedback. The sys-
tem’s plant was

GðsÞ ¼ ðsþ 8Þ
ðsþ 3Þðsþ 6Þðsþ 10Þ

The designed PID controller was

GcðsÞ ¼ 4:6
ðsþ 55:92Þðsþ 0:5Þ

s

Find the digital transfer function, Gc(z), of the PID
controller in order for the system to be computer
controlled if the sampling interval, T, is 0.01 second.
[Section: 13.10]

25. A continuous unity feedback system has
a forward transfer function of

GðsÞ ¼ 1

sðsþ 5Þðsþ 8Þ
The system is to be computer controlled with the
following specifications:

Percent overshoot: 10%
Settling time: 2 seconds
Sampling interval: 0:01 second

Design a lead compensator for the digital system to
meet the specifications. [Section: 13.10]

26. Repeat Problem 25 using MATLAB.

DESIGN PROBLEMS
27. a. Convert the heading control for the UFSS vehi-

cle shown on the back endpapers (Johnson, 1980)
into a digitally controlled system.

b. Find the closed-loop pulse transfer function,
T(z), if T ¼ 0:1 second.

c. Find the range of heading gain to keep the digital
system stable.

28. A robot equipped to perform arc welding was dis-
cussed in Problem 45, Chapter 8. The robot was
compensated by feeding back pressure and velocity
signals as shown in Figure P8.13(b). Eliminating
these feedback paths yields the block diagram shown
in Figure P13.9 (Hardy, 1967).

Κ
s(s2 + 7s +1220)–

R(s) + C(s)

FIGURE P13.9 Simplified block diagram for robot swing
motion

a. Convert the robot to a digital control system. Use
a sampling time of 0.1 second.

b. Sketch the root locus.
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c. Find the range of gain, K, to keep the digital
system stable.

d. Repeat all previous parts using

MATLAB.

29. The floppy disk drive of Problem 57, Chapter 8 is to
be digitally controlled. If the analog system is as
shown in Figure P13.10, do the following:

s(s + 100)
–

XD(s) + YA(s)20,000

Desired
position Motor and load

Actual
position

FIGURE P13.10 Simplified block diagram of a floppy
disk drive

a. Convert the disk drive to a digital system. Use a
sampling time of 0.01 second.

b. Find the range of digital controller gain to keep
the system stable.

c. Find the value of digital controller gain to yield
15% overshoot for a digital step response.

d. Repeat all previous parts and
obtain the step response for
Part c using MATLAB.

30. Scanning probe microscopes are used to visualize
samples in the sub-micron dimensional range. They
typically use a silica-based probe to physically track
the sample topography to create a viable image.
However, these devices are very sensitive to exter-
nal disturbance and vibrations. An approach called
inherent disturbance suppression tries to alleviate
the disturbance problem through the addition of a
laser interferometer that is used to measure the
probe–sample interaction and compensate for un-
desired probe movements. The technique was
implemented in a tapping mode atomic force mi-
croscope measuring single DNA molecules. It was
shown that for a significant range of frequencies the
open-loop transmission from the probe’s voltage
input to probe’s displacement is (Sparks, 2006)

G1ðsÞ ¼ 20000

s

Assuming the probe is digitally controlled in a loop,
as shown in Figure P13.6, calculate the sampling
period range that will result in a stable closed-loop
system.

31. Problem 35, Chapter 9 described a two-tank system
where the objective was to maintain a constant
liquid level in one of the tanks via control of an
inflow valve. Assume for this problem that the
transfer function relating liquid-level output, Y(s),
to flow rate input FuðsÞ, for the lower tank is
(Romagnoli, 2006)

GðsÞ ¼ YðsÞ
FuðsÞ ¼

0:0187

s2 þ 0:237sþ 0:00908

Assume that the system will be controlled in closed
loop by means of a digital computer system with a
sample period T ¼ 1 second, as shown in Figure
P13.6, with G1ðsÞ ¼ KGðsÞ. Use the bilinear trans-
formation and the Routh-Hurwitz method to find
the range of K that will result in a stable closed-
loop system.

32. Assume that the two-tank system of Problem 31 is
controlled by a digital computer in the configuration
of Figure P13.6, where G1ðsÞ ¼ KGðsÞ. If a sampling
period of T ¼ 1 second is used, do the following
(Romagnoli, 2006).

a. Use MATLAB to draw the root
locus.

b. Find the value of K that will result in a stable
system with a damping factor of z ¼ 0:7.

c. Use the root locus of Part b to predict the step-
response settling time, Ts , and peak time, Tp.

d. Calculate the final value of the closed-loop sys-
tem to a unit step input.

e. Obtain the step response of
the system using Simulink.
Verify the predictions you made in
Parts c and d.

33. In Problem 48, Chapter 9, and Problem 39, Chapter
10, we considered the radial pickup position control
of a DVD player. A controller was designed and
placed in cascade with the plant in a unit feedback
configuration to stabilize the system. The controller
was given by

MðsÞ ¼ 0:5ðsþ 1:63Þ
sðsþ 0:27Þ

and the plant by (Bittanti, 2002)

PðsÞ ¼ 0:63

1þ 0:36

305:4
sþ s2

305:42

� �
1þ 0:04

248:2
sþ s2

248:22

� �
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It is desired to replace the continuous system by an
equivalent discrete system without appreciably af-
fecting the system performance.

a. Find an appropriate sampling frequency for the
discretization.

b. Using the chosen sampling frequency, translate
the continuous compensator into a discrete
compensator.

c. Use Simulink to simulate the
continuous and discrete sys-
tems on the same graph.

Assume a unit step input. Are there
significant differences in the sys-
tem’s performance?

34. In Problem 25, Chapter 11, we discussed an EVAD,
a device that works in parallel with the human heart
to help pump blood in patients with cardiac condi-
tions. The device has a transfer function

GðsÞ ¼ PaoðsÞ
EmðsÞ ¼

1361

s2 þ 69sþ 70:85

where Em(s) is the motor’s armature voltage, and
Pao(s) is the aortic blood pressure (Tasch, 1990).
Using continuous techniques, a cascaded compen-
sator is designed in a unity feedback configuration
with a transfer function

GcðsÞ ¼ 0:5ðsþ 1Þ
sþ 0:05

Selecting to control the device using a microcon-
troller, a discrete equivalent has to be found for
Gc(s). Do the following.

a. Find an appropriate sampling frequency for the
discretization.

b. Translate the continuous compensator into a
discrete compensator using the sampling fre-
quency found in Part a.

c. Use Simulink to simulate the
continuous and discrete sys-
tems on the same graph for a unit step
input. There should be little differ-
ence between the compensated continu-
ous and discrete systems.

35. In Problem 46, Chapter 9, a steam-driven turbine-
governor system was implemented by a unity feed-
back system with a forward-path transfer function
(Khodabakhshian, 2005)

GðsÞ ¼ K

ðsþ 0:08Þðsþ 2Þðsþ 5Þ

a. Use a sampling period of T ¼ 0:5 s and find a
discrete equivalent for this system.

b. Use MATLAB to draw the root
locus.

c. Find the value of K that will result in a stable
system with a damping factor of z ¼ 0:7.

d. Use the root locus found in Part a to predict the
step-response settling time, Ts , and peak time, Tp.

e. Calculate the final value of the closed-loop sys-
tem unit step response.

f. Obtain the step response of
the system using Simulink.
Verify the predictions you made in
Parts c and d.

36. If you have not already done so, do
Problem 45 in Chapter 9. In this prob-
lem, you design a PID controller for a
temperature control system. Digitize your PID de-
sign and draw a flowchart from which the PID
controller can be implemented.

37. Discrete time controlled systems can exhibit unique
characteristics not available in continuous control-
lers. For example, assuming a specific input and
some conditions, it is possible to design a system
to achieve steady state within one single time sam-
ple without overshoot. This scheme is well known
and referred to as deadbeat control. We illustrate
deadbeat control design with a simple example. For
a more comprehensive treatment see (Ogata, 1987).

Assume in Figure 13.25(a) that GpðsÞ ¼ 1

sþ 1
.

The purpose of the design will be to find a compen-
sator, GcðzÞ, such that for a step input the system
achieves steady state within one sample. We start by
translating the system into the discrete domain to
obtain the equivalent of Figure 13.25(c). The pulse

transfer function, GpðzÞ ¼ ð1� e�TÞz�1

1� e�Tz�1
, is found

using Eq. (13.40), since it is assumed that the com-
pensator will be followed by a zero-order hold. In
Figure 13.25(c), the closed-loop transfer function is

given by
CðzÞ
RðzÞ ¼ TðzÞ ¼ GcðzÞGpðzÞ

1þGcðzÞGpðzÞ, or, solving

for the compensator, we get GcðzÞ ¼ 1

GpðzÞ
TðzÞ

1� TðzÞ.
The desired system output is a unit step delayed by one

unit sample. Thus, CðzÞ ¼ z

z� 1
z�1 ¼ 1

z� 1
. Since
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the input is a unit step, RðzÞ ¼ z

z� 1
; the desired

closed-loop transfer function is
CðzÞ
RðzÞ ¼ TðzÞ ¼ z�1,

and the resulting compensator, found by direct sub-

stitution, is given by GcðzÞ ¼ 1

1� e�T
ðz� e�TÞ
z� 1

.

Assume now that the plant is given by GpðsÞ ¼ 1
s ,

and a sampling period of T¼ 0.05 second is used.

a. Design a deadbeat compensator to reach steady
state within one time sample for a step input.

b. Calculate the resulting steady-state error for a
unit-slope ramp input.

c. Simulate your system using
SIMULINK. (Hint: Following
Figure 13.25, the forward path will
consist of the cascading of GC(z), a
zero-order hold, and Gp(s).) Show
that the system reaches steady state
after one sample. Also verify your
steady-state error ramp result.

38. Given

GðsÞ ¼ 8

sþ 4

Use the LabVIEW Control Design and Simu-
lation Module to (1) convert G(s) to a
digital transfer function using a sam-
pling rate of 0.25 second; and (2) plot
the step responses of the discrete and
the continuous transfer functions.

39. Given

GðzÞ ¼ Kðzþ 0:5Þ
ðz� 0:25Þðz� 0:75Þ

Use the LabVIEW Control Design
and Simulation Module and the
MathScript RT Module to (1) obtain the
value of K that will yield a damping ratio
of 0.5 for the closed-loop system in Fig-
ure 13.20, where H(z)=1; and (2) display
the step response of the closed-loop sys-
tem in Figure 13.20 where H(z)¼1. Com-
pare your results with those of Skill-
Assessment Exercise 13.8.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
40. High-speed rail pantograph.Problem 21 in Chapter 1

discusses active control of a pantograph mechanism
for high-speed rail systems (O’Connor, 1997). In

Problem 79(a), Chapter 5, you found the block dia-
gram for the active pantograph control system. In
Chapter 9, you designed a PID controller to yield a
settling time of 0.3 second with zero steady-state
error. Assuming that the active control system is to
be computer controlled, do the following:

a. Convert the PID controller designed in Problem
55, Chapter 9, to a digital controller by specifying
its sampled transfer function, Gc(z). Assume that
the potentiometers are replaced by a keyboard,
A/D converters, and unity gain transducers.

b. Draw a flowchart from which the PID controller
can be implemented.

c. Use MATLAB to simulate the step
response of the digital active
control system.

41. Control of HIV/AIDS. In Chapter 11, a continuous
cascaded compensator for a unity feedback system
was designed for the treatment of the HIV-infected
patient treated with RTIs (Craig, 2004). The transfer
function of the designed compensator was

GcðsÞ ¼ �2	 10�4ðs2 þ 0:04sþ 0:0048Þ
sðsþ 0:02Þ

The linearized plant was given by

PðsÞ ¼ YðsÞ
U1ðsÞ ¼

�520s� 10:3844

s3 þ 2:6817s2 þ 0:11sþ 0:0126

The compensated system is overdamped with an
approximate settling time of 100 seconds. This system
must be discretized for practical reasons: (1) HIV
patient cannot be monitored continuously and (2)
medicine dosage cannot be adjusted continuously.

a. Show that a reasonable sampling period for this
system is T ¼ 8 days (medicine dosage will be
updated on a weekly basis).

b. Use Tustin’s method and T ¼ 8 days to find a
discrete equivalent to Gc(S).

c. Use Simulink to simulate the
continuous and discrete com-
pensated systems for a unit step in-
put. Plot both responses on the same
graph.

42. Hybrid vehicle. In Problem 7.69 (Figure
P7.34), the block diagram of a cascade
scheme for the speed control of an HEV (Preitl,
2007) was represented as a unity feedback system.
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In that diagram the output of the system is the speed
transducer’s output voltage, CðsÞ ¼ KssVðsÞ. In
Part b of Problem 11.35, where a compensator
was designed for this problem, we discussed the
feasibility of achieving full pole-zero cancellation
when we place a PI speed controller’s zero, ZI, on
top of the uncompensated system’s real pole, closest
to the origin (located at �0.0163). Noting that
perfect pole-zero cancellation may not be main-
tained, we studied a case, in which the PI-controller’s
zero changed by +20%, moving to �0.01304. In
that case, the transfer function of the plant with
a PI speed controller, which has a proportional
gain¼K, was given by:

GðsÞ ¼ Kðsþ 0:6Þðsþ 0:01304Þ
sðsþ 0:0163Þðsþ 0:5858Þ

Assuming that G1ðsÞ in Figure P13.6 equals the
transfer function, G(s), given above for the vehicle
with the speed controller:

a. Develop a MATLAB M-file that would al-
low you to do the following: [Hint:
Refer to the M-files you developed
for Problems 13 and 20 of this chapter]

(1) Convert G1(s) cascaded with a sam-
ple-and-hold to G(z);

(2) Search over the range 0 < T < 5 sec-
onds for the largest sampling pe-
riod Tmax below which the system is
stable.Calculatethez-planeroots
of the closed-loop system for the

whole range of the sampling time,
T. Subsequently set T ¼ 0:75Tmax;

(3) Designthegainofadigitalcontrol
system to meet a percent overshoot
requirement,%OS,allowingtheuser
to input the value of the desired
%OS and the value of the PI speed
controller’s proportional gain, K;

(4) Plot the step response of that dig-
ital system (in per unit, p. u.,
vs. time in seconds)

b. Run the M-file you developed in Part a
and enter the values of the desired
percent overshoot, %OS¼0, and the PI
speed controller’s proportional gain,
K¼61;

c. Select a point in the graphics window
displaying the root locus, such that
all poles of the closed-loop transfer
function, Tz, are inside the unit
circle.

d. Write the sampled-data transfer func-
tions obtained, Gz and Tz, indicating
the corresponding value of the sam-
pling time, T, and all poles, r, of
theclosed-looptransferfunction,Tz;

e. Plot the step response of that digital
system (in per unit, p. u., vs. time in
seconds) noting the following charac-
teristics: final value, rise time, and
settling time.

Cyber Exploration Laboratory

Experiment 13.1

Objective To design the gain of a digital control system to meet a transient
response requirement; to simulate a digital control system to test a design; to see the
effect of sampling rate upon the time response of a digital system.

Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. Given the antenna azimuth control system shown on the front endpapers, use
Configuration 2 to find the discrete transfer function of the plant. Neglect the
dynamics of the power amplifier and include the preamplifier, motor, gears, and
load. Assume a zero-order hold and a sampling interval of 0.01 second.
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2. Using the digital plant found in Prelab 1, find the preamplifier gain required for a
closed-loop digital system response with 10% overshoot and a sampling interval
of 0.01 second. What is the peak time?

3. Given the antenna azimuth control system shown on the front endpapers, use
Configuration 2 to find the preamplifier gain required for the continuous system
to yield a closed-loop step response with 10% overshoot. Consider the open-loop
system to be the preamplifier, motor, gears, and load. Neglect the dynamics of the
power amplifier.

Lab

1. Verify your value of preamplifier gain found in Prelab 2 using the SISO Design
Tool to generate the root locus for the digital open-loop transfer function found in
Prelab 1. Use the Design Constraints capability to generate the 10% overshoot
curve and place your closed-loop poles at this boundary. Obtain a plot of the root
locus and the design boundary. Record the value of gain for 10% overshoot. Also,
obtain a plot of the closed-loop step response using the LTI Viewer and record
the values of percent overshoot and peak time. Use the same tool to find the
range of gain for stability.

2. Using Simulink set up the closed-loop digital system whose plant was found
in Prelab 1. Make two diagrams: one with the digital transfer function for the
plant and another using the continuous transfer function for the plant
preceded by a zero-order sample-and-hold. Use the same step input for
both diagrams and obtain the step response of each. Measure the percent
overshoot and peak time.

3. Using Simulink, set up both the digital and continuous systems calculated in
Prelabs 2 and Prelab 3, respectively, to yield 10% overshoot. Build the digital
system with a sample-and-hold rather than the z-transform function. Plot the step
response of each system and record the percent overshoot and the peak time.

4. For one of the digital systems built in Lab 2, vary the sampling interval and record
the responses for a few values of sampling interval above 0.01 second. Record
sampling interval, percent overshoot, and peak time. Also, find the value of
sampling interval that makes the system unstable.

Postlab

1. Make a table containing the percent overshoot, peak time, and gain for each of
the following closed-loop responses: the digital system using the SISO Design
Tool; the digital system using Simulink and the digital transfer functions; the
digital system using Simulink and the continuous transfer functions with the zero-
order sample-and-hold; and the continuous system using Simulink.

2. Using the data from Lab 4, make a table containing sampling interval, percent
overshoot, and peak time. Also, state the sampling interval that makes the system
unstable.

3. Compare the responses of all of the digital systems with a sampling interval of
0.01 second and the continuous system. Explain any discrepancies.

4. Compare the responses of the digital system at different sampling intervals with
the continuous system. Explain the differences.

5. Draw some conclusions about the effect of sampling.
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Experiment 13.2

Objective To use the various functions from the LabVIEW Control Design and
Simulation Module for the analysis of digital control systems.

Minimum Required Software Packages LabVIEW with the Control De-
sign and Simulation Module and the MathScript RT Module; MATLAB with the
Control Systems Toolbox.

Prelab You are given Figure P8.28 and the parameters listed in the Prelab of
Cyber Exploration Laboratory Experiment 8.2 for the open-loop NASA eight-axis
ARMII (Advanced Research Manipulator II) electromechanical shoulder joint/
link, actuated by an armature-controlled dc servomotor.

1. Obtain the open-loop transfer function of the shoulder joint/link, GðsÞ ¼ uLðsÞ
Vref ðsÞ,

or use your calculation from Cyber Exploration Laboratory Experiment 8.2.

2. Use MATLAB and design a digital compensator to yield a closed-loop response
with zero steady-state error and a damping ratio of 0.7. If you already have
performed Cyber Exploration Laboratory Experiment 8.2, modify your M-file
from that experiment. Test your design using MATLAB.

Lab Simulate your Prelab design using a Simulation Loop from the LabVIEW
Control Design and Simulation Module. Plot the step response of two loops as
follows: (1) a unity feedback with the forward path consisting of the continuous
system transfer function preceded by a zero-order hold, and (2) a unity feedback
with the forward path consisting of the equivalent discrete transfer function of your
compensator in cascade with the open-loop plant.

Postlab Compare the results obtained with those from your prelab MATLAB
program. Comment on time-performance specifications.
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Appendix A: List of Symbols

%OS Percent overshoot

A Ampere—unit of electrical current

A System matrix for state-space representation

am Motor time constant

b Mechanical rotational coefficient of viscous friction in N-m-s/rad

B Input matrix for state-space representation

C Electrical capacitance in farads

C Output matrix for state-space representation

C(s) Laplace transform of the output of a system

c(t) Output of a system

CM Controllability matrix

D Mechanical rotational coefficient of viscous friction in N-m-s/rad

D Feedforward matrix for state-space representation

Da Motor armature coefficient of viscous damping in N-m-s/rad

Dm Total coefficient of viscous friction at the armature of a motor, including
armature coefficient of viscous friction and reflected load coefficient of
viscous friction in N-m-s/rad

E Energy

E(s) Laplace transform of the error

e(t) Error; electrical voltage

EaðsÞ Laplace transform of the motor armature input voltage; Laplace transform of the
actuating signal

eaðtÞ Motor armature input voltage; actuating signal

F Farad—unit of electrical capacitance

F(s) Laplace transform of f (t)

f(t) Mechanical force in newtons; general time function

f v Mechanical translational coefficient of viscous friction

g Acceleration due to gravity

G Electrical conductance in mhos

G(s) Forward-path transfer function

GcðsÞ Compensator transfer function

GcðzÞ Sampled transfer function for a compensator

GM Gain margin

GpðzÞ Sampled transfer function for a plant
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H Henry—unit of electrical inductance

H(s) Feedback-path transfer function

I Identity matrix

i(t) Electrical current in amperes

J Moment of inertia in kg-m2

Ja Motor armature moment of inertia in kg-m2

Jm Total moment of inertia at the armature of a motor, including armature moment
of inertia and reflected load moment of inertia in kg-m2

K Controller gain matrix

K Mechanical translational spring constant in N/m or rotational spring constant in
N-m/rad; amplifier gain; residue

k Controller feedback gain; running index

Ka Acceleration constant

Kb Back emf constant in V/rad/s

Kf Feedback gain

kg Kilogram ¼ newton seconds2=meter—unit of mass

kg-m2 Kilogram meters2 ¼ newton-meters seconds2/radian—unit of moment of inertia

Km Motor gain

Kp Position constant

Kt Motor torque constant relating developed torque to armature current in N-m/A

Kv Velocity constant

L Electrical inductance in henries

L Observer gain matrix

l Observer feedback gain

M Mass in kilograms; slope of the root locus asymptotes

m Meter—unit of mechanical translational displacement

MðvÞ Magnitude of a sinusoidal response

m/s Meters/second—unit of mechanical translational velocity

MP Peak magnitude of the sinusoidal magnitude response

N Newton—unit of mechanical translational force in kilogram meters/second2

N-s/m Newton-seconds/meter—unit of mechanical translational coefficient of viscous
friction

n System type

N/m Newton/meter—unit of mechanical translational spring constant

N-m Newton-meter—unit of mechanical torque

N-m-s/
rad

Newton-meter-seconds/radian—unit of mechanical rotational coefficient of
viscous friction

N-m/A Newton-meter/ampere—unit of motor torque constant

N-m/rad Newton-meter/radian—unit of mechanical rotational spring constant

OM Observability matrix

P Similarity transformation matrix

pc Compensator pole

Q Coulomb—unit of electrical charge

q(t) Electrical charge in coulombs
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R Electrical resistance in ohms

R(s) Laplace transform of the input to a system

r Nonlinear electrical resistance

r(t) Input to a system

Ra Motor armature resistance in ohms

rad Radian—unit of angular displacement

rad/s Radian/second—unit of angular velocity

s Second—unit of time

s Complex variable for the Laplace transform

SF:P Sensitivity of F to a fractional change in P

T Time constant; sampling interval for digital signals

T(s) Closed-loop transfer function; Laplace transform of mechanical torque

T(t) Mechanical torque in N-m

Tm(t) Torque at the armature developed by a motor in N-m

Tm(s) Laplace transform of the torque at the armature developed by a motor

Tp Peak time in seconds

Tr Rise time in seconds

Ts Settling time in seconds

Tw Pulse width in seconds

u Input or control vector for state-space representation

u Input control signal for state-space representation

u(t) Unit step input

V-s/rad Volt-seconds/radian—unit of motor back emf constant

v(t) Mechanical translation velocity in m/s; electrical voltage

vb(t) Motor back emf in volts

ve(t) Error voltage

vp(t) Power amplifier input in volts

x State vector for state-space representation

x(t) Mechanical translation displacement in meters; a state variable

_x Time derivative of a state variable

_x Time derivative of the state vector

y Output vector for state-space representation

y(t) Output scalar for state-space representation

z Complex variable for the z-transform

zc Compensator zero

a Pole-scaling factor for a lag compensator, where a > 1; angle of attack

b Pole-scaling factor for a lead compensator, where b < 1

g Pole-scaling factor for a lag-lead compensator, where g > 1

d Thrust angle

z Damping ratio

u Angle of a vector with the positive extension of the real axis

uðtÞ Angular displacement

ua Angle of a root locus asymptote with the positive extension of the real axis
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uc Angular contribution of a compensator on the s-plane

umðtÞ Angular displacement of the armature of a motor

l Eigenvalue of a square matrix

s Real part of the Laplace transform variable, s

sa Real-axis intercept of the root locus asymptotes

FM Phase margin

FðtÞ State transition matrix

f Sinusoidal phase angle; body angle

fc Sinusoidal phase angle of a compensator

fmax Maximum sinusoidal phase angle

V Ohm—unit of electrical resistance

I Mho—unit of electrical conductance

v Imaginary part of the Laplace transform variable, s

vðtÞ Angular velocity in rad/s

vBW Bandwidth in rad/s

vd Damped frequency of oscillation in rad/s

vfM Phase-margin frequency in radians

vGM Gain-margin frequency in radians

vn Natural frequency in rad/s

vp Peak-magnitude frequency of the magnitude frequency response in rad/s
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Appendix B: MATLAB Tutorial

B.1 Introduction

MATLAB is a high-level technical computing environment suitable for solving
scientific and engineering problems. When used with routines from its companion
software, the Control System Toolbox, MATLAB can be used to analyze and design
control systems problems such as those covered in this textbook. MATLAB and the
Control System Toolbox are commercial software products available from The
Math-Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098. Phone: (508) 647-
7000. Email: info@mathworks.com. URL: www.mathworks.com.

The MATLAB examples in this tutorial consist of solved problems that
demonstrate the application of MATLAB to the analysis and design of control
systems. Many problems were taken from examples in the text (identified with a
MATLAB icon) that were solved without MATLAB. A Command Summary at the
end of this appendix lists key MATLAB statements and their descriptions.

The code in this tutorial is also available in the Control Systems Engineering
Toolbox folder at www.wiley.com/college/nise and at www.mathworks.com/matlab-
central/fileexchange. You should have MATLAB 2009b and the Control System
Toolbox Version 8.4 installed on your machine to execute this appendix’s code in the
Control Systems Engineering Toolbox Version 6.

To run the M-files, first be sure the files are either added to the search path in
Set Path . . . under the File menu or appear in the Current Folder window, which is
part of the MATLAB window. To see the computer responses after installing the M-
files, run each problem by typing the M-file name, such as ch2p1, after the prompt
ð>>Þ in the Command Window. You may also run the files by right-clicking the file
name, if it appears in the Current Folder window, and select Run File.

To view all or part of the M-file in the Command Window, enter ‘‘type <file
name>’’ or ‘‘help <file name>,’’ respectively, after the prompt. You may also view
and make changes to the M-file by double-clicking the file in the Current Folder
window. This action brings up the editor. After editing, be sure to save the revised
file before executing.

If you do not have the Control Systems Engineering Toolbox M-files, you can
create your own M-files by typing the code for each problem in this appendix into a
separate M-file (there is no need to type the final pause statement or comments), and
naming each M-file with a .m extension, as in ch2p1.m. You can also type the code for
more than one problem into an M-file, including the pause command, and name the
M-file with the .m extension. You can then call the file from the Command Window,
and continue past the pause statements to the next problem by pressing any key.
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By its nature, this appendix cannot cover all the background and details
necessary for a complete understanding of MATLAB. For further details, you
are referred to other sources, including MATLAB reference manuals and instruc-
tions specific to your particular computer. The bibliography at the end of this
appendix provides a partial listing of references. This appendix should give you
enough information to be able to apply MATLAB to the analysis and design
problems covered in this book.

The code contained in this appendix and in the Control Systems Engineering
Toolbox was developed on a PC using MATLAB Version 7.9 and the Control System
Toolbox Version 8.4. The code will also run on workstations that support MATLAB.
Consult the MATLAB Installation Guide for your platform for minimum system
hardware requirements.

B.2 MATLAB Examples

Chapter 2: Modeling in the Frequency Domain
ch2p1 Bit strings will be used to identify parts of this tutorial on the computer output.
Bit strings are represented by the text enclosed in apostrophes, such as ’ab’.
Comments begin with % and are ignored by MATLAB. Numbers are entered
without any other characters. Arithmetic can be performed using the proper
arithmetic operator. Numbers can be assigned using a left-hand argument and an
equals sign. Finally, we can find the magnitude and angle of a complex number, Q
using abs (Q) and angle (Q), respectively.

’(ch2p1)’ % Display label.
’How are you? ’ % Display string.
-3.96 % Display scalar number -3.96.
-4 + 7i % Display complex number -4+7i.
-5-6j % Display complex number -5-6 j.
(-4+7i)+(-5-6i) % Add two complex numbers and

% display sum.
(-4+7j)*(-5-6j) % Multiply two complex numbers and

% display product.
M=5 % Assign 5 to M and display.
N=6 % Assign 6 to N and display.
P=M+N % Assign M+N to P and display.
Q=3+4j % Define complex number, Q.
MagQ=abs(Q) % Find magnitude of Q.
ThetaQ=(180/pi)*angle(Q) % Find the angle of Q in degrees.
pause

ch2p2 Polynomials in s can be represented as row vectors containing the coef-
ficients. Thus P1 ¼ s3 þ 7s2 � 3sþ 23 can be represented by the vector shown below
with elements separated by a space or comma. Bit strings can be used to identify
each section of this tutorial.

’(ch2p2)’ % Display label.
P1= [17-323] % Store polynomial s^3 + 7s^2 -3s+

% 23 as P1 and display.
pause

788 Appendix B: MATLAB Tutorial



Apago PDF Enhancer

E1BAPP02 08/31/2010 17:57:24 Page 789

ch2p3 Running the previous statements causes MATLAB to display the results.
Ending the command with a semicolon suppresses the display. Typing an expression
without a left-hand assignment and without a semicolon causes the expression to be
evaluated and the result displayed. Enter P2 in the MATLAB Command Window
after execution.

’(ch2p3)’ % Display label.
P2 = [3 5 7 8]; % Assign 3s^3 + 5s^2 +7s + 8 to P2

% without displaying.
3*5 % Evaluate 3*5 and display result.
pause

ch2p4 An F(s) in factored form can be represented in polynomial form. Thus P3 ¼
ðsþ 2Þðsþ 5Þðsþ 6Þ can be transformed into a polynomial using poly (V), where V
is a row vector containing the roots of the polynomial and poly(V) forms the
coefficients of the polynomial.

’(ch2p4)’ % Display label.
P3=poly([-2 -5 -6]) % Store polynomial

% (s+2) (s+5)(s+6) as P3 and
% display the coefficients.

pause

ch2p5 We can find roots of polynomials using the roots (V) command. The roots
are returned as a column vector. For example, find the roots of
5s4 þ 7s3 þ 9s2 � 3sþ 2 ¼ 0.

’(ch2p5)’ % Display label.
P4=[5 7 9 -3 2] % Form 5s^4+7s^3+9s^2-3s+2 and

% display.
rootsP4=roots(P4) % Find roots of 5s^4+7s^3+9s^2

%-3s+2,
% assign to rootsP4, and display.

pause

ch2p6 Polynomials can be multiplied together using the conv(a,b) command
(standing for convolve). Thus, P5 ¼ ðs3 þ 7s2 þ 10sþ 9Þðs4 � 3s3 þ 6s2 þ 2sþ 1Þ is
generated as follows:

’(ch2p6)’ % Display label.
P5=conv([1 7 1 0 9],[1 -3 6 2 1]) % Form (s^3+7s^2+10s+9)(s^4-

% 3s^3+6s^2+2s+l), assign to P5,
% and display.

pause

ch2p7 The partial-fraction expansion for FðsÞ ¼ bðsÞ=aðsÞ can be found using the
[K, p, k ]= residue (b, a) command (K = residue; p= roots of denominator; k=
direct quotient, which is found by dividing polynomials prior to performing a partial-
fraction expansion). We expand FðsÞ ¼ ð7s2 þ 9sþ 12Þ=½sðs þ 7Þðs2 þ 10sþ 100Þ�
as an example. Using the results from MATLAB yields: FðsÞ ¼ ½ð0:2554 �
0:3382iÞ = ðsþ 5:0000 � 8:6603iÞ� þ ½ð0:2554 þ 0:3382iÞ = ðs þ 5:0000 þ 8:6603iÞ� �
½0:5280= ðsþ 7Þ� þ ½0:0171=s�:
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’(ch2p7)’ % Display label.
numf=[7 9 12] % Define numerator of F(s).
denf=conv(poly([0-7]),[1 10 100]); % Define denominator of F(s).
[K, p, k]=residue (numf ,denf) % Find residues and assign to K;

% find roots of denominator and
% assign to p; find
% constant and assign to k.

pause

ch2p8 (Example 2.3) Let us do Example 2.3 in the book using MATLAB.

’(ch2p8) Example 2.3’ % Display label.
numy=32; % Define numerator.
deny=poly([0 -4 -8]); % Define denominator.
[r, p, k]=residue (numy, deny) % Calculate residues, poles, and

% direct quotient.
pause

ch2p9 Creating Transfer Functions
Vector Method, Polynomial Form
A transfer function can be expressed as a numerator polynomial divided by a
denominator polynomial, that is, FðsÞ ¼ NðsÞ=DðsÞ. The numerator, N(s), is repre-
sented by a row vector, numf, that contains the coefficients of N(s). Similarly, the
denominator, D(s), is represented by a row vector, denf, that contains the coef-
ficients of D(s). We form F(s) with the command, F=tf (numf, denf). F is called a
linear time-invariant (LTI) object. This object, or transfer function, can be used as an
entity in other operations, such as addition or multiplication. We demonstrate with
FðsÞ ¼ 150ðs2 þ 2sþ 7Þ=½sðs2 þ 5sþ 4Þ�. Notice after executing the tf command,
MATLAB prints the transfer function.

Vector Method, Factored Form We also can create LTI transfer functions if the
numerator and denominator are expressed in factored form. We do this by using row
vectors containing the roots of the numerator and denominator. Thus GðsÞ ¼
K�NðsÞ=DðsÞ can be expressed as an LTI object using the command, G=zpk
(numg, deng, K), where numg is a row vector containing the roots of N(s)
and deng is a row vector containing the roots of D(s). The expression zpk stands for
zeros (roots of the numerator), poles (roots of the denominator), and gain, K. We
demonstrate with GðsÞ ¼ 20ðsþ 2Þðsþ 4Þ=½ðsþ 7Þðsþ 8Þðsþ 9Þ�. Notice after exe-
cuting the zpk command, MATLAB prints the transfer function.

Rational Expression in s Method, Polynomial Form (Requires Control System
Toolbox 8.4) This method allows you to type the transfer function as you normally
would write it. The statement s=tf(’s’) must precede the transfer function if you
wish to create an LTI transfer function in polynomial form equivalent to using
G=tf (numg, deng).

Rational Expression in s Method, Factored Form (Requires Control System Toolbox
8.4) This method allows you to type the transfer function as you normally would
write it. The statement s=zpk (’s’) must precede the transfer function if you
wish to create an LTI transfer function in factored form equivalent to using
G=zpk (numg, deng, K).
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For both rational expression methods the transfer function can be typed in any
form regardless of whether s=tf(’s’) or s=zpk(’s’) is used. The difference is in
the created LTI transfer function. We use the same examples above to demonstrate
the rational expression in s methods.

’(ch2p9)’ % Display label.
’Vector Method, Polynomial Form’ % Display label.
numf=150*[1 2 7] % Store 150 (s^2+2s+7) in numf and

% display.
denf=[1 5 4 0] % Store s (s+1) (s+4) in denf and

% display.
’F(s)’ % Display label.
F=tf (numf, denf) % Form F(s) and display.
clear % Clear previous variables from

% workspace.
’Vector Method, Factored Form’ % Display label.
numg=[-2 -4] % Store (s+2)(s+4) in numg and

% display.
deng=[-7 -8 -9] % Store (s+7) (s+8) (s+9) in deng

% and display.
K=20 % Define K.
’G(s)’ % Display label.
G=zpk(numg,deng,K) % Form G(s) and display.
clear % Clear previous variables from

% workspace.
’Rational Expression Method, Polynomial Form’

% Display label.
s=tf (’s’) % Define ’s’ as an LTI object in

% polynomial form.
F=150*(s^2+2*s+7)/[s*(s^2+... % Form F (s) as an LTI transfer
5*s+4)] % function in polynomial form.
G=20*(s+2)*(s+4)=[(s+7)*... % Form G(s) as an LTI transfer
(s+8)*(s+9)] % function in polynomial form.
clear % Clear previous variables from

% workspace.
’Rational Expression Method, Factored Form’

% Display label.
s=zpk(’s’) % Define ’s’ as an LTI object in

% factored form.
F=150*(s^2+2*s+7)/[s*(s^2+5*s+4)]

% Form F (s) as an LTI transfer
% function in factored form.

G=20*(s+2)*(s+4)/[(s+7)*(s+8)*(s+9)]
% Form G(s) as an LTI transfer
% function in factored form.

pause

ch2p10 Transfer function numerator and denominator vectors can be converted
between polynomial form containing the coefficients and factored form containing the
roots. The MATLAB function, tf 2 zp (numtf, dentf), converts the numerator
and denominator from coefficients to roots. The results are in the form of column
vectors. We demonstrate this with FðsÞ ¼ ð10s2 þ 40sþ 60Þ=ðs3 þ 4s2 þ 5sþ 7Þ. The
MATLAB function, zp2tf(numzp,denzp,K), converts the numerator and de-
nominator from roots to coefficients. The arguments numzp and denzp must be
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column vectors. In the demonstration that follows, apostrophes signify transpose. We
demonstrate the conversion from roots to coefficients with GðsÞ ¼ 10ðsþ 2Þ
ðsþ 4Þ=½sðsþ 3Þðsþ 5Þ�.

’(ch2p10)’ % Display label.
’Coefficients for F(s)’ % Display label.
numftf=[10 4 0 60] % Form numerator of F (s)=

% (10s^2+40s+60)/(s^3+4s^2+5s
% +7).

denftf=[1 4 5 7] % Form denominator of F (s)=
% (10s^2+40s+60)/(s^3+4s^2+5s
% +7).

’Roots for F(s)’ % Display label.
[numfzp,denfzp]=tf2zp (numftf,denftf)

% Convert F(s) to factored form.
’Roots for G(s)’ % Display label.
numgzp=[-2 -4] % Form numerator of
K=10 % G(s)=10(s+2)(s+4)=[s(s + 3)

% (s+5)].
dengzp=[0 -3 -5] % Form denominator of

% G(s)=10(s+2)(s+4)/[s(s+3)(s+5)].
’Coefficients for G(s)’ % Display label.
[numgtf, dengtf]=zp2tf (numgzp’, dengzp’, K)

% Convert G(s) to polynomial form.
pause

ch2p11 LTI models can also be converted between polynomial and factored forms.
MATLAB commands tf and zpk are also used for the conversion between LTI
models. If a transfer function, Fzpk(s), is expressed as factors in the numerator and
denominator, then tf (Fzpk) converts Fzpk(s) to a transfer function expressed as
coefficients in the numerator and denominator. Similarly, if a transfer function, Ftf
(s), is expressed as coefficients in the numerator and denominator, then zpk(Ftf)
converts Ftf(s) to a transfer function expressed as factors in the numerator and
denominator. The following example demonstrates the concepts.

’(ch2p11)’ % Display label.
’Fzpk1(s)’ % Display label.
Fzpk1=zpk([-2-4],[0-3-5],10) % Form Fzpk1 (s)=

% 10(s+2)(s+4)/[s(s+3)(s+5)].
’Ftf1’ % Display label.
Ftf1=tf (Fzpk1) % Convert Fzpk1 (s) to

% coefficients form.
’Ftf2’ % Display label.
Ftf2=tf([10 40 60],[1 4 5 7]) % Form Ftf2(s)=

% (10s^2+40s+60)/(s^3+4s^2+5s
% +7).

’Fzpk2’ % Display label.
Fzpk2=zpk(Ftf2) % Convert Ftf2 (s) to

% factored form.
pause

ch2p12 Functions of time can be easily plotted using MATLAB’s plot (X, Y,
S), where X is the independent variable, Y is the dependent variable, and S is a
character string describing the plot’s color, marker, and line characteristic. Type
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HELP PLOT in theCommandWindow to see a list of choices for S. Multiple plots also
can be obtained using plot (X1, Y1, S1, X2, Y2, S2, X3, Y3, S3, . . . ). In
the following example we plot on the same graph sin(5t) in red and cos(5t) in green
for t ¼ 0 to 10 seconds in 0.01 second increments. Time is specified as t=start:
increment: final.

’(ch2p12)’ % Display label.
t=0:0.01:10; % Specify time range and increment.
f1=cos(5*t); % Specify f1 to be cos(5t).
f2=sin(5*t); % Specify f2 to be sin (5t).
plot(t,f1,’r’,t,f2,’g’) % Plot f1 in red and f2 in green.
pause

Chapter 3: Modeling in the Time Domain

ch3p1 The square system matrix, A ¼
0 1 0
0 0 1

�9 �8 �7

2
4

3
5 is written with a space or

comma separating the elements of each row. The next row is indicated with a
semicolon or carriage return. The entire matrix is then enclosed in a pair of square
brackets.

’(ch3p1)’ % Display label.
A=[0 1 0;0 0 1; -9 -8 -7] % Represent A.
’or’
A=[0 1 0 % Represent A.
0 0 1
-9 -8 -7]
pause

ch3p2 A row vector, such as the output matrix C, can be represented with elements
separated by spaces or commas and enclosed in square brackets. A column vector,
such as input matrix B, can be written as elements separated by semicolons or
carriage returns, or as the transpose (’) of a row vector.

’(ch3p2)’ % Display label.
C=[2 3 4] % Represent row vector C.
B=[7 ; 8 ; 9] % Represent column vector B.
’or’
B=[7 % Represent column vector B.
8
9]
’or’
B=[7 8 9]’ % Represent column vector B.
pause

ch3p3 The state-space representation consists of specifying the A, B, C, and D
matrices followed by the creation of an LTI state-space object using the MATLAB
command, ss(A,B,C,D). Hence, for the matrices in (ch3p1) and (ch3p2), the state-
space representation would be:
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’(ch3p3)’ % Display label.
A=[0 1 0;0 0 1; -9 -8 -7] % Represent A.
B=[7;8;9]; % Represent column vector B.
C=[2 3 4]; % Represent row vector C.
D=0; % Represent D.
F=ss(A,B,C,D) % Create an LTI object and display.

ch3p4 (Example 3.4) Transfer functions represented either by numerator and
denominator or an LTI object can be converted to state space. For numerator and
denominator representation, the conversion can be implemented using [A, B, C, D]
=tf2ss (num, den). The A matrix is returned in a form called the controller
canonical form, which will be explained in Chapter 5 in the text. To obtain the phase-
variable form, [Ap, Bp, Cp, Dp], we perform the following operations: Ap=inv
(P) *A*P; Bp=inv (P)*B; Cp=C*P, Dp=D, where P is a matrix with 1’s along the
anti-diagonal and 0’s elsewhere. These transformations will be explained in Chapter
5. The command inv (X) finds the inverse of a square matrix. The symbol *signifies
multiplication. For systems represented as LTI objects, the command ss (F), where
F is an LTI transfer-function object, can be used to convert F to a state-space object.
Let us look at Example 3.4 in the text. For the numerator-denominator representa-
tion, notice that the MATLAB response associates the gain, 24, with the vector C
rather than the vector B as in the example in the text. Both representations are
equivalent. For the LTI transfer-function object, the conversion to state space does
not yield the phase-variable form. The result is a balanced model that improves the
accuracy of calculating eigenvalues, which are covered in Chapter 4. Since ss (F)
does not yield familiar forms of the state equations (nor is it possible to easily
convert to familiar forms), we will have limited use for that transformation at this
time.

’(ch3p4) Example 3.4’ % Display label.
’Numerator-denominator representation conversion’

% Display label.
’Controller canonical form’ % Display label.
num=24 ; % Define numerator of

% G(s)=C(s)/R(s).
den=[1 9 26 24]; % Define denominator of G(s).
[A,B,C,D]=tf2ss(num,den) % Convert G(s) to controller

% canonical form, store matrices
% A, B, C, D, and display.

’Phase-variable form’ % Display label.
P=[0 0 1;0 10;10 0]; % Form transformation matrix.
Ap=inv(P)*A*P % Form A matrix, phase-variable

% form.
Bp=inv(P)*B % Form B vector, phase-variable

% form.
Cp=C*P % Form C vector, phase-variable

% form.
Dp=D % Form D phase-variable form.
’LTI object representation’ % Display label.
T=tf(num,den) % Represent T(s)=24/(s^3+9s^2 +

% 26s+24) as an LTI transfer-
% function object.

Tss=ss(T) % Convert T(s) to state space.
pause
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ch3p5 State-space representations can be converted to transfer functions repre-
sented by a numerator and a denominator using [num,den]=ss2tf(A,B,C,D,
iu), where iu is the input number for multiple-input systems. For single-input,
single-output systems iu=1. For an LTI state-space system, Tss, the conversion can
be implemented using Ttf=tf(Tss) to yield the transfer function in polynomial
form or Tzpk=zpk (Tss) to yield the transfer function in factored form. For
example, the transfer function represented by the matrices described in (ch3p3) can
be found as follows:

’(ch3p5)’ % Display label.
’Non LTI’ % Display label.

A=[0 1 0;0 0 1;-9 -8 -7]; % Represent A.
B=[7;8;9]; % Represent B.
C=[2 3 4] % RepresentC.
D=0; % Represent D.
’Ttf (s) ’ % Display label.
[num,den]=ss2tf (A,B,C,D,1) % Convert state-space

% representation to a
% transfer function represented as
% a numerator and denominator in
% polynomial form, G(s)=num/den,
% and display num and den.

’LTI’ % Display label.
Tss=ss(A,B,C,D) % Form LTI state-space model.
’Polynomial form, Ttf(s)’ % Display label.
Ttf=tf (Tss) % Transform from state space to

% transfer function in polynomial
% form.

’Factored form, Tzpk(s) ’ % Display label.
Tzpk=zpk(Tss) % Transform from state space to

% transfer function in factored
% form.

pause

Chapter 4: Time Response
ch4p1 (Example 4.6) We can use MATLAB to calculate characteristics of a second-
order system, such as damping ratio, z; natural frequency,vn; percent overshoot,%OS
(pos); settling time, Ts; and peak time, Tp. Let us look at Example 4.6 in the text.

’(ch4p1) Example 4.6’ % Display label.
p1=[1 3+7*i]; % Define polynomial containing

% first pole.
p2=[1 3 -7*i]; % Define polynomial containing

% second pole.
deng=conv(p1 ,p2); % Multiply the two polynomials to

% find the 2nd order polynomial,
% as^2+bs+c.

omegan=sqrt (deng (3) /deng (1)) % Calculate the natural frequency,
% sqrt(c/a).

zeta=(deng(2)/deng(1))/(2*omegan)
% Calculate damping ratio,
% ((b/a)/2*wn).

Ts=4/(zeta*omegan) % Calculate settling time,
% (4/z*wn).
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Tp=pi/(omegan*sqrt(l -zeta^2)) % Calculate peak time,
% pi/wn*sqrt(l -z^2).

pos=100*exp( -zeta*pi/sqrt(l -zeta^2))
% Calculate percent overshoot
% (100*e^(-z*pi/sqrt(l-z^2)).

pause

ch4p2 (Example 4.8) We can use MATLAB to obtain system step responses. These
responses are particularly valuable when the system is not a pure two-pole system and
has additional poles or zeros. We can obtain a plot of the step response of a transfer
function, T(s) =num/den, using the command step(T), where T is an LTI transfer-
function object. Multiple plots also can be obtained using step(T1, T2,...)

Information about the plots obtained with step(T) can be found by left-
clicking the mouse on the curve. You can find the curve’s label as well as the
coordinates of the point on which you clicked. Right-clicking away from a curve
brings up a menu. From this menu you can select (1) system responses to be
displayed and (2) response characteristics to be displayed, such as peak response.
When selected, a dot appears on the curve at the appropriate point. Let your mouse
rest on the point to read the value of the characteristic. You may also select (3)
choice for grid on or off, (4) choice to normalize the curve, and (5) properties, such as
labels, limits, units, style, and characteristics.

If we add the left-hand side, [y, t]=step (T), we create vectors containing
the plot’s points, where y is the output vector and t is the time vector. For this case, a
plot is not made until the plot (t, y) command is given, where we assume we want
to plot the output (y) versus time (t). We can label the plot, the x-axis, and the y-
axis with title(’ab’) , xlabel(’ab’) , and ylabel(’ab’), respectively. The
command clf clears the graph prior to plotting. Finally, text can be placed anywhere
on the graph using the command text (X, Y, ’text’), where (X, Y) are the graph
coordinates where ’text’will be displayed. Let us look at Example 4.8 in the text.

’(ch4p2) Example 4.8’ % Display label.
’Test Run’ % Display label.
clf % Clear graph.
numt1=[24.542]; % Define numerator of T1.
dent1=[1 4 24.542]; % Define denominator of T1.
’T1(s)’ % Display label.
T1=tf(numt1,dent1) % Create and display T1(s).
step(T1) % Run a demonstration step response

% plot
title (’Test Run of T1 (s) ’) % Add title to graph.
pause
’Complete Run’ % Display label.
[y1,t1]=step(T1); % Run step response of T1 and

% collect points.
numt2=[245.42]; % Define numerator of T2.
p1=[1 10]; % Define (s+10) in denominator

% of T2.
p2=[1 4 24.542]; % Define (s^2+4s+24.542) in

% denominator of T2.
dent2=conv(p1,p2); % Multiply (s + 10)(s^2+4s+24.542)

% for denominator of T2.
’T2(s)’ % Display label.
T2=tf(numt2, dent2) % Create and display T2.
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[y2,t2]=step(T2); % Run step response of T2 and
% collect points.

numt3=[73.626]; % Define numerator of T3.
p3=[1 3]; % Define (s+3) in denominator

% of T3.
dent3=conv(p3,p2); % Multiply (s+3) (s^2+4s+24.542)

% for denominator of T3.
’T3(s)’ % Display label.
T3=tf(numt3,dent3) % Create and display T3.
[y3,t3]=step(T3); % Run step response of T3 and

% collect points.
clf % Clear graph.
plot(t1,y1,t2,y2,t3,y3) % Plot acquired points with all

% three plots on one graph.
title (’Step Responses of T1(s),T2 (s), and T3(s)’)

% Add title to graph.
xlabel(’Time(seconds)’) % Add time axis label.
ylabel (’Normalized Response ’) % Add response axis label.
text(0.7,0.7,’c3(t)’) % Label step response of T1.
text(0.7,1.1,’c2(t)’) % Label step response of T2.
text(0.5,1.3,’c1(t)’) % Label step response of T3.
pause
step(T1,T2,T3) % Use alternate method of plotting

% step responses.
title (’Step Responses of T1(s), T2(s), and T3(s)’)

% Add title to graph.
pause

ch4p3 We also can plot the step response of systems represented in state space using the
step(T,t) command. HereT is any LTI object andt=a:b:c is the range for the time
axis, wherea is the initial time,b is the time step size, and c is the final time. For example,
t=0:1:10 means time from 0 to 10 seconds in steps of 1 second. The t field is optional.
Finally, in this example we introduce the command grid on, which superimposes a grid
over the step response. Place the grid on command after the step(T, t) command.

’(ch4p3)’ % Display label.
clf % Clear graph.
A=[0 1 0; 0 0 l; -24 -26 -9]; % Generate A matrix.
B=[0; 0; 1]; % Generate B vector.
C=[2 7 1]; % Generate C vector.
D=0; % Generate D.
T=ss(A,B,C,D) % Generate LTI object, T, in state

% space and display.
t=0:0.1:10; % Define range of time for plot.
step(T,t) % Plot step response for given

% range of time.
grid on % Turn grid on for plot.
pause

ch4p4 (Antenna Control Case Study) We now use MATLAB to plot the step
response requested in the Antenna Control Case Study.

’(ch4p4) Antenna Control Case Study’
% Display label.

clf % Clear graph.
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numg=2 0 .83; % Define numerator of G(s).
deng=[1 101.71 171]; % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg,deng) % Form and display transfer

% Function G(s).
step(G); % Generate step response.
title(’Angular Velocity Response’)

% Add title.
pause

ch4p5 (UFSS Case Study) As a final example, let us use MATLAB to do the UFSS
Case Study in the text (Johnson, 1980). We introduce table lookup to find the rise
time. Using the interp1 (y, t, y1) command, we set up a table of values of
amplitude, y, and time, t, from the step response and look for the value of time for
which the amplitude is y 1¼0.1 and 0.9. We also generate time response data over a
defined range of time using t=a:b:c followed by [y, t]=step(G, t). Here G is an
LTI transfer-function object and t is the range for the time axis, where a is the initial
time, b is the time step size, and c is the final time; y is the output.

’(ch4p5) UFSS Case Study’ % Display label.
clf % Clear graph.
’(a)’ % Display label.
numg=0.0169; % Define numerator of 2nd order

% approximation of G(s).
deng=[1 0.226 0.0169]; % Define 2nd order term of

% denominator of G(s).
’G(s)’ % Display label.
G=tf(numg,deng). % Create and display G(s).
omegan=sqrt(deng(3)) % Find natural frequency.
zeta=deng(2)/(2 *omegan) % Find damping ratio.
Ts=4/(zeta*omegan) % Find settling time.
Tp=pi/(omegan*sqrt(1-zeta^2)) % Find peak time.
pos=exp/(-zeta*pi/sqrt(1-zeta^2))*100

% Find percent overshoot.
t=0:0.1:35; % Limit time to find rise time. t=0

% to 35 in steps of 0.1.
[y,t]=step(G,t); % Generate and save points of step

% response over defined range of t.
Tlow=interp1(y,t,0.1); % Search table for time when

% y=0 . 1*finalvalue.
Thi=interp1(y,t,0.9); % Search table for

% time=0.9*finalvalue.
Tr=Thi-Tlow % Calculate rise time.
’(b)’ % Display label.
numc=0.125*[1 0.435]; % Define numerator of C(s).
denc=conv(poly([0-1.23]),[1 0.226 0.0169]);

% Define denominator of C(s).
[K,p,k]=residue(numc, denc) % Find partial-fraction expansion.
’(d)’ % Display label.
numg=0.125*[1 0.435]; % Define numerator of G(s).
deng=conv([11.23],[1 0.226 0.0169]);

% Define denominator of G(s).
’G(s)’ % Display label.
G=tf(numg,deng) % Create and display G(s).
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[y,t]=step(G); % Generate complete step response
% and collect points.

plot(t,y) % Plot points.
title (’Pitch Angle Response ’) % Add title.
xlabel(’Time (seconds)’) % label time axis.
ylabel (’Pitch Angle (radians) ’) % Label y-axis.
pause

Chapter 5: Reduction of Multiple Subsystems
ch5p1 (UFSS Pitch Control System) MATLAB can be used for block diagram
reduction. Three methods are available: (1) Solution via Series, Parallel, & Feedback
Commands, (2) Solution via Algebraic Operations, and (3) Solution via Append &
Connect Commands. Let us look at each of these methods.

1. Solution via Series, Parallel, & Feedback Commands
The closed-loop transfer function is obtained using the following commands
successively, where the arguments are LTI objects: series (G1, G2) for a
cascade connection of G1(s); and G2(s); parallel (G1, G2) for a parallel
connection of G1(s) and G2(s); feedback(G,H, sign) for a closed-loop
connection with G(s) as the forward path, H(s) as the feedback, and sign is
– 1 for negative-feedback systems or +1 for positive-feedback systems. The sign is
optional for negative-feedback systems.

2. Solution via Algebraic Operations
Another approach is to use arithmetic operations successively on LTI transfer
functions as follows: G2*G1 for a cascade connection of G1(s) and G2(s); G1+G2
for a parallel connection of G1(s) and G2(s); G/(1+G*H) for a closed-loop
negative-feedback connection with G(s) as the forward path and H(s) as the
feedback; G/(1-G�H) for positive-feedback systems. When using division we
follow with the function minreal (sys) to cancel common terms in the
numerator and denominator.

3. Solution via Append & Connect Commands
The last method, which defines the topology of the system, may be used
effectively for complicated systems. First, the subsystems are defined. Second,
the subsystems are appended, or gathered, into a multiple-input/multiple-output
system. Think of this system as a single system with an input for each of the
subsystems and an output for each of the subsystems. Next, the external inputs
and outputs are specified. Finally, the subsystems are interconnected. Let us
elaborate on each of these steps.

The subsystems are defined by creating LTI transfer functions for each. The
subsystems are appended using the command G=append (G1, G2, G3,
G4,. . . . Gn), where the Gi are the LTI transfer functions of the subsystems
and G is the appended system. Each subsystem is now identified by a number
based upon its position in the append argument. For example, G3 is 3, based on
the fact that it is the third subsystem in the append argument (not the fact that we
write it as G3).

Now that we have created an appended system, we form the arguments
required to interconnect their inputs and outputs to form our system. The first
step identifies which subsystems have the external input signal and which
subsystems have the external output signal. For example, we use inputs=
[1 5 6]and outputs=[3 4] to define the external inputs to be the inputs of
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subsystems 1,5, and 6 and the external outputs to be the outputs of subsystems 3
and 4. For single-input/single-output systems, these definitions use scalar quanti-
ties. Thus inputs=5, outputs=8 define the input to subsystem 5 as the
external input and the output of subsystem 8 as the external output.

At this point we tell the program how all of the subsystems are interconnected.
We form a Q matrix that has a row for each subsystem whose input comes from
another subsystem’s output. The first column contains the subsystem’s number.
Subsequent columns contain the numbers of the subsystems from which the
inputs come. Thus, a typical row might be as follows: [3 6 �7], or subsystem 3’s
input is formed from the sum of the output of subsystem 6 and the negative of the
output of subsystem 7.

Finally, all of the interconnection arguments are used in the connect (G Q
inputs, outputs) command, where all of the arguments have been previously
defined.

Let us demonstrate the three methods for finding the total transfer
function by looking at the back endpapers and finding the closed-loop
transfer function of the pitch control loop for the UFSS with K1 ¼ K2 ¼ 1
(Johnson, 1980). The last method using append and connect requires that all
subsystems be proper (the order of the numerator cannot be greater than the
order of the denominator). The pitch rate sensor violates this requirement.
Thus, for the third method, we perform some block diagram maneuvers by
pushing the pitch rate sensor to the left past the summing junction and
combining the resulting blocks with the pitch gain and the elevator actuator.
These changes are reflected in the program. You should verify all computer
results with hand calculations.

’(ch5p1) UFSS Pitch Control System’
’& Feedback Commands ’
’Solution via Series, Parallel’ % Display labels.
numg1=[-1]; % Define numerator of G1(s).
deng1=[1]; % Define denominator of G1(s).
numg2=[0 2]; % Define numerator of G2(s).
deng2=[1 2]; % Define denominator of G2 (s).
numg3=-0.125*[1 0.435]; % Define numerator of G3(s).
deng3=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G3(s).
numh1=[-1 0]; % Define numerator of H1(s).
denh1=[0 1]; % Define denominator of H1(s).
G1=tf(numg1,deng1); % Create LTI transfer function,

% G1(s).
G2=tf(numg2,deng2); % Create LTI transfer function,

% G2(s).
G3=tf(numg3,deng3); % Create LTI transfer function,

% G3(s).
H1=tf (numh1,denh1); % Create LTI transfer function,

% H1(s).
G4=series(G2,G3); % Calculate product of elevator

% and vehicle dynamics.
G5=feedback(G4,H1); % Calculate close-loop transfer

% function of inner loop.
Ge=series(G1,G5); % Multiply inner-loop transfer

% function and pitch gain.
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’T(s) via Series, Parallel, & Feedback Commands’
% Display label.

T=feedback(Ge, 1) % Find closed-loop transfer
% function.

’Solution via Algebraic Operations ’
% Display label.

clear % Clear session.
numg1=[-1]; % Define numerator of G1(s).
deng1=[1]; % Define denominator of G1(s).
numg2=[0 2]; % Define numerator of G2(s).
deng2=[1 2]; % Define denominator of G2(s).
numg3=-0.125*[1 0.435]; % Define numerator of G3(s).
deng3=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G3(s).
numh1=[-10]; % Define numerator of H1(s).
denh1=[01]; % Define denominator of H1(s).
G1=tf(numg1, deng1); %CreateLTItransferfunction,G1(s).
G2=tf (numg2,deng2); %CreateLTItransferfunction,G2(s).
G3=tf (numg3,deng3); %CreateLTItransferfunction,G3(s).
H1=tf (numh1,denh1); %CreateLTItransferfunction,H1(s).
G4=G3*G2; % Calculate product of elevator and

% vehicle
% dynamics.

G5=G4/(1+G4*H1); % Calculate closed-loop transfer
% function of inner loop.

G5=minreal(G5); % Cancel common terms.
Ge=G5*G1; % Multiply inner-loop transfer

% functions.
’T(s) via Algebraic Operations’ % Display label.
T=Ge/(1+Ge); % Find closed-loop transfer function.
T=minreal(T) % Cancel common terms.
’Solution via Append & Connect Commands ’

% Display label.
’G1(s)=(-K1)*(1/(-K2s))=1/s’ % Display label.
numg1=[1]; % Define numerator of G1(s).
deng1=[1 0]; % Define denominator of G1(s).
G1=tf(numg1,deng1) % Create LTI transfer function,

% G1(s)=pitch gain*
% 1 (1/Pitch rate sensor).

’G2(s)=(-K2s)*(2/(s+2)’ % Display label.
numg2=[-2 0]; % Define numerator of G2(s).
deng2=[1 2]; % Define denominator of G2(s).
G2=tf(numg2,deng2) % Create LTI transfer function,

% G2(s)=pitch rate sensor*vehicle
% dynamics.

’G3(s)=-0.125(s +0.435)/((s+1.23)(s^2+0.226s+0.0169)) ’
% Display label.

numg3=-0.125*[1 0.435]; % Define numerator of G3(s).
deng3=conv([1 1.23],[1 0.226 0.0169]);

% Define denominator of G3(s).
G3=tf(numg3,deng3); % Create LTI transfer function,

% G3(s)=vehicle dynamics.
System=append(G1,G2,G3); % Gather all subsystems.
input=1; % Input is at first subsystem,
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% G1(s).
output=3; % Output is output of third

% subsystem, G3(s).
Q=[1 -3 0 % Subsystem 1, G1(s) , gets its

% input from the negative of the
% output of subsystem 3, G3(s).

2 1-3 % Subsystem 2 , G2(s) , gets its
% input from subsystem 1, G1(s) ,
% and the negative of the output
% of subsystem 3 , G3(s).

3 2 0]; % Subsystem 3 , G3(s) , gets its
% input from subsystem 2 , G2(s).

T=connect(System, Q, input, output);
% Connect the subsystems.

’T(s) via Append & Connect Commands ’
% Display label.

T=tf (T); % Create LTI closed-loop transfer
% function.

T=minreal(T) % Cancel common terms.
pause

ch5p2 (Example 5.3) We can use MATLAB to calculate the closed-loop character-
istics of a second-order system, such as damping ratio, z; natural frequency, vn;
percent overshoot, %OS (pos); settling time, Ts; and peak time, Tp. The command
[numt, dent]=tfdata(T, ’v’) extracts the numerator and denominator of T(s)
for a single-input/single-output system from which the calculations are based. The
argument ’v’ returns the numerator and denominator as simple row vectors.
Omitting ’v’would return the numerator and denominator as cell arrays requiring
more steps to obtain the row vectors. We end by generating a plot of the closed-loop
step response. Let us look at Example 5.3 in the text.

’(ch5p2) Example 5.3’ % Display label.
numg=[25]; % Define numerator of G(s).
deng=poly([0 -5]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf(numg,deng). % Create and display G (s).
’T(s)’ % Display label.
T=feedback(G,1) % Find T(s).
[numt,dent]=tfdata(T, ’v’); % Extract numerator & denominator

% of T(s).
wn=sqrt(dent(3)) % Find natural frequency.
z=dent(2)/(2*wn) % Find damping ratio.
Ts=4/(z*wn) % Find settling time.
Tp=pi/(wn*sqrt(l-z^2)) % Find peak time.
pos=exp(-z*pi/sqrt(1-z^2))*100 % Find percent

overshoot.
step(T) % Generate step response.
pause

ch5p3 MATLAB can be used to convert transfer functions to state space in a
specified form. The command [Acc Bcc Ccc Dcc]=tf2ss (num, den) can be used
to convert T(s)=num/den into controller canonical form with matrices and vectors
Acc, Bcc, Ccc, and Dcc. We can then form an LTI state-space object using
Scc=ss (Acc, Bcc, Ccc, Dcc). This object can then be converted into parallel
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form using Sp=canon (Scc, ’type’), where type=modal yields the parallel
form. Another choice, not used here, is type=companion, which yields a right
companion system matrix. Transformation matrices can be used to convert to other
representations. As an example, let us convert CðsÞ=RðsÞ ¼ 24=½ðsþ 2Þðsþ 3Þðsþ 4Þ�
into a parallel representation in state space, as is done in Section 5.7 - Parallel Form.
Notice that the product of values in the B and C vectors yields the same product as
the results in Eqs. (5.49) and (5.50). Thus, the two solutions are the same, but the
state variables are ordered differently, and the gains are split between the B and C
vectors. We can also extract the system matrices from the LTI object using [A,B,C,
D]=ssdata(S), where S is a state-space LTI object and A, B, C, D, are its
associated matrices and vectors.

’(ch5p3)’ % Display label.
numt=24; % Define numerator of T(s).
dent=poly([-2 -3 -4]); % Define denominator of T(s).
’T(s)’ % Display label.
T=tf(numt, dent) % Create and display T(s).
[Acc Bcc Ccc Dcc]=tf2ss (numt,dent);

% Convert T(s) to controller
% canonical form.

Scc=ss (Acc,Bcc,Ccc,Dcc); % Create LTI controller canonical
% state-space object.

Sp=canon(Scc,’modal’); % Convert controller canonical form
% to parallel form.

’Controller Canonical Form’ % Display label.
[Acc,Bcc,Ccc,Dcc]=ssdata(Scc) % Extract and display controller

% canonical form matrices.
’Parallel Form’ % Display label.
[Ap,Bp,Cp,Dp]=ssdata(Sp) % Extract and display parallel form

% matrices.
pause

ch5p4 (Example 5.9) We can use MATLAB to perform similarity transformations
to obtain other forms. Let us look at Example 5.9 in the text.

’(ch5p4) Example 5.9’ % Display label.
Pinv=[2 0 0; 3 2 0; 1 4 5]; % Define P inverse.
P=inv(Pinv) % Calculate P.
’Original’ % Display label.
Ax=[0 1 0;0 0 1;-2 -5 -7] % Define original A.
Bx=[0 0 1] % Define original B.
Cx=[1 0 0] % Define original C.
’Transformed’ % Display label.
Az=Pinv*Ax*P % Calculate new A.
Bz=Pinv*Bx % Calculate new B.
Cz=Cx*P % Calculate new C.
pause

ch5p5 Using MATLAB’s [P,d]=eig(A) command, where the columns of P are
the eigenvectors of A and the diagonal elements of d are the eigenvalues of A, we can
find the eigenvectors of the system matrix and then proceed to diagonalize the
system. We can also use canon (S, ’modal’) to diagonalize an LTI object, S,
represented in state space.
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’(ch5p5)’ % Display label.
A=[3 1 5;4 -2 7;2 3 1]; % Define original A.
B=[1;2;3]; % Define original B.
C= [2 4 6];
% Define original C.
[P,d]=eig(A) % Generate transformation matrix,

% P, and eigenvalues, d.
’Via Transformation’ % Display label.
Adt=inv(P)*A*P % Calculate diagonal system A.
Bdt=inv(P)*B % Calculate diagonal system B.
Cdt=C*P % Calculate diagonal system C.
’Via Canon Command’ % Display label.
S=ss (A,B,C,0) % Create state-space LTI object

% for original system.
Sp=canon(S, ’modal’) % Calculate diagonal system via

% canon command.
pause

Chapter 6: Stability
ch6p1 (Example 6.7) MATLAB can solve for the poles of a transfer function in
order to determine stability. To solve for the poles of T(s) use the pole (T)
command. Let us look at Example 6.7 in the text.

’(ch6p1) Example 6.7’ % Display label.
numg=1; % Define numerator of G(s).
deng=conv ([1 0],[2 3 2 3 2]); % Define denominator of G (s).
G=tf(numg,deng); % Create G(s) object.
’T(s)’ % Display label.
T=feedback(G, 1) % Calculate closed-loop T(s)

% object.
% Negative feedback is default
% when there is no sign parameter.

poles=pole(T) % Find poles of T(s).
pause

ch6p2 (Example 6.9) We can use MATLAB to find the range of gain for stability
by generating a loop, changing gain, and finding at what gain we obtain right-half-
plane poles.

’(ch6p2) Example 6.9’ % Display label.
K=[1:1:2000]; % Define range of K from 1 to 2000

% in steps of 1.
for n=1:l:length(K); % Set up length of DO LOOP to equal

% number of K values to be tested.
dent=[1 18 77 K(n)]; % Define the denominator of T(s)

% for the nth value of K.
poles=roots(dent); % Find the poles for the nth value

% of K.
r=real(poles); % Form a vector containing the real

% parts of the poles for K(n).
if max(r) >=0, % Test poles found for the nth

% value of K for a real value � 0.
poles % Display first pole values where

% there is a real part � 0.
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K=K(n) % Display corresponding value of K.
break % Stop loop if rhp poles are found.

end % End if.
end % End for.
pause

ch6p3 (Example 6.11) We can use MATLAB to determine the stability of a system
represented in state space by using the command eig (A) to find the eigenvalues of
the system matrix, A. Let us apply the concept to Example 6.11 in the text.

’(ch6p3) Example 6.11’ % Display label.
A=[0 3 1;2 8 1;-10 -5 -2] % Define system matrix, A.
eigenvalues=eig(A) % Find eigenvalues.
pause

Chapter 7: Steady-State Errors
ch7p1 (Example 7.4, sys. b) Static error constants are found using lim snG(s) as
s ! 0. Once the static error constant is found, we can evaluate the steady-state
error. To evaluate the static error constant we can use the command dcgain
(G), which evaluates G(s) at s ¼ 0. Let us look at Example 7.4, system (b), in the
text.

’(ch7p1) Example 7.4, sys . b’ % Display label
numg=500*poly([-2 -5 -6]); % Define numerator of G(s).
deng=poly([0 -8 -10 -12]); % Define denominator of G(s).
G=tf(numg,deng); % Form G(s)
’Check Stability’ % Display label.
T=feedback(G,1); % Form T(s)
poles=pole(T) % Display closed-loop poles.
’Step Input’ % Display label.
Kp=dcgain(G) % Evaluate Kp=numg/deng for s=0.
ess=1/(1+Kp) % Evaluate ess for step input.
’Ramp Input’ % Display label.
numsg=conv([1 0],numg); % Define numerator of sG(s).
densg=poly([0 -8 -10 -12]); % Define denominator of sG(s).
sG=tf(numsg,densg); % Create sG(s).
sG=minreal(sG); % Cancel common ’s’ in

% numerator(numsg) and
% denominator(densg).

Kv=dcgain(sG) % Evaluate Kv=sG(s) for s=0.
ess=1/Kv % Evaluate steady-state error for

% ramp input.
’Parabolic Input’ % Display label.
nums2g=conv([1 0 0],numg); % Define numerator of s^2G(s).
dens2g=poly([0 -8 -10-12]); % Define denominator of s^2G(s).
s2G=tf(nums2g,dens2g); % Create s^2G(s).
s2G=minreal(s2G); % Cancel common ’s’ in

% numerator(nums2g) and
% denominator(dens2g).

Ka=dcgain(s2G) % Evaluate Ka=s^2G(s) fors=0.
ess=1/Ka % Evaluate steady-state error for

% parabolic input.
pause
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ch7p2 (Example 7.6) We can use MATLAB to evaluate the gain, K, required to
meet a steady-state error specification. Let us look at Example 7.6 in the text.

’(ch7p2) Example 7.6’ % Display label.
numgdK=[1 5]; % Define numerator of G(s)/K.
dengdK=poly ([0 -6 -7 -8]); % Define denominator of G(s)/K.
GdK=tf(numgdK,dengdK); % Create G(s)/K.
numgkv=conv ([1 0], numgdK); % Define numerator of sG(s)/K.
dengkv=dengdK; % Define denominator of sG(s)/K.
GKv=tf(numgkv,dengkv); % Create sG(s)/K.
GKv=minreal(GKv); % Cancel common ’s ’ in numerator

% and denominator of sG(s)/K.
KvdK=dcgain(GKv) % Evaluate (Kv/K)=(numgkv/dengkv)

% for s=0.
ess=0.1 % Enumerate steady-state error.
K=1/(ess*KvdK) % Solve for K.
’Check Stability’ % Display label.
T=feedback(K*GdK,1); % Form T(s).
poles=pole(T) % Display closed-loop poles.
pause

Chapter 8: Root Locus Techniques
ch8p1 (Example 8.7) MATLAB allows root loci to be plotted with the rlocus
(GH) command, where G(s)H(s)=numgh/dengh and GH is an LTI transfer-
function object. Points on the root locus can be selected interactively using the [K,p]
=rlocfind (GH) command. MATLAB then yields the gain (K) at that point as well
as all other poles (p) that have that gain. We can zoom in and out of the root locus by
changing the range of axis values using the command axis ([xmin, xmax, ymin,
ymax]). The root locus can be drawn over a grid that shows constant damping ratio
(z) and constant natural frequency (wn) curves using the sgrid (z, wn)
command. To plot multiple z and vn curves, use z=zmin:zstep:zmax and
wn=wnmin:wn-step:wnmax to specify ranges of values.

’(ch8p1) Example 8.7’ % Display label.
clf % Clear graph on screen.
numgh=[1-4 20]; % Define numerator of G (s) H (s).
dengh=poly([-2 -4]); % Define denominator of G (s) H (s).
’G(s)H(s)’ % Display label.
GH=tf(numgh,dengh) % Create G(s)H(s) and display.
rlocus(GH) % Draw root locus.
z=0.2:0.05:0.5; % Define damping ratio values : 0.2

% to 0.5 in steps of 0.05.
wn=0:1:10; % Define natural frequency values:

% 0 to 10 in steps of 1.
sgrid(z,wn) % Generate damping ratio and

% natural frequency grid lines for
% root locus.

title (’Root Locus ’) % Define title for root locus.
pause
rlocus(GH) % Draw close-up root locus.
axis([-3 1-4 4]) % Define range on axes for root

% locus close-up view.
title(’Close-up’) % Define title for close-up root

% locus.
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z=0.45; % Define damping ratio line for
% overlay on close-up root locus.

wn=0; % Suppress natural frequency
% overlay curves.

sgrid(z,wn) % Overlay damping ratio curve on
% close-up root locus.

for k=1: 3 % Loop allows 3 points to be
% selected as per Example 8.7,
%(z=0.45 , jwcrossing,breakaway).

[K,p]=rlocfind(GH) % Generate gain, K, and closed-loop
% poles, p, for point selected
% interactively on the root locus.

end % End loop.
pause

ch8p2 (Example 8.8) We can couple the design of gain on the root locus with a
step-response simulation for the gain selected. We introduce the command rlocus
(G, K), which allows us to specify the range of gain, K, for plotting the root locus. This
command will help us smooth the usual root locus plot by equivalently specifying
more points via the argument, K. Notice that the first root locus plotted without the
argument K is not smooth. We also introduce the command x=input(’prompt’),
which allows keyboard entry of a value for x in response to a prompt. We apply this
command to enter the desired percent overshoot. We also add a variable’s value to
the title of the root locus and step-response plots by inserting another field in the title
command and use num2str (value) to convert value from a number to a
character string for display. Let us apply the concepts to Example 8.8 in the text.

’(ch8p2) Example 8.8’ % Display label.
clear % Clear variables from workspace.
clf % Clear graph on screen.
numg=[11.5]; % Define numerator of G (s).
deng=poly ([0 -1 -10]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G (s).
rlocus (G) % Draw root locus (H(s)=1).
title(’Original Root Locus’) % Add title.
pause
K=0.005; % Specify range of gain to smooth

% root locus,
rlocus (G,K) % Draw smoothed root locus

% (H(s)=1).
title (’Smoothed Root Locus’) % Add title.
pos=input(’Type %OS ’); % Input desired percent overshoot

% from the keyboard.
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]̂ 2)

% Calculate damping ratio.
sgrid(z , 0) % Overlay desired damping ratio

% line on root locus.
title([’Root Locus with ’, num2str (pos) ,’% overshoot line’])

% Define title for root locus
% showing percent overshoot used.

[K, p]=rlocfind(G) % Generate gain, K, and closed-
% loop poles, p, for point selected
% interactively on the root locus.
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pause
’T(s)’ % Display label
T=feedback(K*G, 1) % Find closed-loop transfer

% function
% with selected K and display.

step(T) % Generate closed-loop step
% response for point select on
% root locus.

title([’Step Response for K=’,num2str(K)])
% Give step response a title which
% includes the value of K.

pause

Chapter 9:Design Via Root Locus
ch9p1 (Example 9.3) We can use MATLAB to design PD controllers. The program
allows us to input a desired percent overshoot via the keyboard. MATLAB then
produces a root locus for the uncompensated system with an overlay of the percent
overshoot line. We interactively select the intersection of the root locus and the desired
percent overshoot line to set the gain. MATLAB outputs an estimate of the un-
compensated system’s performance specifications and a step response of the un-
compensated system for us to determine the required settling time. After we input
the settling time through the keyboard, MATLAB designs the PD controller and
produces a root locus of the PD compensated system from which we can interactively
select the gain. Finally, MATLAB produces an estimate of the PD compensated
system’s performance specifications and a step response of the PD compensated system.

’(ch9p1) Example 9.3’ % Display label.
clf % Clear graph on screen.
’Uncompensated System’ % Display label.
numg=1; % Generate numerator of G(s).
deng=poly ([0 -4 -6]); % Generate denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G (s).
pos=input(’Type desired percent overshoot ’);

% Input desired percent overshoot.
z-log(pos/100)/sqrt(pi^2+[log(pos/100)]̂ 2);

% Calculate damping ratio.
rlocus (G) % Plot uncompensated root locus.
sgrid(z , 0) % Overlay desired percent

% overshoot line.
title ([’Uncompensated Root Locus with ’, num2str (pos) ,...
Overshoot Line’]) % Title uncompensated root locus.
[K,p]=rlocfind(G); % Generate gain, K, and closed-loop

% poles, p, for point selected
% interactively on the root locus.

’Closed-loop poles=’ % Display label.
p % Display closed-loop poles.
f=input(’Give pole number that is operating point ’);

% Choose uncompensated system
% dominant pole.

’Summary of estimated specifications for selected point on’
’uncompensated root locus’ % Display label.
operatingpoint=p(f) % Display uncompensated dominant

% pole.
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gain=K % Display uncompensated gain.
estimated_settling_time=4/abs(real(p(f)))

% Display uncompensated settling
% time.

estimated_peak_time=pi/abs(imag(p(f)))
% Display uncompensated peak time.

estimated_percent_overshoot=pos
% Display uncompensated percent
% overshoot.

estimated_damping_ratio=z % Display uncompensated damping
% ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)
% Display uncompensated natural
% frequency.

numkv=conv([1 0],numg); % Set up numerator to evaluate Kv.
denkv=deng; % Set up denominator to evaluate Kv.
sG=tf(numkv,denkv); % Create sG(s).
sG=minreal (sG); % Cancel common poles and zeros.
Kv=dcgain(K*sG) % Display uncompensated Kv.
ess=1/Kv % Display uncompensated

% steady-state
% error for unit ramp input.

’T(s)’ % Display label.
T=feedback(K*G, 1) % Find uncompensated T(s).
step(T) % Plot step response of

% uncompensated system.
title ([’Uncompensated System Step Response with ’,num2str (pos) , . . .
’% Overshoot’]) % Add title to uncompensated step

% response.
’Press any key to go to PD compensation’

% Display label.
pause
’Compensated system’ % Display label.
Ts=input(’Type Desired Settling Time ’);

% Input desired settling time from
% the keyboard.

wn=4/(Ts*z); % Calculate natural frequency.
desired_pole=(-z*wn)+(wn*sqrt(l-z^2)*i);

% Calculate desired dominant pole
% location.

angle_at_desired_pole=(180/pi)*...
angle(polyval(numg, desired_pole)/polyval(deng,desired_pole));

% Calculate angular contribution
% to desired pole without PD
% compensator.

PD_angle=180-angle_at_desired_pole;
% Calculate required angular
% contribution from PD
% compensator.

zc=((imag(desired_pole)/tan(PD_angle*pi/180))...
_real (desired_pole)); % Calculate PD zero location.
’PD’Compensator’ % Display label.
numc=[1 zc]; % Calculate numerator of Gc (s).
denc=[0 1]; % Calculate numerator of Gc (s).
’Gc(s)’ % Display label.
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Gc=tf (numc, denc) % Create and display Gc (s).
’G(s)Gc(s)’ % Display label.
Ge=G*Gc % Cascade G(s) and Gc (s).
rlocus (Ge,0:0.005:100) % Plot root locus of PD compensated

% system.
syrid(z,0) % Overlay desired percent

% overshoot line.
title ([’PD Compensated Root Locus with ’, num2str (pos) ,...
’% Overshoot Line’]) % Add title to PD compensated root

% locus.
[K,p]=rlocfind(Ge); % Generate gain, K, and closed-loop

% poles, p, for point selected
% interactively on the root locus.

’Closed-loop poles=’ % Display label.
p % Display PD compensated system’s

% closed-loop poles.
f=input(’Give pole number that is operating point ’);

% Choose PD compensated system
% dominant pole.

’Summary of estimated specifications for selected point on PD’
’compensated root locus’ % Display label.
operatingpoint=p(f) % Display PD compensated dominant

% pole.
gain=K % Display PD compensated gain.
estimated_settling_time=4/abs(real(p(f)))

% Display PD compensated settling
% time.

estimated_peak_time=pi/abs(imag(p(f)))
% Display PD compensated peak time.

estimated_percent_overshoot=pos % Display PD compensated percent
% overshoot.

estimated_damping_ratio=z % Display PD compensated damping
% ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2
% Display PD compensated natural
% frequency.

s=tf ([1 0], 1); % Created transfer function, ’s’.
sGe=s*Ge; % Create sGe(s).
sGe=minreal (sGe); % Cancel common poles and zeros.
Kv=dcgain(K*sGe) % Display compensated Kv.
ess=1/Kv % Display compensated

% steady-state error for
% unit ramp input.

’T(s)’ % Display label.
T=feedback(K*Ge, 1) % Create and display PD compensated
%T(s).
’Press any key to continue and obtain the PD compensated step’
’response’ % Display label.
pause
step(T) % Plot step response for PD

% compensated system.
title ([’PD Compensated System Step Response with ’...
num2str (pos) , ’% Overshoot’]) % Add title to step response

% of PD compensated system.
pause
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ch9p2 (Example 9.4) We can use MATLAB to design a lead compensator. The
program allows us to input a desired percent overshoot via the keyboard.
MATLAB then produces a root locus for the uncompensated system with an
overlay of the percent overshoot line. We interactively select the intersection of
the root locus and the desired percent overshoot line to set the gain. MATLAB
outputs an estimate of the uncompensated system’s performance specifications
and a step response of the uncompensated system for us to determine the required
settling time. Next we input the settling time and the lead compensator zero
through the keyboard. At this point we take a different approach from that of the
previous example. Rather than letting MATLAB calculate the lead compensator
pole directly, MATLAB produces a root locus for every interactive guess of a lead
compensator pole. Each root locus contains the desired damping ratio and natural
frequency curves. When our guess is correct, the root locus, the damping ratio line,
and the natural frequency curve will intersect. We then interactively select this
point of intersection to input the gain. Finally, MATLAB produces an estimate of
the lead-compensated system’s performance specifications and a step response of
the lead-compensated system.

’(ch9p2) Example 9.4’ % Display label.
Clf % Clear graph on screen.
’Uncompensated System’ % Display label.
numg=1; % Generate numerator of G (s).
deng=poly ([0 -4 -6]); % Generate denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G (s).
pos=input(’Type desired percent overshoot ’);

% Input desired percent overshoot.
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]̂ 2);

% Calculate damping ratio.
rlocus (G) % Plot uncompensated root locus.
sgrid(z , 0) % Overlay desired percent

% overshoot line.
title ([’Uncompensated Root Locus with’, num2str (pos),...
’% Overshoot Line’]) % Title uncompensated root locus.
[K,p]=rlocfind(G); % Generate gain, K, and closed-loop

% poles, p, for point selected
% interactively on the root locus.

’Closed-loop poles=’ % Display label.
p % Display closed-loop poles.
f=input(’Give pole number that is operating point ’);

% Choose uncompensated system
% dominant pole.

’Summary of estimated specifications for selected point on’
’uncompensated root locus’ % Display label.
operatingpoint=p(f) % Display uncompensated dominant

% pole.
gain=K % Display uncompensated gain.
estimated_settling_time=4/abs(real(p(f)))

% Display uncompensated settling
% time.

estimated_peak_time=pi/abs(imag(p(f)))
% Display uncompensated peak time.

estimated_percent_overshoot=pos % Display uncompensated percent
% overshoot.
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estimated_damping_ratio=z % Display uncompensated damping
% ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2
% Display uncompensated natural
% frequency.

numkv=conv([1 0],numg); % Set up numerator to evaluate Kv.
denkv=deng; % Set up denominator to evaluate Kv.
sG=tf(numkv,denkv); % Create sG(s).
sG=minreal (sG); % Cancel common poles and zeros.
Kv=dcgain(K*sG) % Display uncompensated Kv.
ess=1/Kv % Display uncompensated

% steady-state error for
% unit ramp input.

’T(s)’ % Display label.
T=feedback(K*G, 1) % Create and display T(s).
step(T) % Plot step response of

% uncompensated system.
title ([[’Uncompensated System Step Response with ’,...
num2str(pos), ’% Overshoot’]) % Add title to uncompensated step

% response.
’Press any key to go to lead compensation’

% Display label,
pause
Ts=input (’Type Desired Settling Time’);

% Input desired settling time.
b=input (’Type Lead Compensator Zero, (s+b). b= ’);

% Input lead compensator zero.
done=1; % Set loop flag.
while done==1 % Start loop for trying lead

% compensator pole.
a=input (’Enter a Test Lead Compensator Pole, (s+a). a= ’);

% Enter test lead compensator pole.
numge=conv (numg,[1 b]); % Generate numerator of Gc(s)G(s).
denge=conv([1a],deng); % Generate denominator

% of Gc(s)G(s).
Ge=tf(numge,denge); % Create Ge(s)=Gc(s)G(s).
wn=4/(Ts*z); % Evaluate desired natural

% frequency.
clf % Clear graph on screen.
rlocus(Ge) % Plot compensated root locus with

% test lead compensator pole.
axis([-10,10,-10,10]) % Change lead-compensated

% root locus axes.
sgrid(z, wn) % Overlay grid on lead-compensated

% root locus.
title ([’Lead-Compensated Root Locus with’, num2str (pos),...

% Overshoot Line, Lead Pole at’,...
num2str(-a),’and Required Wn’]) % Add title to lead-compensated

% root locus.
done=input (’Are you done? (y=0,n=1)’);

% Set loop flag.
end % End loop for trying compensator

% pole.
[K,p]=rlocfind (Ge); % Generate gain, K, and closed-loop

% poles, p, for point selected
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% interactively on the root locus.
’Gc(s)’ % Display label.
Gc=tf ([1 b],[1 a]) % Display lead compensator.
’Gc(s)G(s)’ % Display label.
Ge % Display Gc(s)G(s).
’Closed-loop poles=’ % Display label.
p % Display lead-compensated

% system’s
% closed-loop poles.

f=input(’Give pole number that is operating point’);
% Choose lead-compensated system
% dominant pole.

’Summary of estimated specifications for selected point on lead’
’compensated root locus’ % Display label.
operatingpoint=p(f) % Display lead-compensated

% dominant pole.
gain=K % Display lead-compensated gain.
estimated_settling_time=4/abs(real(p(f)))

% Display lead-compensated
% settling time.

estimated_peak_time=pi/abs(imag(p(f)))
% Display lead-compensated
% peak time.

estimated_percent_overshoot=pos % Display lead-compensated
% percent overshoot.

estimated_damping_ratio=z % Display lead-compensated
% damping ratio.

estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2)
% Display lead-compensated
% natural frequency.

s=tf ([1 0], 1); % Create transfer Function,’s’.
sGe=s*Ge; % Create sGe (s) to evaluate Kv.
sGe=minreal (sGe); % Cancel common poles and zeros.
Kv=dcgain(K*sGe) % Display lead-compensated Kv.
ess=1/Kv % Display lead-compensated steady-

% state error for unit ramp input.
’T (s)’ % Display label.
t=feedback(K*Ge, 1) % Create and display lead-

% compensated T (s).
’Press any key to continue and obtain the lead-compensated step’
’response’ % Display label.
pause
step(T) % Plot step response for lead

% compensated system.
title ([’Lead-Compensated System Step Response with’,...
num2str (pos),’% Overshoot’]) % Add title to step response

% of lead-compensated system.
pause

Chapter 10: Frequency Response Techniques
ch10p1 (Example 10.3) We can use MATLAB to make Bode plots usingbode(G),
whereG/(s)=numg/deng andG is an LTI transfer-function object. Information about
the plots obtained withbode(G) can be found by left-clicking the mouse on the curve.
You can find the curve’s label, as well as the coordinates of the point on which you
clicked. Right-clicking away from a curve brings up a menu if the icons on the menu
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bar are deselected. From this menu you can select (1) system responses to be displayed
and (2) characteristics, such as peak response. When selected, a dot appears on the
curve at the appropriate point. Let your mouse rest on the point to read the value of the
characteristic. You may also select (3) which curves to view, (4) choice for grid on or
off, (5) returning to full view after zooming, and (6) properties, such as labels, limits,
units, style, and characteristics. We can obtain points on the plot using [mag, phase,
w]=bode(G), where magnitude, phase, and frequency are stored in mag, phase,
and w, respectively. Magnitude and phase are stored as 3-D arrays. We use mag
(:,:)’, phase (:,:)’to convert the arrays to column vectors, where the apostro-
phe signifies matrix transpose. Let us look at Example 10.3 in the text.

’(ch10p1) Example 10.3’ % Display label.
clf % Clear graph on screen.
numg=[1 3]; % Define numerator of G(s).
deng=conv([1 2],[1 2 25]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G (s).
bode(G) % Make a Bode plot.
grid on % Turn on grid for Bode plot.
title(’Open-Loop Frequency Response’)

% Add a title to the Bode plot.
[mag,phase,w]=bode(G); % Store points on the Bode plot.
points=[20*log10(mag(:,:))’,phase(:,:)’,w]

% List points on Bode plot with
% magnitude in dB.

pause

ch10p2 (Example 10.5) We can use MATLAB to make Nyquist diagrams using
nyquist(G), where G(s)=numg/deng and G is an LTI transfer-function object.
Information about the plots obtained with nyquist(G) can be found by left-
clicking the mouse on the curve. You can find the curve’s label, as well as the
coordinates of the point on which you clicked and the frequency. Right-clicking away
from a curve brings up a menu if the icons on the menu bar are deselected. From this
menu you can select (1) system responses to be displayed and (2) characteristics,
such as peak response. When selected, a dot appears on the curve at the appropriate
point. Let your mouse rest on the point to read the value of the characteristic. You
may also select (3) whether or not to show negative frequencies, (4) choice for grid
on or off, (5) choice for zooming to (–1,0), (6) returning to full view after zooming,
and (7) properties, such as labels, limits, units, style, and characteristics. We can
obtain points on the plot by using [re, im, w]=nyquist(G), where the real part,
imaginary part, and frequency are stored in re, im, and w, respectively, and re and
im are 3-D arrays. We can specify a range of w by using [re, im]=nyquist(G,w).
We use re(:,:)’, and im(:,:)’to convert the arrays to column vectors. Let us
look at Example 10.5 in the text.

’(ch10p2) Example 10.5’ % Display label.
clf % Clear graph on screen.
numg=[1 2]; % Define numerator of G(s).
deng=[1 0 0]; % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G(s).
nyquist(G) % Make a Nyquist diagram.
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grid on % Turn on grid for Nyquist diagram.
title(’Open-Loop Frequency Response’)

% Add a title to the Nyquist
% diagram.

w=0:0.5:10; % Let 0 <w< 10 in steps of 0.5.
[re,im]=nyquist(G,w); % Get Nyquist diagram points for a

% range of w.
points=[re(:,:)’, im(:,:)’,w’]% List specified range of points

% in Nyquist diagram.
pause

ch10p3 (Example 10.8) We can use MATLAB to find gain margin (Gm), phase
margin (Pm), the gain margin frequency, where the phase plot goes through 180
degrees (Wcg), and the phase-margin frequency, where the magnitude plot goes
through zero dB (Wcp). To find these quantities we use [Gm, Pm, Wcg, Wcp]
=margin (G), where G(s)=numg/deng and G is an LTI transfer-function object.
Let us look at Example 10.8 in the text.

’(ch10p3) Example 10.8’ % Display label.
clf % Clear graph on screen.
numg=6; % Define numerator of G(s).
deng=conv ([1 2],[1 2 2]); % Define denominator of G (s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G (s).
nyquist(G) % Make a Nyquist diagram.
grid on % Turn on grid for the Nyquist

% diagram.
title (’Open-Loop Frequency Response’)

% Add a title to the Nyquist
% diagram.

[Gm,Pm,Wcg,Wcp]=margin(G); % Find margins and margin
% frequencies.

’Gm(dB); Pm(deg.); 180 deg. freq.(r/s); 0 dB freq. (r/s)’
% Display label.

margins=[20*log10(Gm),Pm,Wcg,Wcp]
% Display margin data.

pause

ch10p4 (Example 10.9) We can use MATLAB to determine the range of K for
stability using frequency response methods. Let us look at Example 10.9 in the
text.

’(ch10p4) Example 10.9’ % Display label.
numg=1; % Define numerator of G(s).
deng=poly ([-2 -4 -5]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G(s).
[Gm,Pm,Wcg,Wcp]=margin(G); % Find margins and margin

% frequencies.
K=Gm % Display K for stability.
pause

ch10p5 (Example 10.11) We can use MATLAB to find the closed-loop frequency
response. Let us look at Example 10.11 in the text.
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’(ch10p5) Example 10.11’ % Display label.
clf % Clear graph on screen.
numg=50; % Define numerator of G(s).
deng=poly ([0 -3 -6]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G(s).
’T(s)’ % Display label.
T=feedback(G, 1) % Find and display closed-loop

% transfer function.
bode(T) % Make a Bode plot.
grid on % Turn on the grid for the plots.
title(’Closed-Loop Frequency Response’)

% Add a title to the Bode plot,
pause
nyquist(T) % Make a Nyquist diagram.
title(’Closed-Loop Frequency Response’)

% Add a title to the Nyquist
% diagram.

pause

ch10p6 We can use MATLAB to plot Nichols charts using nichols(G), where
G(s)=numg/deng and G is an LTI transfer-function object. The Nichols grid can be
added using the ngrid command after the nichols(G) command. Information
about the plots obtained with nichols(G) can be found by left-clicking the mouse
on the curve. You can find the curve’s label, as well as the coordinates of the point on
which you clicked and the frequency. Right-clicking away from a curve brings up a
menu if the icons on the menu bar are deselected. From this menu you can select (1)
system responses to be displayed and (2) characteristics, such as peak response.
When selected, a dot appears on the curve at the appropriate point. Let your mouse
rest on the point to read the value of the characteristic. You may also select (3)
choice for grid on or off, (4) returning to full view after zooming, and (5) properties,
such as labels, limits, units, style, and characteristics. Let us make a Nichols chart of
GðsÞ ¼ 1=½sðsþ 1Þðsþ 2Þ�.

’(ch10p6)’ % Display label.
clf % Clear graph on screen.
numg=1; % Define numerator of G(s).
deng=poly ([0 -1 -2]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G(s).
nichols (G) % Make a Nichols plot.
ngrid % Add Nichols grid.
pause

ch10p7 (Example 10.15) We can use MATLAB and frequency response methods
to include time delay in the loop. Time delay is represented by [numd, dend]=pade
(T, n), where T is the delay time in seconds and n is the order. Larger values of n
give better approximations to the delay, Gd(s)=numd/dend. Since we are plotting
multiple plots, we first collect the data for the Bode plots by using [mag, phase]
=bode (G, w), where w is specified as a range of frequencies. We then use the
generic plotting command. Also notice the commands used to label the axes and the
plots on the Bode plot (see the MATLAB instruction manual for details). Let us
look at Example 10.15 in the text.
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’(ch10p7) Example 10.15’ % Display label.
clf % Clear graph on screen.
hold off % Turn graph hold off.
numg=1; % Define numerator of G(s).
deng=poly ([0 -1 -10]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G (s).
w=0.01:0.1:10; % Let 0.01<w<10 in steps of 0.1.
[magg,phaseg]=bode (G,w); % Collect Bode data for G(s).
[numd,dend]=pade(1,6); % Represent the delay.
Gd=tf (numd,dend); % Create and display the delay,

% Gd(s).
[magd,phased]=bode(Gd,w); % Collect Bode data for Gd(s).
Ge=Gd*G; % Form Gd(s)G(s).
[mage,phasee]=bode(Ge,w); % Collect Bode data for Gd(s)G(s).
subplot (2,1,1) % Subdivide plot area for plot 1.
semilogx(w,20*log10(mage(:,:))) % Plot magnitude response.
grid on % Turn on grid for magnitude plot.
axis([0.01,10,-80,20]); % Limit Bode plot axes.
title (’Magnitude Response with Delay’)

% Add title to magnitude response.
xlabel(’Frequency (rad/s)’) % Label x-axis of magnitude

% response.
ylabel(’20log M’) % Label y-axis of magnitude

% response.
subplot (2,1,2) % Subdivide plot area for plot 2.
semilogx(w,phaseg(:,:),w,phased(:,:)-3*360,w,phasee(:,:)-3*360)

% Plot phase response for G(s),
% Gd (s), and G (s) Gd (s) on one
% graph.

grid on % Turn on grid for phase plot.
axis([0.01,10,-900,0]); % Limit Bode plot axes.
title (’Phase Response with Delay’)

% Add title to phase response.
xlabel(’Frequency (rad/s)’) % Label x-axis of phase response.
ylabel(’Phase (degrees)’) % Label y-axis of phase response.
text(1.5,-50,’Time Delay’) % Label time delay curve.
text(4,-150,’System’) % Label system curve.
text(2.7,-300,’Total’) % Label total curve.
pause

ch10p8 (Example 10.18) We can use MATLAB and frequency response methods
to determine experimentally a transfer function from frequency response data. By
determining simple component transfer functions and then successively subtracting
their frequency response, we can approximate the complete transfer function. Let us
look at Example 10.18 in the text and use MATLAB for a portion of the problem. You
can complete the program for practice. For this problem we generate the original
frequency response plot via a transfer function. Normally, the data for the original
frequency response plot would be tabular, and the program would begin at the step
[M0,P0]=bode(G0,w)where the tabular data is generated. In other words, in a real
application, the data would consist of column vectors M0, P0, and w’.

’(ch10p8) Example 10.18’ % Display label.
clf % Clear graph on screen.
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hold off % Turn graph hold off.
% Generate the experimental Bode plots for G0 (s)=numg0/deng0, that
% is, M0, P0.
numg0=70*[1 20]; % Define numerator of G0(s).
deng0=conv([1 7],[1 2 25]); % Partially define denominator of

% G0(s).
deng0=conv(deng0,[1 70]); % Complete the denominator of

% G0(s).
G0=tf(numg0,deng0); % Create G0(s).
w=1:0.5:1000; % Let 1<w<1000 in steps of 0.5.
[M0, P0]=bode(G0,w); % Generate the tabular data.
[20*log10(M0(:,:))’,P0(:,:)’,w’];

% Convert magnitude data to dB.
bode(G0,w) % Generate a Bode plot.
grid on % Turn on grid for Bode plot.
title(’Experimental’) % Add title.
pause
clf % Clear graph.
% Estimate a component part of the transfer function as
% G1 (s)=25/ (s^2+2*0. 22*5s+5^2) and subtract it from the experimental
% frequency response
numgl=5^2; % Define numerator of G1(s).
deng1=[1 2*0.22*5 5^2]; % Define denominator of G1(s).
’First estimate’ % Display label.
G1=tf (numg1, deng1) % Create and display G1 (s).
[M1,P1]=bode(G1,w); % Generate Bode data for G1 (s).
M2=20*log10(M0(:,:))-20*log10(M1(:,:));

% Subtract Bode magnitude data of
% G1 from original magnitude data.

P2=P0(:,:)-P1(:,:); % Subtract Bode phase data of G1
% from original phase data.

subplot(2,1,1) % Divide plot area in two for
% magnitude plot.

semilogx(w(:,:),M2) % Plot magnitude response after
% subtracting.

grid on % Turn on grid for magnitude plot.
xlabel(’Frequency (rad/sec)’) % Add x-axis label.
ylabel(’Gain dB’) % Add y-axis label.
subplot(2,1,2) % Divide plot area in two for phase

% plot.
semilogx(w,P2) % Plot the phase response after

% subtracting.
grid on % Turn on grid for phase plot.
title(’Experimental Minus 25/(s^2+2*0.22*5s+5^2)’)

% Add title.
xlabel(’Frequency (rad/sec)’) % Add x-axis label.
ylabel(’Phase deg’) % Add y-axis label.
’This completes a portion of Example 10.18.’
’The student should continue the program for practice.’
pause

Chapter 11: Design Via Frequency Response
ch11p1 (Example 11.1) We can design via gain adjustment on the Bode plot using
MATLAB. You will input the desired percent overshoot from the keyboard.
MATLAB will calculate the required phase margin and then search the Bode
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plot for that phase margin. The magnitude at the phase-margin frequency is the
reciprocal of the required gain. MATLAB will then plot a step response for that gain.
Let us look at Example 11.1 in the text.

’(ch11p1) Example 11.1’ % Display label.
clf % Clear graph on screen.
numg=[100]; % Define numerator of G(s).
deng=poly ([0 -36 -100]); % Define denominator of G(s).
G=tf (numg, deng) % Create and display G(s).
pos=input (’Type %OS’); % Input desired percent overshoot.
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(l+4*z^4))))*(180/pi);

% Calculate required phase margin.
w=0.01:0.01:1000; % Set range of frequency from 0.01

% to 1000 in steps of 0.01.
[M,P]=bode(G,w); % Get Bode data.
Ph=-180+Pm; % Calculate required phase angle.
for k=1: 1: length (P); % Search Bode data for required

% phase angle.
if P(k)-Ph <=0; % If required phase angle is found,

% find the value of
M=M(k); % magnitude at the same frequency.
’Required K’ % Display label.
K=1/M % Calculate the required gain.
break % Stop the loop.
end % End if.
end % End for.
T=feedback(K*G,1); % Find T(s) using the calculated K.
step(T) % Generate a step response.
title ([’Closed-Loop Step Response for K=’,num2str (K)])

% Add title to step response.
pause

ch11p2 (Example 11.2) Let us use MATLAB to design a lag compensator. The
program solves Example 11.2 in the text and follows the same design technique
demonstrated in that example. You will input the value of gain to meet the steady-
state error requirement followed by the desired percent overshoot. MATLAB
then designs a lag compensator, evaluates Kv, and generates a closed-loop step
response.

’(ch11p2) Example 11.2’ % Display label.
clf % Clear graph on screen.
K=input(’Type value of K to meet steady-state error requirement’);

% Input K.
pos=input (’Type %OS’); % Input desired percent overshoot.
numg=[100*K]; % Define numerator of G(s).
deng=poly ([0-36-100]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf (numg, deng) % Create and display G(s).
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping
% ratio.

Pm=atan(2*z/(sqrt(-2*z^2+sqrt(l+4*z^4))))*(180/pi)+10;
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% Calculate required phase margin.
w=0.01:0.01:100; % Set range of frequency from 0.01

% to 1000 in steps of 0.01.
[M,P]=bode(G,w); % Get Bode data.
Ph=-180+Pm; % Calculate required phase angle.
for k=1: 1: length (P); % Search Bode data for required

% phase angle.
if P (k) -Ph <=0; % If required phase angle is found,

% find the value of
M=M(k); % magnitude at the same frequency.
wf=w(k); % At this frequency the magnitude

% plot must go through 0 dB.
break % Stop the loop.
end % End if.
end % End for.
wh=wf/10; % Calculate the high-frequency

% break of the lag compensator.
wl=(wh/M); % Calculate the low-frequency

% break of the lag compensator;
% found from lag compensator,
% Gc(s)=Kc(s+wh)/(s+wl), high & low
% frequency gain requirements.
% At low w, gain=1. Thus,
% Kc*wh/wl=1. At high w, gain=1/M.
% Thus Kc=1/M. Hence
% Kc=wl/wh=1/M, or wl=wh/M.

numc=[1 wh]; % Generate numerator of lag
% compensator, Gc(s).

denc=[1 wl]; % Generate denominator of lag
% compensator, Gc(s).

Kc=wl/wh; % Generate K for Gc(s).
’Lag compensator’ % Display label.
Kc % Display lag compensator K.
’Gc(s)’ % Display label.
Gc=tf (Kc*numc, denc) % Create and display Gc(s).
’Gc(s)G(s)’ % Display label.
GcG=Gc*G % Create and display Gc(s)G(s).
s=tf ([1 0], 1); % Create transfer function,’s’.
sGcG=s*GcG; % Create sGc(s)G(s).
sGcG=minreal(sGcG); % Cancel common terms.
Kv=dcgain(sGcG) % Evaluate Kv.
T=feedback(GcG,1); % Create T(s).
step(T) % Generate a closed-loop, lag-

% compensated step response.
title (’Closed-Loop Step Response for Lag-Compensated System’)

% Add title to step response.
pause

ch11p3 (Example 11.3) Let us use MATLAB to design a lead compensator. The
program solves Example 11.3 in the text and follows the same design technique
demonstrated in that example. You will enter desired percent overshoot, peak time,
and Kv. MATLAB then designs the lead compensator using Bode plots, calculates
Kv, and plots a closed-loop step response.
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’(ch11p3) Example 11.3’ % Display label.
pos=input (’Type %OS ’); % Input desired percent overshoot.
Tp=input(’Type peak time ’); % Input desired peak time.
Kv=input(’Type value of Kv ’); % Input Kv.
numg=[100]; % Define numerator of G(s).
deng=poly ([0 -36 -100]); % Define denominator of G(s).
G=tf(numg,deng); % Create G(s).
s=tf([1 0], 1); % Create transfer function,’s’.
sG=s*G; % Create sG(s).
sG=minreal(sG); % Cancel common factors.
K=dcgain(Kv/sG); % Solve for K.
’G(s)’ % Display label.
G=zpk (K*G) % Put K into G (s), convert to

% factored form, and display.
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping
% ratio.

Pm=atan(2*z/(sqrt(-2*z^2+sqrt(l+4*z^4))))*(180/pi);
% Calculate required phase margin.

wn=pi/ (Tp*sqrt(l-z^2)); % Calculate required natural
% frequency.

wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2));
% Determine required bandwidth.

w=0.01:0.5:1000; % Set range of frequency from 0.01
% to 1000 in steps of 0.5

[M,P]=bode(G,w); % Get Bode data.
[Gm,Pm,Wcg,Wcp]=margin(G); % Find current phase margin.
Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(l+4*z^4))))*(180/pi);

% Calculate required phase margin.
Pmreqc=Pmreq+10; % Add a correction factor of 10

% degrees.
Pc=Pmreqc-Pm; % Calculate phase contribution

% required from lead compensator.
% Design lead compensator

beta=(1-sin(Pc*pi/180))/(1+sin(Pc*pi/180));
% Find compensator beta.

magpc=1/sqrt(beta); % Find compensator peak magnitude.
for k=1: 1: length(M); % Find frequency at which

% uncompensated system has a
% magnitude of 1/magpc.
% This frequency will be the new
% phase margin frequency.

if M(k)-(1/magpc) <=0; % Look for peak magnitude.
wmax=w(k); % This is the frequency at the

% peak magnitude.
break % Stop the loop,
end % End if.
end % End for.
% Calculate lead compensator zero, pole, and gain.
zc=wmax*sqrt(beta); % Calculate the lead compensator’s

% low break frequency.
pc=zc/beta; % Calculate the lead compensator’s

% high break frequency.
Kc=1/beta; % Calculate the lead compensator’s
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% gain.
’Gc(s)’ % Display label.
Gc=tf (Kc*[1 zc],[1 pc]); % Create Gc(s).
Gc=zpk(Gc) % Convert Gc (s) to factored form

% and display.
’Ge(s)=G(s)Gc(s)’ % Display label.
Ge=G*Gc % Form Ge(s)=Gc(s)G(s).
sGe=s*Ge; % Create sGe(s).
sGe=minreal (sGe); % Cancel common factors.
Kv=dcgain(sGe) % Calculate Kv.
T=feedback(Ge,1); % Find T(s).
step(T) % Generate closed-loop, lead-

% compensated step response.
title(’Lead-Compensated Step Response’)

% Add title to lead-compensated
% step response.

pause

ch11p4 (Example 11.4) Let us use MATLAB to design a lag-lead compensator.
The program solves Example 11.4 in the text and follows the same design technique
demonstrated in that example. You will enter desired percent overshoot, peak time,
and Kv. MATLAB then designs the lag-lead compensator using Bode plots, calcu-
lates Kv, and plots a closed-loop step response.

’(ch11p4) Example 11.4’ % Display label.
pos=input(’Type %OS ’); % Input desired percent overshoot.
Tp=input(’Type peak time ’); % Input desired peak time.
Kv=input(’Type value of Kv ’); % Input desired Kv.
numg=[1]; % Define numerator of G(s).
deng=poly([0 -1 -4]); % Define denominator of G(s).
G=tf(numg,deng); % Create G(s) without K.
s=tf([1 0],1); % Create transfer function,’s’.
sG=s*G; % Create sG(s).
sG=minreal(sG); % Cancel common factors.
K=dcgain(Kv/sG); % Solve for K.
’G(s)’ % Display label.
G=tf(K*numg,deng); % Put K into G(s).
G=zpk(G) % Convert G (s) to factored form and

% display.
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.
Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi);

% Calculate required phase margin.
wn=pi/(Tp*sqrt(l-z^2)); % Calculate required natural

% frequency.)
wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2));

% Determine required bandwidth.
wpm=0.8*wBW; % Choose new phase-margin

% frequency.
[M,P]=bode(G,wpm); % Get Bode data.
Pmreqc=Pmreq-(180+P)+5; % Find phase contribution required

% from lead compensator
% with additional 5 degrees.

beta=(1-sin(Pmreqc*pi/180))/(1+sin(Pmreqc*pi/180));
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% Find beta.
% Design lag compensator zero, pole,
% and gain.

zclag=wpm/10; % Calculate zero of lag compensator.
pclag=zclag*beta; % Calculate pole of lag compensator.
Kclag=beta; % Calculate gain of lag compensator.
’Lag compensator, Glag(s)’ % Display label.
Glag=tf(Kclag*[1zclag],[1pclag]); % Create lag compensator.
Glag=zpk(Glag) % Convert Glag(s) to factored form

% and display.
% Design lead compensator zero,
% pole, and gain.

zclead=wpm*sqrt(beta); % Calculate zero of lead
% compensator.

pclead=zclead/beta; % Calculate pole of lead
% compensator.

Kclead=1/beta; % Calculate gain of lead
% compensator.

’Lead compensator’ % Display label.
Glead=tf(Kclead*[1 zclead],[1 pclead]);

% Create lead compensator.
Glead=zpk(Glead) % Convert Glead(s) to factored form

% and display.
’Lag-Lead Compensated Ge(s)’ % Display label.
Ge=G*Glag*Glead % Create compensated system,

% Ge(s)=G(s) Glag(s) Glead(s).
sGe=s*Ge; % Create sGe(s).
sGe=minreal (sGe); % Cancel common factors.
Kv=dcgain(sGe) % Calculate Kv
T=feedback(Ge,1); % Find T(s).
step(T) % Generate closed-loop, lag-lead-

% compensated step response.
title(’Lag-Lead-Compensated Step Response’)

% Add title to lag-lead-
% compensated
% step response.

pause

Chapter 12: Design Via State Space
ch12p1 (Example 12.1) We can use MATLAB to design controller gains using
pole placement. You will enter the desired percent overshoot and settling time. We
introduce the following commands: [num, den]=ord2 (wn, z), which produces a
second-order system, given the natural frequency (wn) and the damping ratio (z).
Then we use the denominator (den) to specify the dominant poles; and K=acker
(A, B, -poles), which calculates controller gains from the system matrix (A),
the input matrix (B), the desired poles (poles). Let us look at Example 12.1 in
the text.

’(ch12p1) Example 12.1’ % Display label.
clf % Clear graph on screen.
numg=2 0*[1 5]; % Define numerator of G(s).
deng=poly ([0 -1 -4]); % Define denominator of G(s).
’Uncompensated G(s)’ % Display label.
G=tf (numg, deng) % Create and display G(s).
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pos=input(’Type desired %OS ’); % Input desired percent overshoot.
Ts=input(’Type desired settling time ’);

% Input desired settling time.
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.
wn=4/ (z*Ts); % Calculate required natural

% frequency.
[num,den]=ord2 (wn, z); % Produce a second-order system

% that meets the transient response
% requirements.

r=roots(den); % Use denominator to specify
% dominant poles.

poles=[r(1)r(2)-5.1]; % Specify pole placement for all
% poles.

characteristiceqdesired=poly(poles)
% Form desired characteristic
% polynomial for display.

[Ac Bc Cc Dc]=tf 2ss (numg,deng); % Find controller canonical form
% of state-space representation
% of G(s).

P=[0 0 1; 0 1 0; 1 0 0]; % Transformation matrix for
% controller canonical to phase-
% variable form.

Ap=inv(P)*Ac*P; % Transform Ac to phase-variable
% form.

Bp=inv(P)*Bc; % Transform Bc to phase-variable
% form.

Cp=Cc*P; % Transform Cc to phase-variable
% form.

Dp=Dc; % Transform Dc to phase-variable
% form.

Kp=acker(Ap,Bp,poles) % Calculate controller gains in
% phase-variable form.

Apnew=Ap-Bp*Kp; % Form compensated A matrix.
Bpnew=Bp; % Form compensated B matrix.
Cpnew=Cp; % Form compensated C matrix.
Dpnew=Dp; % Form compensated D matrix.
[numt,dent]=ss2tf(Apnew,Bpnew,Cpnew,Dpnew);

% Form T(s) numerator and
% denominator.

’T(s)’ % Display label.
T=tf (numt, dent) % Create and display T(s).
poles=roots (dent) % Display poles of T(s).
Tss=ss (Apnew, Bpnew,Cpnew,Dpnew) % Create and display Tss, an LTI

% state-space object.
step (Tss) % Produce compensated step

% response.
title(’Compensated Step Response’)

% Add title to compensated step
% response.

pause

ch12p2 (Example 12.2) We can test controllability by using the MATLAB
command Cm=ctrb(A,B) to find the controllability matrix given the system matrix
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(A) and the input matrix (B). This command is followed by rank (Cm) to test the
rank of the controllability matrix (Cm). Let us apply the commands to Example 12.2.

’(ch12p2) Example 12.2’ % Display label.
A=[-1 1 0;0 -1 0;0 0 -2] % Define compensated A matrix.
B=[0;1;1] % Define compensated B matrix.
Cm=ctrb(A,B) % Calculate controllability

% matrix.
Rank=rank(Cm) % Find rank of controllability

% matrix.
pause

ch12p3 (Example 12.4) If we design controller gains using MATLAB, we do
not have to convert to phase-variable form. MATLAB will give us the controller
gains for any state-space representation we input. Let us look at Example 12.4 in
the text.

’(ch12p3) Example 12.4’ % Display label.
clf % Clear graph on screen.
A=[-5 1 0;0 -2 1;0 0 -1]; % Define system matrix A.
B=[0; 0; 1]; % Define input matrix B.
C=[-110]; % Define output matrix C.
D=0; % Define matrix D.
pos=input(’Type desired %OS ’); % Input desired percent overshoot.
Ts=input(’Type desired settling time ’)

% Input desired settling time.
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2));

% Calculate required damping ratio.
wn=4/ (z*Ts); % Calculate required natural

% frequency.
[num,den]=ord2 (wn, z); % Produce a second-order system

% that meets the transient
% requirements.

r=roots(den); % Use denominator to specify
% dominant poles.

poles=[r(1)r(2)-4]; % Specify pole placement for all
% poles.

K=acker (A,B,poles) % Calculate controller gains.
Anew=A-B*K; % Form compensated A matrix.
Bnew=B; % Form compensated B matrix.
Cnew=C; % Form compensated C matrix.
Dnew=D; % Form compensated D matrix.
Tss=ss (Anew,Bnew,Cnew,Dnew); % Form LTI state-space object.
’T(s)’ % Display label.
T=tf(Tss); % Create T(s).
T=minreal(T) % Cancel common terms and display

% T(s).
poles=pole(T) % Display poles of T(s).
step(Tss) % Produce compensated step

% response.
title(’Compensated Step Response’)

% Add title to compensated step
% response.

pause
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ch12p4 (Example 12.5) We can design observer gains by using the command
l=acker(A’,C’,poles)’. Notice we use the transpose of the system matrix (A)
and output matrix(C) along with the desired poles(poles). Let us look at Example
12.5 in the text.

’(ch12p4) Example 12.5’ % Display label.
numg=[14]; % Define numerator of G(s).
deng=poly([-1 -2 -5]); % Define denominator of G(s).
’G(s)’ % Display label.
G=tf(numg,deng) % Create and display G(s).
[Ac,Bc,Cc,Dc]=tf2ss(numg,deng); % Transform G(s) to controller

% canonical form in state space.
Ao=Ac’; % Transform Ac to observer

% canonical form.
Bo=Cc’; % Transform Bc to observer

% canonical form.
Co=Bc’; % Transform Cc to observer

% canonical form.
Do=Dc; % Transform Dc to observer

% canonical form.
r=roots([1 2 5]) % Find the controller-compensated

% system poles.
poles=10*[r’10*real(r(1))] % Make observer poles 10x bigger.
lp=acker(Ao’,Co’,poles)’ % Find the observer gains in

% observer canonical form.
pause

ch12p5 (Example 12.6) We can test observability using the MATLAB command
Om=obsv (A, C) to find the observability matrix given the system matrix (A) and
the output matrix (C). This command is followed by rank (Om) to test the rank of
the observability matrix (Om). Let us apply the commands to Example 12.6.

’(ch12p5) Example 12.6’ % Display label.
A=[0 1 0;0 0 1;-4 -3 -2] % Define compensated A matrix.
C=[05 1] % Define compensated C matrix.
Om=obsv(A,C) % Form observability matrix.
Rank=rank(Om) % Find rank of observability

% matrix.
pause

ch12p6 (Example 12.8) We can design observer gains using the command
l=acker (A’, C’, poles)’without transforming to observer canonical form.
Let us look at Example 12.8 in the text.

’(ch12p6) Example 12.8’ % Display label.
A=[-5 1 0;0 -2 1;0 0 -1]; % Define system matrix A.
B=[0;0;1]; % Define input matrix B.
C=[1 0 0]; % Define output matrix C.
D=0; % Define matrix D.
poles=roots([1 120 2500 50000]) % Specify pole placement for all

% poles.
l=acker(A’, C’,poles)’ % Calculate observer gains.
pause
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Chapter 13: Digital Control Systems
ch13p1 (Example 13.4) We can convert G1(s) in cascade with a zero-order hold
(z.o.h.) to G(z) using MATLAB’s G=c2d (G1, T,’zoh’) command, where G1 is an
LTI continuous-system object and G is an LTI sampled-system object. T is the
sampling interval and ’zoh’is a method of transformation that assumes G1(s) in
cascade with a z.o.h. We simply put G1(s) into the command (the z.o.h. is automati-
cally taken care of) and the command returns G(z). Let us apply the concept to
Example 13.4. You will enter T through the keyboard.

’(ch13p1) Example 13.4’ % Display label.
T=input(’Type T ’); % Input sampling interval.
numg1s=[1 2]; % Define numerator of G1(s).
deng1s=[1 1]; % Define denominator of G1(s).
’G1(s)’ % Display label.
G1=tf(numg1s,deng1s) % Create G1(s) and display.
’G(z)’ % Display label.
G=c2d(G1,T,’zoh’) % Convert G1 (s) in cascade with

% z.o.h. to G(z) and display.
pause

ch13p2 We also can use MATLAB to convert G(s) to G(z) when G(s) is not in
cascade with a z.o.h. The command H=c2d(F, T,’zoh’) transforms F(s) in cascade
with a z.o.h. to H(z), where HðzÞ ¼ ððz� 1Þ=zÞ�zfFðsÞ=sg. If we let FðsÞ ¼ sGðsÞ, the
command solves for H(z), where HðzÞ ¼ ððz� 1Þ=zÞ�zfGðsÞg. Hence,
zfGðsÞg ¼ ðz=½z� 1�Þ�HðzÞ. In summary, input FðsÞ ¼ sGðsÞ, and multiply the result
of H=c2d (F, T,’zoh’) by ðz=½z� 1�Þ . This process is equivalent to finding the z-
transform. We convert GðsÞ ¼ ðsþ 3Þ=ðs2 þ 6sþ 13Þ into G(z). You will enter T, the
sampling interval, through the keyboard. T is used to form H(z). We use an
unspecified sampling interval, T=[], to form z=ðz� 1Þ.

’(ch13p2)’ % Display label.
T=input(’Type T ’); % Input sampling interval.
numgs=[1 3]; % Define numerator of G(s).
dengs=[1 6 13]; % Define denominator of G(s).
’G(s)’ % Display label.
Gs=tf(numgs,dengs) % Create and display G(s).
Fs=Gs*tf([1 0],1) % Create F(s)=sG(s).
Fs=minreal(Fs); % Cancel common poles and zeros.
Hz=c2d(Fs,T,’zoh’); % Convert F(s) to H(z) assuming

% z.o.h.
Gz=Hz*tf([l 0],[l-1],[]); % Form G(z)=H(z)*z/(z-1).
’G(z)’ % Display label.
Gz=minreal(Gz) % Cancel common poles and zeros.
Pause

ch13p3 Creating Digital Transfer Functions Directly Vector Method, Polynomial
Form
A digital transfer function can be expressed as a numerator polynomial divided by a
denominator polynomial, that is, FðzÞ ¼ NðzÞ=DðzÞ. The numerator, N(z), is repre-
sented by a vector, numf, that contains the coefficients of N(z). Similarly, the
denominator, D(z), is represented by a vector, denf, that contains the coefficients
of D(z). We form F(z) with the command, F=tf(numf, denf, T), where T is the
sampling interval. F is called a linear time-invariant (LTI) object. This object, or
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transfer function, can be used as an entity in other operations, such as addition or
multiplication. We demonstrate withFðzÞ ¼ 150ðz2 þ 2zþ 7Þ=ðz2 � 0:3zþ 0:02Þ. We
use an unspecified sampling interval, T ¼ ½  �. Notice after executing thetf command,
MATLAB prints the transfer function.

Vector Method, Factored Form
We also can create digital LTI transfer functions if the numerator and denominator
are expressed in factored form. We do this by using vectors containing the roots of
the numerator and denominator. Thus, GðsÞ ¼ K

�
NðzÞ=DðzÞ can be expressed as an

LTI object using the command, G=zpk (numg, deng, K, T), where numg is a
vector containing the roots of N(z), deng is a vector containing the roots of D(z), K
is the gain, and T is the sampling interval. The expression zpk stands for zeros (roots
of the numerator), poles (roots of the denominator), and gain, K. We demonstrate
with GðzÞ ¼ 20ðzþ 2Þðzþ 4Þ=½ðz� 0:5Þðz� 0:7Þðz� 0:8Þ� and an unspecified sam-
pling interval. Notice after executing the zpk command, MATLAB prints the
transfer function.

Rational Expression in z Method, Polynomial Form (Requires Control System
Toolbox 8)
This method allows you to type the transfer function as you normally would write it.
The statement z=tf(’z’) must precede the transfer function if you wish to create a
digital LTI transfer function in polynomial form equivalent to using G=tf(numg,
deng,T).

Rational Expression in z Method, Factored Form (Requires Control System
Toolbox 8)
This method allows you to type the transfer function as you normally would write
it. The statement z=zpk(’z’) must precede the transfer function if you wish to
create a digital LTI transfer function in factored form equivalent to using G=zpk
(numg, �deng,K,T).

For both rational expression methods the transfer function can be typed in any
form regardless of whether z=tf(’z’) or z=zpk(’z’) is used. The difference is in
the created digital LTI transfer function. We use the same examples above to
demonstrate the rational expression in z methods.

’(ch13p3)’ % Display label.
’Vector Method, Polynomial Form’ % Display label.
numf=150*[1 2 7] % Store 150(z^2+2z+7) in numf and

% display.
denf=[1 -0.3 0.02] % Store(z^2-0.3z+0.02) in denf and

% display.
’F(z)’ % Display label.
F=tf(numf ,denf,[]) % Form F(z) and display.
clear % Clear previous variables from

% workspace.
’Vector Method, Factored Form’ % Display label.
numg=[-2 -4] % Store (s+2) (s+4) in numg and

% display.
deng=[0.5 0.70.8] % Store (s-0.5)(s-0.7)(s-0.8) in

% deng and display.
K=20 % Define K.
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’G(z)’ % Display label.
G=zpk(numg,deng,K,[]) % Form G(z) and display,
clear % Clear previous variables from

% workspace.
’Rational Expression Method, Polynomial Form’

% Display label.
z=tf(’z’) % Define z as an LTI object in

% polynomial form.
F=150*(z^2+2*z+7)/(z^2-0.3*z+0.02)

% Form F(z) as an LTI transfer
% function in polynomial form.

G=20*(z+2)*(z+4)/[(z-0.5)*(z-0.7)*(z-0.8)]
% Form G(z) as an LTI transfer
% function in polynomial form.

clear % Clear previous variables from
% workspace.

’Rational Expression Method, Factored Form’
% Display label.

z=zpk(’z’) % Define z as an LTI object in
% factored form.

F=150*(z^2+2*z+7)/(z^2-0.3*z+0.02)
% Form F(z) as an LTI transfer
% function in factored form.

G=20*(z+2)*(z+4)/[(z-0.5)*(z-0.7)*(z-0.8)]
% Form G(z) as an LTI transfer
% function in factored form,

pause

ch13p4 We also can use MATLAB to convert G(z) to G(s) when G(s) is not in
cascade with a z.o.h. First, we create a sampled LTI transfer function, as
discussed in ch13p3. The command F=d2c(H, ’zoh’) transforms H(z) to F
(s) in cascade with a z.o.h., where HðzÞ ¼ ððz� 1Þ=zÞ�zfFðsÞ=sg. If we consider
FðsÞ ¼ sGðsÞ, the command solves for sG(s) given H(z). Finally, sGðsÞ=s ¼ GðsÞ
yields the final result. In summary, form H(z), where HðzÞ ¼ ððz� 1Þ=zÞ�GðzÞ.
Use F=d2c(H, ’zoh’) to find FðsÞ ¼ sGðsÞ. Divide the result by s and obtain G
(s). We convert GðzÞ ¼ z=ðz� 0:3Þ into G(s) . You will enter T, the sampling
interval, through the keyboard.

’(ch13p4)’ % Display label.
T=input(’Type T ’); % Input sampling interval.
numgz=[10]; % Define numerator of G(z).
dengz=[1 -.3]; % Define denominator of G(z).
’G(z)’ % Display label.
Gz=tf(numgz,dengz,T). % Create and display G(z).
Hz=Gz*tf([1 -1],[1 0],T); % Create H(z)=((z-1)/z)*G(z).
Hz=minreal(Hz); % Cancel common poles and zeros.
Fs=d2c(Hz,’zoh’); % Convert from H(z) to F(s)=sG(s).
Gs=Fs*tf(1,[10]); % Create G(s)=F(s)(1/s).
’G(s)’ % Display label.
Gs=minreal(Gs) % Cancel common poles and zeros.
pause

ch13p5 (Example 13.6) We can use MATLAB to find the gain for stability. Let us
look at Example 13.6 in the text.
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’(ch13p5) Example 13.6’ % Display label.
numgas=27; % Define numerator of Ga(s).
dengas=[1 27 0]; % Define denominator of Ga(s).
’Ga(s)’ % Display label.
Ga=tf(numgas,dengas). % Create and display Ga(s).
’G(z)’ % Display label.
Gz=c2d(Ga,0.1,’zoh’) % Find G(z) assuming Ga(s) in

% cascade with z.o.h. and display.
for K=1:0.1:50; % Set range of K to look for

% stability.
Tz=feedback(K*Gz,1); % Find T(z).
r=pole(Tz); % Get poles for this value of K.
rm=max(abs(r)); % Find pole with maximum absolute

% value for this value of K.
if rm>=1, % See if pole is outside unit

% circle.
break; % Stop if pole is found outside

% unit circle.
end; % End if.
end; % End for.
K % Display K value.
r % Display closed-loop poles for

% this value of K.
rm % Display absolute value of pole.
pause

ch13p6 (Example 13.9) We can use MATLAB’s command dcgain(Gz) to find
steady-state errors. The command evaluates the dc gain of Gz, a digital LTI transfer
function object, by evaluating Gz at z ¼ 1. We use the dc gain to evaluate, Kp, Kv,
and Ka. Let us look at Example 13.9 in the text. You will input T, the sampling
interval, through the keyboard to test stability.

’(ch13p6) Example 13.9’ % Display label.
T=input(’Type T ’); % Input sampling interval.
numg1s=[10]; % Define numerator of G1(s).
deng1s=poly([0 -1]); % Define denominator of G1(s).
’G1(s)’ % Display label.
G1s=tf(numg1s,deng1s) % Create and display G1(s).
’G(z)’ % Display label.
Gz=c2d(G1s,T,’zoh’) % Convert G1(s) and z . o. h. to G(z)

% and display.
’T(z) ’ % Display label.
Tz=feedback(Gz, 1) % Create and display T(z).
’Closed-Loop z-Plane Poles’ % Display label.
r=pole(Tz) % Check stability.
M=abs(r) % Display magnitude of roots.
pause
Kp=dcgain(Gz) % Calculate Kp.
GzKv=Gz*(1/T)*tf([1-1],[10],T);

% Multiply G(z) by(1/T)*(z-1).
% Also, divide G(z) by z , which
% makes transfer function proper
% and yields same Kv.

GzKv=mineral (GzKv, 0.00001); % Cancel common poles and zeros.
Kv=dcgain(GzKv) % Calculate Kv.
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GzKa=Gz*(l/T^2)*tf([1-2 1],[100],T);
% Multiply G(z) by (1/T"2)(z-1)^2.
% Also, divide G(z)by z^2 , which
% makes the transfer function
% proper and yields the same Ka.

GzKa=minreal (GzKa, 00.0001) % Cancel common poles and zeros.
Ka=dcgain(GzKa) % Calculate Ka.
pause

ch13p7 (Example 13.10) We now use the root locus to find the gain for stability. First,
we create a digital LTI transfer-function object for GðzÞ ¼ NðzÞ=DðzÞ; with an un-
specified sampling interval. The LTI object is created using tf (numgz, dengz, []),
where numgz represents N(z),dengz represents D(z), and []indicates an unspecified
sampling interval. MATLAB produces a z-plane root locus along with the unit circle
superimposed using the command, zgrid ([],[]). We then interactively select the
intersection of the root locus and the unit circle. MATLAB responds with the value of gain
and the closed-loop poles. Let us look at Example 13.10.

’(ch13p7) Example 13.10’ % Display label.
clf % Clear graph.
numgz=[11]; % Define numerator of G(z).
dengz=poly([1 0.5]); % Define denominator of G(z).
’G(z)’ % Display label.
Gz=tf(numgz,dengz,[]). % Create and display G(z).
rlocus(Gz) % Plot root locus.
zgrid([],[]) % Add unit circle to root locus.
title ([’z-Plane Root Locus ’]) % Add title to root locus.
[K,p]=rlocfind(Gz) % Allows input of K by selecting

% point on graphic.
pause

ch13p8 (Example 13.11) We now use the root locus to find the gain to meet a
transient response requirement. After MATLAB produces a z-plane root locus, along
with damping ratio curves superimposed using the command zgrid, we interactively
select the desired operating point at a damping ratio of 0.7, thus determining the gain.
MATLAB responds with a gain value as well as the step response of the closed-loop
sampled system usingstep(Tz), whereTz is a digital LTI transfer-function object. Let
us look at Example 13.11.

’(ch13p8) Example 13.11’ % Display label.
clf % Clear graph.
numgz=[11]; % Define numerator of G(z).
dengz=poly([1 0.5]); % Define denominator of G(z).
’G(z)’ % Display label.
Gz=tf(numgz,dengz,[]). % Create and display G(z).
rlocus(Gz) % Plot root locus.
axis([0,1,-1,1]) % Create close-up view.
zgrid % Add damping ratio curves to root

% locus.
title([’z-Plane Root Locus’]) % Add title to root locus.
[K,p]=rlocfind(Gz) % Allows input of K by selecting

% point on graphic.
’T(z)’ % Display label.
Tz=feedback(K*Gz,1) % Find T(z).
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step(Tz) % Find step response of gain-
% compensated system.

title ([’Gain Compensated Step Response ’])
% Add title to step response of
% gain-compensated system.

pause

ch13p9 (Example 13.12) Let us now use MATLAB to design a digital lead
compensator. The s-plane design was performed in Example 9.6. Here we convert
the design to the z-plane and run a digital simulation of the step response.
Conversion of the s-plane lead compensator, Gc(s)=numgcs/dengcs, to the z-
plane compensator, Gc(z)=numgcz/dengcz, is accomplished using the Gcz=c2d
(numgcs, dengcs, T, ’tustin’) command to perform a Tustin transformation,
where T=sampling interval, which for this example is 1/300. This exercise solves
Example 13.12 using MATLAB.

’(ch13p9) Example 13.12’ % Display label.
clf % Clear graph.
T=0.01 % Define sampling interval.
numgcs=1977*[16]; % Define numerator of Gc(s).
dengcs=[1 29.1]; % Define denominator of Gc(s).
’Gc(s) in polynomial form’ % Print label.
Gcs=tf(numgcs,dengcs) % Create Gc(s) in polynomial form

% and display.
’Gc(s) in polynomial form’ % Display label.
Gcszpk=zpk(Gcs) % Create Gc(s) in factored form

% and display.
’Gc(z) in polynomial form via Tustin Transformation’

% Display label.
Gcz=c2d(Gcs,T, ’tustin’) % FormGc(z) via Tustin

% transformation.
’Gc(z) in factored form via Tustin Transformation’

% Display label.
Gczzpk=zpk(Gcz) % Show Gc(z) in factored form.
numgps=1 % Define numerator of Gp(s).
dengps=poly([0 -6 -10]); % Define denominator of Gp(s).
’Gp(s) in polynomial form % Display label.
Gps=tf(numgps,dengps) % Create Gp(s) in polynomial form

% and display.
’Gp(s) in factored form’ % Display label.
Gpszpk=zpk(Gps) % Create Gp(s) in factored form

% and display.
’Gp(z) in polynomial form’ % Display label.
Gpz=c2d(Gps,T,’zoh’) % Form Gp(z) via zoh trans formation.
’Gp(z) in factored form’ % Display label.
Gpzzpk=zpk(Gpz) % Form Gp(z) in factored form.
Gez=Gcz*Gpz % Form Ge(z)=Gc(z) Gp(z).
’Ge(z)=Gc(z)Gp(z) in factored form’

% Display label.
Gezzpk=zpk(Gez) % Form Ge(z) in factored form

% and display.
’z-1’ % Display label.
zm1=tf([1 -1],1,T) % Form z-1.
zm1Gez=mineral (zm1*Gez , 00.0001);% Cancel common factors.
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’(z-1)Ge(z) for finding steady-state error’
% Display label.

zm1Gezzpk=zpk(zm1Gez) %Form & display(z-1)Ge(z) in
% factored form.

Kv=(1/T)*dcgain(zm1Gez) % Find Kv.
’T(z)=Ge(z)/(1+Ge(z)) ’ % Display label.
Tz=feedback(Gez , 1) % Find closed-loop

% transfer function, T(z)
step(Tz, 0:T:2) % Find step reponse.
title(’Closed-Loop Digital Lead Compensated Step Response’)

% Add title to step response.

B.3 Command Summary

abs(x) Obtain absolute value of x.

acker(A,B,poles) Find gains for pole placement.

angle(x) Compute the angle of x in radians.

atan(x) Compute arctan(x).

axis([xmin,xmax,ymin,ymax]) Define range on axes of a plot.

bode(G,w) Make a Bode plot of transfer function G(s) over a
range of frequencies, v.

Field v is optional.

break Exit loop.

c2d(G,T,’tustin’) Convert G(s) to G(z) using the Tustin
transformation. T is the sampling interval.

c2d(G,T,’zoh’) Convert G(s) in cascade with a zero-order hold to G
(z). T is the sampling interval.

canon(S,’modal’) Convert an LTI state-space object, S, to parallel
form.

clear Clear variables from workspace.

clf Clear current figure.

conv([a b c d],[e f g h]) Multiply ðas3 þ bs2 þ csþ dÞ by ðes3 þ f s2 þ gsþ hÞ.
ctrb(A,B) Find controllability matrix.

d2c(G,’zoh’) Convert G(z) to G(s) in cascade with a zero-order
hold.

dcgain(G) Find dc gain for G(s) (that is, s ¼ 0), or G(z) (that is,
z ¼ 1).

eig(A) Find eigenvalues of matrix A.

end End the loop.

exp(a) Obtain ea.

feedback(G, H, sign) Find TðsÞ ¼ GðsÞ=½1 �GðsÞHðsÞ�. Sign ¼ �1 or is
optional for negative feedback systems.

Sign ¼ þ1 for positive feedback systems.

grid on Put grid lines on a graph.

hold off Turn off graph hold; start new graph.

imag(P) Form a matrix of the imaginary parts of the
components of matrix P.
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input(’str’) Permit variable values to be entered from the
keyboard with prompt str.

interp1 (x,y,x1) Perform table lookup by finding the value of y at the
value of x ¼ x1.

inv(P) Find the inverse of matrix P.

length(P) Obtain dimension of vector P.

log(x) Compute natural log of x.

log10(x) Compute log to the base 10 of x.

margin(G) Find gain and phase margins, and gain and phase
margin frequencies of transfer function, G(s).

Return [Gain margin, Phase margin, 180� frequency,
0 dB frequency].

max(P) Find the maximum component of P.

minreal(G, tol) Cancel common factors from transfer function G(s)
within tolerance, tol.

If ’tol’ field is blank, a default value is used.

ngrid Superimpose grid over a Nichols plot.

nichols(G,w) Make a Nichols plot of transfer function G(s) over a
range of frequencies, v.

Field v is optional.

nyquist(G,w) Make a Nyquist diagram of transfer function G(s)
over a range of frequencies, v

Field v is optional.

obsv(A.C) Find observability matrix.

ord2(wn,z) Create a second-order system,
GðsÞ ¼ 1=½s2 þ 2zvnsþ v2

n�.
pade(T,n) Obtain nth order Pad�e approximation for delay, T.

pause Pause program until any key is pressed.

plot(t1,y1,t2,y2,t3,y3) Plot y1 versus t1, y2 versus t2, and y3 versus t3 on the
same graph.

pole(G) Find poles of LTI transfer function object, G(s).

poly([�a �b �c]) Form polynomial ðsþ aÞðsþ bÞðsþ cÞ.
polyval(P,a) Find polynomial P(s) evaluated at a, that is, P(a).

rank(A) Find rank of matrix A.

real(P) Form a matrix of the real parts of the components of
matrix P.

residue(numf, denf) Find residues of F(s)=numf/denf.

rlocfind(GH) Allow interactive selection of points on a root locus
plot for loop gain, G(s)H(s).

Return value for K and all closed-loop poles at
that K.

rlocus(GH,K) Plot root locus for loop gain, G(s)H(s), over a range
of gain, K. The K field is optional.

roots(P) Find roots of polynomial, P.

semilogx(w,P1) Make a semilog plot of P1 versus log10ðvÞ.
series(G1,G2) Find G1ðsÞG2ðsÞ.
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sgrid(z,wn) Overlay zðzÞ and wn(vn) grid lines on a root locus.

sin(x) Find sin(x).

sqrt(a) Compute
ffiffiffi
a

p
.

ss2tf(A,B,C,D,1) Convert a state-space representation to a transfer
function. Return [num, den].

ss(A,B,C,D) Create an LTI state-space object, S.

ss(G) Convert an LTI transfer function object, G(s), to an
LTI state-space object.

ssdata(S) Extract A, B, C, and D matrices from LTI state-
space object, S.

step(G1,G2,.. Gn,t) Plot step responses of G1ðsÞ through GnðsÞ on one
graph over a range of time, t.

Field t is optional as are fields G2 through Gn.

subplot(xyz) Divide plotting area into an x by y grid with z as the
window number for the current plot.

tan(x) Find tangent of x radians.

text(a,b,’str’) Put str on graph at graph coordinates, x ¼ a, y ¼ b.

tf2ss(numg,deng) Convert GðsÞ ¼ numg/deng to state space in
controller canonical form. Return [A, B, C, D].

tf2zp(numg,deng) Convert GðsÞ ¼ numg/deng in polynomial form to
factored form.

Return [zeros, poles, gains].

tf(numg,deng,T) Create an LTI transfer function, GðsÞ ¼ numg/deng,
in polynomial form.

T is the sampling interval and should be used only if
G is a sampled transfer function.

tf(G) Convert an LTI transfer function, G(s), to
polynomial form.

tfdata(G,’v’) Extract numerator and denominator of an LTI
transfer function, G(s), and convert values

to a vector. Return [num, den].

title(’str’) Put title str on graph.

xlabel(’str’) Put label str on x axis of graph.

ylabel(’str’) Put label str on y axis of graph.

zgrid Superimpose zðzÞ and wn ðvnÞ grid curves on a
z-plane root locus.

zgrid([],[]) Superimpose the unit circle on a z-plane root locus.

zp2tf ([�a �b]’,[�c �d]’, K) Convert FðsÞ ¼ Kðsþ aÞðsþ bÞ=ðsþ cÞðsþ dÞ to
polynomial form. Return [num, den].

zpk(numg,deng,K,T) Create an LTI transfer function, GðsÞ ¼ numg/
deng, in factored form.

T is the sampling interval and should be used only if
G is a sampled transfer function.

zpk(G) Convert an LTI transfer function, G(s), to factored
form.
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Appendix C: MATLAB’s
Simulink Tutorial

C.1 Introduction

Readers who are studying MATLAB may want to explore the functionality and
convenience of MATLAB’s Simulink. Before proceeding, the reader should have
studied Appendix B, the MATLAB Tutorial, including Section B.1, which is
applicable to this appendix.

MATLAB’s Simulink Version 7.4(R2009b) and MATLAB Version 7.9(R2009b)
are required in order to use Simulink.

The models described in this appendix, which are available at www.wiley.com/
college/nise, were developed on a PC using MATLAB Version 7.9 and Simulink
Version 7.4. The code will also run on workstations that support MATLAB. Consult
the MATLAB Installation Guide for your platform for minimum system hardware
requirements.

Simulink is used to simulate systems. It uses a graphical user interface (GUI)
for you to interact with blocks that represent subsystems. You can position the
blocks, resize the blocks, label the blocks, specify block parameters, and interconnect
blocks to form complete systems from which simulations can be run.

Simulink has block libraries from which subsystems, sources (that is, function
generators), and sinks (that is, scopes) can be copied. Subsystem blocks are available
for representing linear, nonlinear, and discrete systems. LTI objects can be generated
if the Control System Toolbox is installed.

Help is available on the menu bar of the MATLAB Window. Under Help
select Product Help. When the help screen is available, choose Simulink under the
Contents tab. Help is also available for each block in the block library and is accessed
either by right-clicking a block’s icon in the Simulink Library Browser and selecting
Help for . . . or by double-clicking the block’s icon and then clicking the Help
button. Finally, screen tips are available for some toolbar buttons. Let your mouse’s
pointer rest on the button for a few seconds to see the explanation.

C.2 Using Simulink

The following summarize the steps to take to use Simulink. Section C.3 will present
four examples that demonstrate and clarify these steps.

837
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1. Access Simulink The Simulink Library Browser, from where we begin Simulink,
is accessed by typing simulink in the MATLABCommandWindow or by clicking
on the Simulink Library Browser button on the toolbar, shown circled in
Figure C.1.

In response, MATLAB displays the Simulink Library Browser shown in Figure
C.2(a). We now create an untitled window, Figure C.2(b), by clicking on the
Create a new model button (shown circled in Figure C.2(a)) on the tool bar of the
Simulink Library Browser. You will build your system in this window. Existing
models may be opened by clicking on the Open a model button on the Simulink
Library Browser toolbar. This button is immediately to the right of the Create a
new model button. Existing models may also be opened by selecting the Current
Folder from the command Window Start menu or the tab on the left side of the
CommandWindow as shown in Current Figure C.1, selecting your file names, and
then dragging them to the MATLAB Command Window.

2. Select blocks Figure C.2(a) shows the Simulink Library Browser from which all
blocks can be accessed. The left-hand side of the browser shows major libraries,
such as Simulink, as well as underlying block libraries, such as Continuous. The

FIGURE C.1 MATLAB Window showing how to access Simulink. The Simulink Library
Browser button is shown circled.
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right-hand side of Figure C.2(a) also shows the underlying block libraries. To
reveal a block library’s underlying blocks, select the block library on the left-hand
side or double-click the block library on the right-hand side. As an example, the
Continuous library blocks under the Simulink major library are shown exposed in
Figure C.3(a). Figures C.3(b) and C.3(c) show some of the Sources and Sinks
library blocks, respectively.

Another approach to revealing the Simulink block library is to type open_
system (‘simulink.mdl’) in the MATLAB CommandWindow. The window shown
in Figure C.4 is the result. Double-clicking any of the libraries in Figure C.4

FIGURE C.2 a. Simulink Library Browser window showing the Create a new model button
encircled b. resulting untitled model window

C.2 Using Simulink 839
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FIGURE C.3 Simulink block libraries: a. Continuous systems b. Sources (figure continues)
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reveals an individual window containing that library’s blocks, equivalent to the
right-hand side of the Simulink Library Browser as shown in the examples of
Figure C.3.

3. Assemble and label subsystems Drag required subsystems (blocks) to your
model window from the browser, such as those shown in Figure C.3. Also,
you may access the blocks by double-clicking the libraries shown in Figure
C.4. You can position, resize, and rename the blocks. To position, drag with
the mouse; to resize, click on the subsystem and drag the handles; to rename, click
on the existing name, select the existing text, and type the new name. The text can
also be repositioned to the top of the block by holding the mouse down and
dragging the text.

4. Interconnect subsystems and label signals Position the pointer on the small arrow
on the side of a subsystem, press the mouse button, and drag the resulting cross-
hair pointer to the small arrow of the next subsystem. A line will be drawn
between the two subsystems. Blocks may also be interconnected by single-
clicking the first block followed by single-clicking the second block while holding
down the control key. You can move line segments by positioning the pointer on
the line, pressing the mouse button, and dragging the resulting four-arrow pointer.
Branches to line segments can be drawn by positioning the pointer where you
want to create a line segment, holding down the mouse’s right button, and
dragging the resulting cross hairs. A new line segment will form. Signals can
be labeled by double-clicking the line and typing into the resulting box. Finally,
labels can be placed anywhere by double-clicking and typing into the resulting box.

FIGURE C.3 (continued) c. Sinks
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5. Choose parameters for the subsystems Double-click a subsystem in your model
window and type in the desired parameters. Some explanations are provided in the
Parameters window. Press the Help button in the Parameters window for more
details. The parameters can be read later without opening the block. Let your
mouse’s pointer rest on the block for a few seconds, and a screen tip will appear,
identifying the block and listing its parameters. The information displayed in the
screen tip first must be selected in the Block Data Tips Options in the model
window’s View menu. Explore other options by right-clicking on a block.

6. Choose parameters for the simulation Select Configuration parameters . . . un-
der the Simulation menu in your model window to set additional parameters, such
as simulation time. Press the Help button in the Configuration parameters
window for more details.

7. Start the simulation Make your model window the active window. Double-click
the Scope block (typically, the scope is used to view the simulation results) to
display the Scope window. Select Start under the Simulation menu in your model
window or click on the Start simulation icon on the toolbar of your model window
as shown in Figure C.2(b). Clicking the Stop simulation icon will stop the
simulation before completion.

8. Interact with the plot In the Scope window, using the toolbar buttons, you can
zoom in and out, change axes ranges, save axis settings, and print the plot. Right-
clicking on the Scope window brings up other choices.

9. Save your model Saving your model, by choosing Save under the File menu,
creates a file with an .mdl extension, which is required.

C.3 Examples

This section will present four examples of the use of Simulink to simulate linear,
nonlinear, and digital systems. Examples will show the Simulink block diagrams as
well as explain the settings of parameters for the blocks. Finally, the results of the
simulations will be shown.

FIGURE C.4 Simulink Block
Library window
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Example C.1

Simulation of Linear Systems

Our first example develops a simulation of three linear systems to compare their
step responses. In particular, we solve Example 4.8 and reproduce the responses
shown in Figure 4.24. Figure C.5 shows a Simulink block diagram formed by
following Steps (1) through (5) in Section C.2 as follows:

Access Simulink; select, assemble, and label subsystems The source is a 1-volt
step input, obtained by dragging the Step block from the Simulink Library Browser
under Sources to your model window.

The first system, T1, consists of two blocks, Gain and Transfer Fcn. Gain is
obtained by dragging the Gain block from the Simulink Library Browser under
Math Operations to your model window. Transfer function, T1, is obtained by
dragging the Transfer Fcn block from the Simulink Library Browser under
Continuous to your model window. Systems T2 and T3 are created similarly.

The three output signals, C1, C2, and C3, are multiplexed for display into the
single input of a scope. The Mux (multiplexer) is obtained by dragging the Mux
block from the Simulink Library Browser under Signal Routing to your model
window.

The sink is a scope, obtained by dragging the Scope block from the Simulink
Library Browser under Sinks to your model window.

FIGURE C.5 Simulink block diagram for Example C.1
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Alternatively, all blocks can be dragged from the Library: simulink window
shown in Figure C.4. The Mux can be found under Signal Routing in the Library:
simulink window.

The labels for the blocks can be changed to those shown in Figure C.5 by
following Step (3) in Section C.2.

Interconnect subsystems and label signals Follow Step (4) to interconnect the
subsystems and label the signals. You must set the mux’s parameters before the
wiring can be completed. See the next paragraph.

Choose parameters for the subsystems Let us now set the parameters of each block
using Step (5). The Block Parameters window for each block is accessed by double-
clicking the block on your model window. Figure C.6 shows the Block Parameters
windows for the 1 volt step input, gain, transfer function 1, and mux. Set the
parameters to the required values as shown.

The scope requires further explanation. Double-clicking the Scope block in your
model window accesses the scope’s display, Figure C.7(a).

FIGURE C.6 Block parameters windows for a. 1 volt step source; (figure continues)
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FIGURE C.6 b. gain; c. transfer function 1; (figure continues)

C.3 Examples 845



Apago PDF Enhancer

E1BAPP03 08/31/2010 18:54:27 Page 846

FIGURE C.6 (continued) d. mux

FIGURE C.7 Windows for the scope: a. Scope; b. ‘Scope’ parameters, General tab; (figure continues)
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Clicking the Parameters icon on the Scope window toolbar, shown in Figure C.7(a),
accesses the ‘Scope’ parameters window as shown in Figure C.7(b). The ‘Scope’
parameters window contains two tabs, General and Data history, as shown in
Figure C.7(b) and (c), respectively. Finally, right-clicking in the plotting area in the
Scope window and selecting Axis properties . . . reveals the ‘Scope’ properties:
axis 1 window, Figure C.7(d). We now can set the display parameters, such as
amplitude range.

Choose parameters for the simulation Follow Step (6) to set simulation parame-
ters. Figure C.8 shows the resulting Configuration Parameters window after

FIGURE C.7 (continued) c. ‘Scope’ parameters, Data history tab; d. ‘Scope’ properties: axis 1

FIGURE C.8 Simulation
Parameters window for Solver
tab
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selecting the Solver tab. Among other parameters, the simulation start and stop
times can be set.

Start the simulation Now run the simulation by following Step (7). Figure C.9 shows
the result in the Scope window. Plots are color coded in the order in which they
appear at the mux input as follows: yellow, magenta, cyan, red, green, and dark
blue. If the mux has more inputs, the colors recycle.

Interact with the plot The toolbar of the Scope window shown in Figure C.9 has
several buttons that can be used to interact with the plot. Let us summarize the
function and operation of each, starting with the left-most button:

Button 1 executes a plot print.
Button 2 has already been explained and is used to set scope parameters.
Button 3 permits zooming into the plot in both the x and y directions. Press the

button and drag a rectangle over the portion of the curve you want to
expand.

Button 4 allows zooming in the x direction only. Drag a horizontal line over the
plot covering the extent of x you want to expand.

Button 5 allows zooming in the y direction only. Drag a vertical line over the plot
covering the range of y you want to expand.

Button 6 autoscales axis for use after zooming.
Button 7 saves current axis settings.
Button 8 restores saved axis settings.

FIGURE C.9 Scope window after Example C.1 simulation stops
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Button 9 toggles floating scope. It must be turned off to use zooming. See
documentation for use of floating scopes.

Button 10 toggles lock for current axis selection.
Button 11 allows selection of signals to view when using floating scope.

Example C.2

Effect of Amplifier Saturation on Motor’s Load Angular Velocity

This example, which generated Figure 4.29 in the text, shows the use of Simulink to
simulate the effect of saturation nonlinearity on an open-loop system. Figure C.10
shows a Simulink block diagram formed by following Steps (1) through (5) in
Section C.2 above.

Saturation nonlinearity is an additional block that we have not used
before. Saturation is obtained by dragging to your model window the Satura-
tion block in the Simulink Library Browser window under Discontinuities as
shown in Figure C.11(a) and setting its parameters to those shown in Figure
C.11(b).

Now run the simulation by making your model window active and selecting
Start under the Simulation menu of your model window or clicking on the Start
simulation button on your model window toolbar. Figure C.12 shows the result in
the Scope window.

FIGURE C.10 Simulink block diagram for Example C.2
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FIGURE C.11 a. Simulink library for nonlinearities; b. parameter settings for saturation
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Example C.3

Simulating Feedback Systems

Simulink can be used for the simulation of feedback systems. Figure C.13(a) is an
example of a feedback system with saturation.

In this example, we have added a feedback path (see Step (4) in Section C.2)
and a summing junction, which is obtained by dragging the Sum block from the
Simulink Library Browser, contained in the Math Operations library, to your
model window. The Function Block Parameters: Sum window, Figure C.13(b),
shows the parameter settings for the summer. You can set the shape as well as set
the plus and minus inputs. In the list of signs, the ‘‘|’’symbol signifies a space. We
place it at the beginning to start the signs at ‘‘nine o’clock,’’ conforming to our
standard symbol, rather than at ‘‘12 o’clock.’’ The result of the simulation is shown
in Figure C.14.

FIGURE C.12 Scope window after simulation of Example C.2 stops. The lower curve is the
output with saturation
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FIGURE C.13 a. Simulation block diagram for a feedback system with saturation; b. block
parameter window for the summer
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Example C.4

Simulating Digital Systems

This example demonstrates two methods of generating digital systems via Simulink
for the purpose of simulation, as shown in Figure C.15.

The first approach uses a linear transfer function cascaded with a Zero-Order
Hold block obtained from the Simulink Library Browser under the Discrete block
library, shown on the right-hand side of Figure C.16. The second method uses a
discrete transfer function also obtained from the Simulink Library Browser under
the Discrete block library. The remainder of the block diagram was obtained by
methods previously described.

The block parameters for the Zero-Order Hold and Discrete Transfer Fcn
blocks are set as shown in Figures C.17(a) and (b), respectively.

Select Configuration parameters . . . under the Simulation menu in your
model window and set the simulation stop time to 4 seconds, the type to fixed-
step, and the solver to ode4 (Runge-Kutta). The result of the simulation is shown in
Figure C.18.

FIGURE C.14 Simulation output for Example C.3
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FIGURE C.15 Simulink block diagram for simulating digital systems two ways

FIGURE C.16 Simulink library of discrete blocks
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FIGURE C.17 Function Block parameter windows for: a. Zero-Order Hold block; b. Discrete Transfer Fcn block
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Summary

This appendix explained Simulink, its advantages, and how to use it. Examples were
taken from Chapters 4, 5, and 13 and demonstrated the use of Simulink for
simulating linear, nonlinear, and digital systems.

The objective of this appendix was to familiarize you with the subject and get
you started using Simulink. There are many blocks, parameters, and preferences that
could not be covered in this short appendix. You are encouraged to explore and
expand your use of Simulinkby using the on-screen help that was explained earlier.
The references in the Bibliography of this appendix also provide an opportunity to
learn more about Simulink.

Output of continuous system with
zero-order hold

Output of sampled system

FIGURE C.18 Outputs of the digital systems
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Appendix D: LabVIEWTM1

Tutorial

D.1 Introduction

LabVIEW is a programming environment that is presented here as an alternative to
MATLAB. Although not necessary, the reader is encouraged to become acquainted
with MATLAB before proceeding, since familiarity with MATLAB can enhance the
understanding of the relationship between textual (MATLAB) and graphical (Lab-
VIEW) programming languages and extend the functionality of LabVIEW. In this
tutorial, we will show how to use LabVIEW to (1) analyze and design control
systems, and (2) simulate control systems. This appendix was developed using
LabVIEW 2009.

LabVIEW is a graphical programming environment that produces virtual
instruments (VI’s). A VI is a pictorial reproduction of a hardware instrument on
your computer screen, such as an oscilloscope or waveform generator. The VI can
consist of various controls and indicators, which become inputs and outputs,
respectively, to your program. Underlying each control and indicator is an associated
block of code that defines its operation. The LabVIEW model thus consists of two
windows: (1) Front Panel, which is a replica of the hardware front panel showing the
controls and indicators, and (2) Block Diagram, which contains the underlying code
for the controls and indicators on the Front Panel.

Associated with the Front Panel window is a Controls palette window
containing numerous icons representing controls and indicators. The icons can
be dragged onto a Front Panel window to create that control or indicator.
Simultaneously, the associated code block is formed on the Block Diagram
window.

Alternately, the block diagram can be formed first, and then the front
panel is created from the block diagram. Associated with the Block Diagram
window is a Functions palette window containing numerous icons representing a
wide range of functions. Icons can be dragged onto a Block Diagram window to
create that code block.

For example, Figure D.1(a) is the front panel of a signal generator. The
generator consists of a control to select the signal type and a waveform graph
that shows the output waveform. Figure D.1(b) shows the underlying code, which is
contained in the code blocks. Here, the signal type selector is a control, while the
waveform graph is an indicator. Later we will show how to make connections to
other VI’s. The palette windows for the front panel and block diagram are shown
respectively in Figures D.1(c) and (d).

1 LabVIEW is a registered trademark of National Instruments Corporation.
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D.2 Control Systems Analysis, Design, and Simulation

LabVIEW can be used as an alternative to or in conjunction with MATLAB to analyze,
design, simulate, build, and deploy control systems. In addition to LabVIEW, you will
need the LabVIEW Control Design and Simulation Module. Finally, as an option that
will be explained later, you may want to install the MathScript RT Module.

Analysis and design can be thought of as similar to writing MATLAB code,
while simulation can be thought of as similar to Simulink. In LabVIEW, analysis and
design, as opposed to simulation, are handled from different subpalettes of the
Functions window’s Control Design and Simulation palette. See Figure D.1(d).
Analysis and design, and simulation will typically begin with the Block Diagram
window, where icons representing code blocks will be interconnected. Parameters

FIGURE D.1 A LabVIEW function generator VI: a. Front Panel window; b. Block Diagram
window; (figure continues)

858 Appendix D LabVIEW Tutorial



Apago PDF Enhancer

E1BAPP04 10/22/2010 16:3:56 Page 859

used by the code can be conveniently selected, changed, and passed to the code
through VI controls on the Front Panel window created from the code icons. Any
results, such as time response, can be displayed through VI indicators on the Front
Panel window created from the code icons.

D.3 Using LabVIEW

The following steps start you on your way to using LabVIEW for control systems
analysis, design, and simulation. These steps will be illustrated in the examples that
follow.

1. Start LabVIEW LabVIEW starts with the Getting Started window shown in
Figure D.2, where you can select a New file or Open an existing file. You may also
select various resources. Selecting BlankVI under the New label or NewVI under
the File menu brings up the Front Panel and Block Diagram windows shown in
Figure D.1. If necessary, a window can be opened from the Window tab on the
menu bar of the Front Panel and Block Diagram.

Right-click the Block Diagram window to bring up the Functions palette and
click the thumb tack in the upper left-hand corner to dock the window. Repeat for
the Front Panel window to access the Controls palette.

FIGURE D.1 (Continued ) c. Controls palette; d. Functions palette
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2. Select blocks Make the BlockDiagram window active, or access it from Window
on the menu bar. Right-click the Block Diagram window or use the View menu to
bring up the Functions palette. Expand the palette window by clicking the double-
up arrows at the bottom. At the top of the palette window click View, and select
View This Palette As/Category (Icons and Text) to add a text description below
each icon. For control systems analysis, design, and simulation, expand Control
Design & Simulation in the Functions palette by clicking the arrow to the left of
this category.

If you are performing a simulation click the subpalette Simulation. If you are
performing control system analysis or design, click the subpalette Control Design.
An arrow in the upper-right corner of a subpalette indicates additional underlying
palettes or blocks.

If the name of the icon is incomplete, resting the mouse over the icon will bring
up its complete identification. To obtain detailed help about an icon, right-click
the icon and select Help.

3. Move blocks to the block diagram window To move the icon to the Block
Diagram, left-click the mouse to attach the icon (some icons take a little time to
complete this operation). When the pointer turns into a hand, click the spot on the
Block Diagram where you want to place the icon.

4. Obtain information about the block You will now want to obtain information
about how to interconnect the block to other blocks and pass parameters to the
block as well as other characteristics about the block. Select the yellow question
mark at the right of the Block Diagram toolbar to turn on the Context Help
window. This window will provide help about a particular icon if you rest your

FIGURE D.2 LabVIEW’s Getting Started window
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mouse over that icon. Additional help is available under the Help menu on the
Block Diagram menu bar. Finally, right-click the icon to bring up a menu with
additional choices, such as Properties, if any. In particular, you will use this menu
to create the block’s front panel’s controls and indicators. This front panel will be
your interface with the block to choose parameters and see responses.

5. Interconnect and label blocks Once blocks are placed on the Block Diagram
they can be moved about by clicking on them or dragging your mouse across
several or them to establish a selection pattern. After the selection pattern has
been established, depress the mouse left button and drag to a new location. To
delete a block, select the block and press the Delete button.

The context help for the block includes a description of the block’s terminals.
Let your mouse rest on a terminal until the mouse pointer turns into a spool of
wire. Click the terminal and then move the mouse to the next icon’s terminal
where you want to make the connection. Click the destination terminal to
complete the wiring. Notice that the terminal in the Context Help window blinks
when your mouse resides above that terminal on the block, ensuring that you are
on the correct terminal. If you make an error in wiring, click on the wire and press
the Delete button or right-click the wire and select Delete Wire Branch.

Block labels can be displayed or hidden. Right-click on the block to bring up
the pop-up menu and check or uncheck Visible Items/Label to display or hide,
respectively, the label. Double-clicking on the label above some blocks will allow
you to select and change the text. One click of the mouse on the label will place a
selection pattern around the label and allow you to hold down the left key of the
mouse and move the label to a different location.

6. Create the interface to your block You will now want to create the interface to
your block in order to control or select functions, specify parameters, or view
responses. This interface will be accessed via the Front Panel window. Right-click
a terminal on a block for which you want to create an interface. On the pop-up
menu, choose Create/Control to be able to interact with the block or Create/
Indicator to view a response or setting.

7. Set the controls Switch to the Front Panel window and set your controls. For
example, enter parameter values, select functions, etc. If you want to change
values and at some future time return to the current values, click on Edit on the
Block Diagram menu bar and select Make Current Values Default. To return to
the default values in the future, click on Edit on the Block Diagram menu bar and
select Reinitialize Values to Default.

8. Run the program Click on the arrow at the left of the toolbar on either the Block
diagram or Front Panel window to run the program. The program can be run
continuously by clicking the curved arrow button on the toolbar second from the
left. Continuously running your program permits changing functions and param-
eter values during execution.

In order to identify the buttons, let your mouse rest on a button to bring up a
context menu. Stop your simulation by pressing the red-dot button, third from the
left. If you are performing control systems analysis and design, another way to
continuously run the program is to place a While Loop around your block
diagram. The loop is available in the Functions palette at Express/Execution
Control/While Loop. This loop also places a Stop button on the Front Panel. The
program executes until you press the stop button. In lieu of the Stop button, any
true/false Boolean can be wired to the condition block (red dot) created inside the
While Loop.

D.3 Using LabVIEW 861



Apago PDF Enhancer

E1BAPP04 10/22/2010 16:4:3 Page 862

If you are performing simulation, you can use a Simulation Loop available in
the Functions palette at Control Design and Simulation/Simulation/Simulation
Loop. Place the Simulation Loop around your simulation block diagram by
dragging the mouse. Right-click on the Simulation Loop outline and choose
Configure Simulation Parameters . . . to determine the parameters for executing
the simulation. The Front Panel indicators and controls are also configurable.
Right-click on the indicator or control and select Properties.

D.4 Analysis and Design Examples

In this section, we will present some examples showing the use of LabVIEW for the
analysis and design of control systems. In the next section, examples of the use of
LabVIEW for simulation will be presented.

Analysis and design examples use icons selected from the Control Design
subpalette under the Control Design and Simulation palette. In the next section
showing examples of simulation, we will use icons taken from the Simulation
subpalette under the Control Design and Simulation palette.

Example D.1

Open-Loop Step Response

Analysis and design usually begins by selecting icons from the Control Design
subpalette and dragging them to the Block Diagram window. The icons represent
blocks of code and the cascading of code blocks can be thought of as a sequence of lines
of code. Thus, an advantage of LabVIEW over MATLAB is that the programmer
does not need to memorize coding language. For example, consider the MATLAB
code shown in TryIt D.1 that produces the step response ofG(s)¼ 100/(s2þ 2sþ 100):

This step response can be produced in LabVIEW without knowing any
coding language. We now demonstrate by following each step of Section D.3:

1. Start LabVIEW Start LabVIEW and select Blank VI from the window shown
in Figure D.2.

2. Select blocks From the Functions palette, select the blocks shown in Figure
D.3(a) and (b).

3. Move/blocks to the Block Diagram window Drag your icons one at a time to
the Block Diagram window, Figure D.4.

4. Obtain information about the block Right-click each of the blocks and be sure
the first two items under Visible Items are checked. Look at the CD Construct
Transfer Function Model.vi. A Polymorphic VI Selector is shown at the bottom.
Click the selector to bring up the menu. SelectSISO. This block effectively creates
thetransferfunctionshowninthefirst fourstepsoftheMATLABcodeinTryItD.1.

Repeat for the CD Draw Transfer Function Equation.vi and select TF from
the Polymorphic VI Selector. This block will write the transfer function
symbolically in the display. Your selection from the polymorphic vi selector
should match the format of the transfer function created by the CD Construct
Transfer Function Model.vi.

TryIt D.1

numg=100;
deng=[1 2 100];
’G(s)’
G=tf(numg,deng)
step(G);
title(’Angular Velocity ’)
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Repeat for the CD Step Response.vi. and select TF from the Polymorphic VI
Selector. This block will collect the data for the step response and permit
plotting the data. This block effectively creates the last two commands of the
MATLAB code shown in TryIt D.1.

5. Interconnect and label blocks You should now have the Block Diagram
window shown in Figure D.4. Interconnect the code blocks. Click on the
question mark on the right side of the toolbar to bring up the context menu.
As your mouse passes above an icon, its context menu appears, showing the
terminals. See Figure D.5. Interconnect the terminals by letting the mouse rest
on a terminal until it becomes a spool of wire.

FIGURE D.3 Selecting a. CD Construct . . . and CD Draw . . . ; b. CD Step Response . . .
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Click on the terminal and then click on the destination terminal. The two
terminals will appear as wired together. Continue wiring terminals until you
have the Block Diagram window shown in Figure D.6. Mid-wire connections as
shown can be made by letting your mouse rest at the connection point until it
becomes a spool of wire.

6. Create the interface to your block You will now want to create the interface to
specify parameters and view responses. This step will create the interface that
will be accessed on the Front Panel window. The interfaces we will create are:

� CD Construct Transfer Function Model.vi input parameter controls. Right-click
on the numerator terminal shown in Figure D.5 and select Create/Control.
Repeat for the denominator.

FIGURE D.4 Block Diagram window

FIGURE D.5 Context Help for CD Construct Transfer Function Model.vi
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� CD Step Response.vi response plot indicator. Right-click on the Step Response
Graph terminal and select Create/Indicator.

� CD Draw Transfer Function Equation.vi symbolic transfer function indicator.
Right-click on the Equation terminal and select Create/Indicator. Your Block
Diagram should now look similar to Figure D.7(a).

As an option, you can create transfer functions using a MathScript block if the
MathScript RT Module is installed. This option is generally compatible with
MATLAB’s M-file code statements for creating your transfer function. Interfaces
are then created to pass parameters to and from the M-file code. You should be
familiar with MATLAB to use this option. The MathScript block is found in the
Programming/Structures/MathScript palette. You create M-file code inside the
MathScript block. Input and output interfaces are created and named identically

FIGURE D.6 Interconnected blocks

FIGURE D.7 Block Diagram window: a. with Control Design blocks and interfaces;
(figure continues)
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to those within the M-file code. However, when using MathScript, you must
create controls first on the Front Panel, rather than the Block Diagram. For
example, to create the numeric interfaces for K, a, and b, right-click the Front
Panel to produce the Controls palette. From this palette, produce each numeric
control from Modern/Numeric/Numeric Control. The resulting controls are
shown in Figure D.8(b). These interfaces are then wired to the appropriate
terminals on the Block Diagram. Your Block Diagram should now look similar
to Figure D.7(b).

On the Block Diagram window menu bar, select Window/Show Front Panel.
You will see the Front Panel shown in Figure D.8 created by your interfaces. You
can double-click the labels above your interfaces either in the Front Panel
window or the Block Diagram window to change the label to be more descrip-
tive of your project.

7. Set the controls Using the Front Panel window, enter polynomial coefficients
for the numerator and denominator in ascending order—lowest to highest. The
selector to the left of the numerator and denominator shows the power of s for

FIGURE D.7 (Continued ) b. with MathScript block

FIGURE D.8 Front Panel: a. for
Block Diagram shown in
Figure D.7(a); (figure continues)
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the left-most coefficient. Increasing the counter allows entry of higher-order coeffi-
cients not visible originally. To make all coefficients of a polynomial visible, let the
mouse move on the right-hand edge of the polynomial indicator until the pointer
becomes a double arrow and blue dots appear at the left and right edges of the entire
polynomial indicator. You can then drag the right blue dot to expose more cells.

Familiarize yourself with the choices on the menu bar as well as those on the
pop-up menus created when you right-click on any indicator or control. For
example, under the Edit menu, among other choices, you can Make Current
Values Default or Reinitialize Values to Default. Right-clicking the indicators
or controls brings up a menu from which, among other choices,Properties can be
selected to configure the indicator or control as desired.

8. Run the program Figure D.9 shows Example D.1 after execution. The figure
shows the values entered, the equation, and the step response. Execution
was initiated by clicking the arrow at the left of the toolbar.

FIGURE D.8 (Continued )
b. for Block Diagram shown in
Figure D.7(b)

FIGURE D.9 Front Panel after
execution: a. for block
diagram in Figure 7(a);
(figure continues)
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The program can run continuously by clicking the curved arrows on the
toolbar. Now, change values; hit the Enter key and see the results immediately
displayed. Stop the program execution by clicking on the red hexagon on the
toolbar. Another way of continuously running the program is to place a While
Loop around the block diagram as shown in Figure D.10(a). The loop is accessed
from Functions/Express/Execution Control as shown in Figure D.10(b). After

FIGURE D.9 (Continued)
b. for block diagram in
Figure 7(b)

FIGURE D.10 a. Block diagram with While Loop; b. Functions palette showing While Loop location
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selecting the While Loop, drag the cursor across the block diagram to create
the continuous loop. A stop button will appear on the block diagram as well as
on the Front Panel. At the lower right is a Loop Interation icon, which can be
used to control the While Loop. The reader should consult the on-line
documentation for further information.

Example D.2

Closed-Loop Step Response

In this example, we show how to display the step response of a unity-feedback
system. For variety, we represent the open-loop system as a ratio of zeros over poles

FIGURE D.11 a. Obtaining zero-pole-gain transfer function from the Functions palette; b. Obtaining Feedback
interconnection from Functions palette
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with a multiplying gain, analogous to MATLAB’s zpk function. In the previous
example, we represented the system as a ratio of polynomials, analogous to
MATLAB’s tf function.

1. Select blocks The zero-pole-gain transfer function is obtained from the
Functions palette as shown in Figure D.11(a). We place this transfer function
in the forward path of a unity-feedback system by following its block with a
Feedback block obtained from the Functions palette as shown in Figure D.11(b).

FIGURE D.12 a. Block Diagram for Example D.2; b. Front Panel for Example D.2
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If the Model 2 input to the Feedback block is left unconnected, then a unity-
feedback interconnection is assumed. Other options for interconnection, such
as parallel and series, are shown on the palette of Figure D.11(b).

2. Interconnect and label blocks Producing the closed-loop step response is
similar to Example D.1, except the step-response blocks are placed at the output
of the Feedback block. The equation writer is wired to the system output as in
Example D.1. All data types must be compatible and are shown selected with the
pull-down menu at the base of the blocks. If you selectAutomatic in the pull-down
menu, LabVIEW will select the correct form for you as you connect the blocks.

The final Block Diagram and Front Panel for this example are shown in
Figure D.12 (a) and (b), respectively. Notice that you enter open-loop poles, zeros,
and gain on the Front Panel in place of polynomial open-loop numerator and
denominator coefficients.

Example D.3

Root Locus Analysis and Design

We can obtain root locus plots by adding the Root Locus block
obtained from the Functions palette as shown in Figure D.13.
The Root locus block is connected to the output of the open-
loop system and a Root Locus Graph indicator is formed at the
output of the Root Locus block. The resultant Block Diagram
and Front Panel are shown in Figure D.14(a) and (b)
respectively.

Figure D.13 shows other characteristic blocks that can be
added. For example, closed-loop poles and zeros, as well as
damping ratio and natural frequency, can be displayed.

FIGURE D.13 Functions palette showing location
of Root Locus block
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FIGURE D.14 Windows showing root locus analysis: a. Block Diagram; b. Front Panel
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Example D.4

Open- and Closed-Loop Sinusoidal Frequency Analysis and Design

We can obtain open- and closed-loop sinusoidal frequency response curves by
replacing the Root Locus block with the Bode block to yield the open-loop
frequency response. A copy of the Bode block can be added at the output of
the Feedback block to obtain the closed-loop frequency response. Figure D.15
shows where to obtain the Bode block.

Figure D.16 shows the BlockDiagram and Front Panel with open- and closed-
loop Bode analysis. In order to display the plots, the indicators shown at the outputs
of the Bode blocks were created.

Figure D.15 shows other alternatives for frequency response analysis. For
example, in addition to the Bode plots, you can create an indicator telling you the
gain and phase margins by using the Gain and Phase Margin block. Figure D.17
shows that result.

Finally, if you need to use Nyquist or Nichols charts, the associated blocks are
shown in Figure D.15 and can replace the Bode blocks.

FIGURE D.15 Functions window showing frequency response blocks, such as Bode,
Nyquist, Nichols, and Gain and Phase Margin blocks
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FIGURE D.16 Bode analysis via LabVIEW: a. Block Diagram; b. From Panel
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D.5 Simulation Examples

Whereas the LabVIEW block sequence for design and analysis is analogous to
following the code statement sequence in a MATLAB M-file, the LabVIEW block
sequence for simulation is analogous to following the block sequence of a Simulink
diagram.

In this section, we show examples of simulation using LabVIEW. For control
system simulation, icons for the block diagram are taken from the Simulation
subpalette under the Control Design and Simulation palette. Our examples will
parallel the examples shown in Appendix C which uses Simulink.

Example D.5

Simulation of Linear Systems

Create Block Diagram and Front Panel Figure D.18 shows the Block Diagram
and Front Panel for simulating a linear system. The simulation reproduces
Example C.1 in Appendix C, which uses Simulink. Blocks are selected from the
Simulation subpalette under the Control Design and Simulation palette and must
be placed within the Simulation Loop obtained from Functions/Control Design
and Simulation/Simulation/Simulation Loop. We now enumerate the detailed steps
required to create the Block Diagram and Front Panel:

1. Transfer functions are obtained from Functions/Control Design and Simulation/
Simulation/Continuous Linear Systems/Transfer Function. Right-click on each
transfer function and select Configuration to enter the parameter values shown
in Figure D.18(a) or equivalently in Figure C.5

2. The gain block is obtained from Functions/Control Design and Simulation/
Simulation/SignalArithmetic/Gain. Right-click on the gain block and select
Configuration to enter the parameter value.

FIGURE D.18 Simulation of linear systems: a. Block Diagram; ( figure continues)
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3. The step-input block is obtained from Functions/Control Design and Simula-
tion/Simulation/Signal Generation/Step Signal. Right-click on the gain block
and select Configuration to enter the parameter value.

4. In order to display the three step-response curves simultaneously, we use a Build
Array block obtained from Functions/Programming/Array/Build Array.
Drag the bottom of the icon to expose the correct number of inputs three
for this case).

5. To create the display, we use the Simulation Time Waveform block obtained
from Functions/Control Design and Simulation/Simulation/Graph Utilities/
Simtime Waveform. Right-click the output of the Simtime Waveform block
and select Create/Indicator to produce the Waveform Chart icon and the
Front Panel display.

Configure simulation loop Finally, set the simulation parameters by right-clicking
the Simulation Loop and selecting Configure Simulation Parameters . . . Set the
parameters as shown in Figure D.19.

Configure graph parameters On the Front Panel, right-click the graph and select
Properties to configure graph parameters if required. Select the legend and expand
it vertically to expose all three plot identities. The titles in the legend can be
changed to reflect meaningful labels for the plots.

Run the simulation Perform the simulation by clicking the arrow at the extreme
left of the toolbar on the Front Panel window. You can erase curves between trials
by right-clicking the display and selecting Data Operations/Clear Chart.

FIGURE D.18 (Continued) b. Front Panel
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Example D.6

Effect of Amplifier Saturation on Motor’s Load Angular Velocity

Create Block Diagram and Front Panel The Block Diagram and Front Panel for
simulating a dc motor with and without saturation are shown in Figure D.20. The
Saturation block is obtained from Control Design & Simulation/Simulation/Non-
liner Systems/Saturation.

FIGURE D.19 Configuring the Simulation Loop parameters: a. Simulation parameters; b. Timing parameters

FIGURE D.20 Simulation of a dc motor with and without saturation: a. Block Diagram; (figure continues)
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FIGURE D.20 (Continued) b. Front Panel

FIGURE D.21 Chart
Properties: Waveform Chart
Window
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Configure simulation loop Configure the simulation loop as shown in figure D.19,
except change the Final Time (s) in Figure D.19(a) to 10.

Configure graph parameters On the Front Panel, right click the graph and select
Properties to configure graph parameters. Select the Scales tab and enter 10 in the
Maximum box as shown in Figure D.21. Select the legend and expand it vertically to
expose both plot identities. The titles in the legend can be changed to reflect
meaningful labels for the plots.

Run the simulation Perform the simulation by clicking the arrow at the extreme
left of the toolbar on the Front Panel window. You can erase curves between trials
by right-clicking the display and selecting Data Operations/Clear Chart.

Example D.7

Simulating Feedback Systems

Create Block Diagram and Front Panel The Block Diagram and Front Panel for
simulating feedback systems is shown in Figure D.22. The Summation block is ob-
tained fromControlDesign&Simulation/Simulation/SignalArithmetic/Summation.

Configure Summation and other blocks Right-click the Summation block and
select Configuration . . . Repeat for other blocks.

Configure simulation loop Configure the simulation loop as shown in Figure
D.19, except change the Final Time (s) in Figure D.19(a) to 10.

Configure graph parameters On the Front Panel, right click the graph and select
Properties to configure graph parameters. Select the Scales tab and enter 10 in the
Maximum box as shown in Figure D.21.

FIGURE D.22 Simulation of feedback systems: a. Block Diagram; (figure continues)
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Run the simulation Perform the simulation by clicking the arrow at the extreme
left of the toolbar on the Front Panel window. You can erase curves between trials
by right-clicking the display and selecting Data Operations/Clear Chart.

Example D.8

Simulating Digital Systems with the Simulation Palette

Digital systems, such as Example C.4 in Appendix C, can be simulated using
LabVIEW. However, there are restrictions on the transfer functions used in the
simulation. LabVIEW requires that all inputs to the transfer functions be present at
the beginning of the simulation or else a cycle error will result. Unfortunately, this
requirement limits the use of transfer functions to those with a denominator of
higher order than the numerator. Under these conditions, the reader is advised to
use either MATLAB or the Control Design palette rather than the Simulation
palette of the Control Design & Simulation function.

Our first digital example will simulate a digital feedback system using the
Simulation palette with proper transfer functions. The next example will simulate
Example C.4 in Appendix C, which does not have proper transfer functions, using
LabVIEW’s Control Design palette.

Create Block Diagram and Front Panel The Block Diagram and Front Panel for
simulating digital systems is shown in Figure D.23. The Discrete Zero-Order Hold
block is obtained from Control Design & Simulation/Simulation/Discrete Linear
Systems/Discrete Zero-Order Hold. The Discrete Transfer Function is obtained

FIGURE D.22 (Continued ) b. Front Panel
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from Control Design & Simulation/Simulation/Discrete Linear Systems/Discrete
Transfer Function.

Configure Discrete Zero-Order Hold and other blocks Right click the Discrete
Zero-Order Hold block and select Configuration . . . Set the sample period to 0.5
second. Configure the transfer functions as shown on the Block Diagram. Con-
figure the Step Signal to be a unit step.

Configure simulation loop Configure the simulation loop as shown in Figure D.19.

FIGURE D.23 Simulation of digital systems with Simulation palette: a. Block Diagram;
b. Front Panel
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Configure graph parameters On the Front Panel, right click the graph and select
Properties to configure graph parameters. Select the Scales tab and enter three in
the Maximum box for both the x-and y-axes as shown in Figure D.21. Select the
legend and expand it vertically to expose both plot identities. The titles in the
legend can be changed to reflect meaningful labels for the plots.

Run the simulation Perform the simulation by clicking the arrow at the extreme
left of the toolbar on the Front Panel window. You can erase curves between trials
by right-clicking the display and selecting Data Operations/Clear Chart.

The simulation shows the difference in responses obtained by (1) modeling
the digital system as a zero-order hold cascaded with a linear system (Plot 0), or (2)
modeling the system with a digital transfer function (Plot 1).

Example D.9

Simulating Digital Systems with the Control Design Palette

In order to avoid cycle errors in LabVIEW, we use the Control Design palette when
we have transfer functions for which the numerator and denominator are of the
same order. This example reproduces Simulink Example C.4.

Create Block Diagram and Front Panel The Block Diagram and Front Panel for
this example are shown in Figure D.24. Wire the blocks as shown.

FIGURE D.24 Simulation of digital systems with the Control Design palette: a. Block
Diagram; (figure continues)
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Most of the blocks were previously discussed in Example D.1 and D.2. Digital
transfer functions are created using the same blocks as continuous systems, but with
a nonzero Sampling Time(s) input.

The CD Convert Continuous to Discrete.vi, is obtained from Functions/
Control Design & Simulation/Control Design/Model Conversion/CD Convert
Continuous to Discrete.vi.

The Build Array is obtained from Functions/Programming/Array/Build
Array. Expand the Build Array block to show two inputs.

Configure parameters for Build Array Right-click on Build Array and select
Concatenate Inputs. Right-click again on Build Array and select Create/Indicator.

Right-click the indicator on the front panel and select Replace. Using the
resulting palettes as shown in Figure D.25, select the XY Graph.

On the front panel expand the legend to show two graphs. Title the legend
components as shown. Change the x- and y-axes’ starting and ending points as
desired by right-clicking the graph and selecting Properties. In the Properties
window, select Scales and enter the desired information.

Right-click the graph on the front panel and select Data Operations and
make your current values the default. Also, right-click again and choose to
reinitialize to your default values. You may also choose to clear the current
plot.

FIGURE D.24 (Continued) b. Front Panel
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Configure parameters for CD Convert Continuous to Discrete.vi Right-click and
create a control for Sample Time(s), Numerator, and Denominator as described in
Example D.1. Set the values as shown on the Front Panel.

Configure parameters for CD Construct Transfer Function Model.vi as a discrete
model Right-click and create a control for Sample Time(s), Numerator, and
Denominator as described in Example 1. Set the values as shown on theFront Panel.

Configure parameters for all CD Draw Transfer Function Equation.vi Right-
click and create a control for Equation as described in Example D.1. Set the values
as shown on the Front Panel.

Run simulation See Example D.1 for a description. The results are shown in
Figure D.24(b).

Summary

This appendix presented LabVIEW as an alternative to MATLAB for analysis,
design, and simulation. Our discussion was divided into analysis and design, and
simulation.

FIGURE D.25 Choosing XYGraph
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Analysis and design is performed by interconnecting code blocks, which is
analogous to writing in-line code for MATLAB M-files. Since the LabVIEW code
blocks are represented by icons, an advantage of using LabVIEW is that you do not
have to know specific code statements.

Simulation is performed by interconnecting code blocks and is analogous to
Simulink flow diagrams.

LabVIEW has more extensive applications than those covered here. You can
create virtual instruments on your computer monitor that can operate external
hardware and transmit and receive telemetric data. It is left to the interested reader
to pursue these advanced topics.
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Glossary

Acceleration constant lim
s!0

s2GðsÞ
Actuating signal The signal that drives the controller. If this signal is the difference
between the input and output, it is called the error.

Analog-to-digital converter A device that converts analog signals to digital signals.

Armature The rotating member of a dc motor through which a current flows.

Back emf The voltage across the armature of a motor.

Bandwidth The frequency at which the magnitude frequency response is �3 dB
below the magnitude at zero frequency.

Basis Linearly independent vectors that define a space.

Bilinear transformation A mapping of the complex plane where one point, s, is
mapped into another point, z, through z ¼ ðasþ bÞ=ðcsþ dÞ.
Block diagram A representation of the interconnection of subsystems that form a
system. In a linear system, the block diagram consists of blocks representing
subsystems, arrows representing signals, summing junctions, and pickoff points.

Bode diagram (plot) A sinusoidal frequency response plot where the magnitude
response is plotted separately from the phase response. The magnitude plot is dB
versus log v, and the phase plot is phase versus log v. In control systems, the Bode
plot is usually made for the open-loop transfer function. Bode plots can also be
drawn as straight-line approximations.

Branches Lines that represent subsystems in a signal-flow graph.

Break frequency A frequency where the Bode magnitude plot changes slope.

Breakaway point A point on the real axis of the s-plane where the root locus leaves
the real axis and enters the complex plane.

Break-in point A point on the real axis of the s-plane where the root locus enters the
real axis from the complex plane.

Characteristic equation The equation formed by setting the characteristic polyno-
mial to zero.
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Characteristic polynomial The denominator of a transfer function. Equivalently,
the unforced differential equation, where the differential operators are replaced
by s or l.

Classical approach to control systems See frequency domain techniques.

Closed-loop system A system that monitors its output and corrects for disturbances.
It is characterized by feedback paths from the output.

Closed-loop transfer function For a generic feedback system with GðsÞ in the
forward path and HðsÞ in the feedback path, the closed-loop transfer function,
TðsÞ, is GðsÞ=½1 �GðsÞHðsÞ�, where the + is for negative feedback, and the – is for
positive feedback.

Compensation The addition of a transfer function in the forward path or feedback
path for the purpose of improving the transient or steady-state performance of a
control system.

Compensator A subsystem inserted into the forward or feedback path for the
purpose of improving the transient response or steady-state error.

Constant M circles The locus of constant, closed-loop magnitude frequency re-
sponse for unity feedback systems. It allows the closed-loop magnitude frequency
response to be determined from the open-loop magnitude frequency response.

Constant N circles The locus of constant, closed-loop phase frequency response for
unity feedback systems. It allows the closed-loop phase frequency response to be
determined from the open-loop phase frequency response.

Controllability A property of a system by which an input can be found that
takes every state variable from a desired initial state to a desired final state in
finite time.

Controlled variable The output of a plant or process that the system is controlling
for the purpose of desired transient response, stability, and steady-state error
characteristics.

Controller The subsystem that generates the input to the plant or process.

Critically damped response The step response of a second-order system with a given
natural frequency that is characterized by no overshoot and a rise time that is faster
than any possible overdamped response with the same natural frequency.

Damped frequency of oscillation The sinusoidal frequency of oscillation of an
underdamped response.

Damping ratio The ratio of the exponential decay frequency to the natural
frequency.

Decade Frequencies that are separated by a factor of 10.

Decibel (dB) The decibel is defined as 10 logPG, where PG is the power gain of a
signal. Equivalently, the decibel is also 20 logVG, where VG is the voltage gain of a
signal.

Decoupled system A state-space representation in which each state equation is a
function of only one state variable. Hence, each differential equation can be solved
independently of the other equations.
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Digital compensator A sampled transfer function used to improve the response of
computer-controlled feedback systems. The transfer function can be emulated by a
digital computer in the loop.

Digital-to-analog converter A device that converts digital signals to analog signals.

Disturbance An unwanted signal that corrupts the input or output of a plant or
process.

Dominant poles The poles that predominantly generate the transient response.

Eigenvalues Any value, li, that satisfies AXi ¼ lixi for xi 6¼ 0. Hence, any value, li,
that makes xi an eigenvector under the transformation A.

Eigenvector Any vector that is collinear with a new basis vector after a similarity
transformation to a diagonal system.

Electric circuit analog An electrical network whose variables and parameters are
analogous to another physical system. The electric circuit analog can be used to solve
for variables of the other physical system.

Electrical admittance The inverse of electrical impedance. The ratio of the Laplace
transform of the current to the Laplace transform of the voltage.

Electrical impedance The ratio of the Laplace transform of the voltage to the
Laplace transform of the current.

Equilibrium The steady-state solution characterized by a constant position or
oscillation.

Error The difference between the input and the output of a system.

Euler’s approximation A method of integration where the area to be integrated is
approximated as a sequence of rectangles.

Feedback A path through which a signal flows back to a previous signal in the
forward path in order to be added or subtracted.

Feedback compensator A subsystem placed in a feedback path for the purpose of
improving the performance of a closed-loop system.

Forced response For linear systems, that part of the total response function due to
the input. It is typically of the same form as the input and its derivatives.

Forward-path gain The product of gains found by traversing a path that follows the
direction of signal flow from the input node to the output node of a signal-flow
graph.

Frequency domain techniques A method of analyzing and designing linear control
systems by using transfer functions and the Laplace transform as well as frequency
response techniques.

Frequency response techniques A method of analyzing and designing control
systems by using the sinusoidal frequency response characteristics of a system.

Gain The ratio of output to input; usually used to describe the amplification in the
steady state of the magnitude of sinusoidal inputs, including dc.

Gain margin The amount of additional open-loop gain, expressed in decibels (dB),
required at 180� of phase shift to make the closed-loop system unstable.
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Gain-margin frequency The frequency at which the phase frequency response plot
equals 180�. It is the frequency at which the gain margin is measured.

Homogeneous solution See natural response.

Ideal derivative compensator See proportional-plus-derivative controller.

Ideal integral compensator See proportional-plus-integral controller.

Instability The characteristic of a system defined by a natural response that grows
without bounds as time approaches infinity.

Kirchhoff’s law The sum of voltages around a closed loop equals zero. Also, the sum
of currents at a node equals zero.

Lag compensator A transfer function, characterized by a pole on the negative real
axis close to the origin and a zero close and to the left of the pole, that is used for
the purpose of improving the steady-state error of a closed-loop system.

Lag-lead compensator A transfer function, characterized by a pole-zero configura-
tion that is the combination of a lag and a lead compensator, that is used for the
purpose of improving both the transient response and the steady-state error of a
closed-loop system.

Laplace transformation A transformation that transforms linear differential equa-
tions into algebraic expressions. The transformation is especially useful for model-
ing, analyzing, and designing control systems as well as solving linear differential
equations.

Lead compensator A transfer function, characterized by a zero on the negative real
axis and a pole to the left of the zero, that is used for the purpose of improving the
transient response of a closed-loop system.

Linear combination A linear combination of n variables, xi, for i ¼ 1 to n, given by
the following sum, S:

S ¼ KnXn þKn�1Xn�1 þ � � � þK1X1

where each Ki is a constant.

Linear independence The variables xi, for i ¼ 1 to n, are said to be linearly
independent if their linear combination, S, equals zero only if every Ki ¼ 0
and no xi ¼ 0. Alternatively, if the xi’s are linearly independent, then Knxn þ
Kn�1xn�1 þ � � � þK1x1 ¼ 0 cannot be solved for any xk. Thus, no xk can be expressed
as a linear combination of the other xi’s.

Linear system A system possessing the properties of superposition and
homogeneity.

Linearization The process of approximating a nonlinear differential equation with a
linear differential equation valid for small excursions about equilibrium.

Loop gain For a signal-flow graph, the product of branch gains found by traversing a
path that starts at a node and ends at the same node without passing through any
other node more than once, and following the direction of the signal flow.

Major-loop compensation A method of feedback compensation that adds a com-
pensating zero to the open-loop transfer function for the purpose of improving the
transient response of the closed-loop system.
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Marginal stability The characteristic of a system defined by a natural response that
neither decays nor grows, but remains constant or oscillates as time approaches
infinity as long as the input is not of the same form as the system’s natural response.

Mason’s rule A formula from which the transfer function of a system consisting of
the interconnection of multiple subsystems can be found.

Mechanical rotational impedance The ratio of the Laplace transform of the torque
to the Laplace transform of the angular displacement.

Mechanical translational impedance The ratio of the Laplace transform of the force
to the Laplace transform of the linear displacement.

Minor-loop compensation A method of feedback compensation that changes the
poles of a forward-path transfer function for the purpose of improving the transient
response of the closed-loop system.

Modern approach to control systems See state-space representation.

Natural frequency The frequency of oscillation of a system if all the damping is
removed.

Natural response That part of the total response function due to the system and the
way the system acquires or dissipates energy.

Negative feedback The case where a feedback signal is subtracted from a previous
signal in the forward path.

Newton’s law The sum of forces equals zero. Alternatively, after bringing the ma
force to the other side of the equality, the sum of forces equals the product of mass
and acceleration.

Nichols chart The locus of constant closed-loop magnitude and closed-loop phase
frequency responses for unity feedback systems plotted on the open-loop dB versus
phase-angle plane. It allows the closed-loop frequency response to be determined
from the open-loop frequency response.

Nodes Points in a signal-flow diagram that represent signals.

No-load speed The speed produced by a motor with constant input voltage when the
torque at the armature is reduced to zero.

Nonminimum-phase system A system whose transfer function has zeros in the right
half-plane. The step response is characterized by an initial reversal in direction.

Nontouching-loop gain The product of loop gains from nontouching loops taken
two, three, four, and so on at a time.

Nontouching loops Loops that do not have any nodes in common.

Notch filter A filter whose magnitude frequency response dips at a particular
sinusoidal frequency. On the s-plane, it is characterized by a pair of complex zeros
near the imaginary axis.

Nyquist criterion If a contour, A, that encircles the entire right half-plane is mapped
through GðsÞHðsÞ, then the number of closed-loop poles, Z, in the right half-plane
equals the number of open-loop poles, P, that are in the right half-plane minus the
number of counterclockwise revolutions, N, around �1, of the mapping; that is,
Z ¼ P�N. The mapping is called the Nyquist diagram of GðsÞHðsÞ.
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Nyquist diagram (plot) A polar frequency response plot made for the open-loop
transfer function.

Nyquist sampling rate The minimum frequency at which an analog signal should be
sampled for correct reconstruction. This frequency is twice the bandwidth of the
analog signal.

Observability A property of a system by which an initial state vector, xðt0Þ, can be
found from u(t) and y(t) measured over a finite interval of time from t0. Simply
stated, observability is the property by which the state variables can be estimated
from a knowledge of the input, u(t), and output, y(t).

Observer A system configuration from which inaccessible states can be estimated.

Octave Frequencies that are separated by a factor of two.

Ohm’s law For dc circuits the ratio of voltage to current is a constant called
resistance.

Open-loop system A system that does not monitor its output nor correct for
disturbances.

Open-loop transfer function For a generic feedback system with G(s) in the forward
path and H(s) in the feedback path, the open-loop transfer function is the product of
the forward-path transfer function and the feedback transfer function, or GðsÞHðsÞ.
Operational amplifier An amplifier—characterized by a very high input impedance,
a very low output impedance, and a high gain—that can be used to implement the
transfer function of a compensator.

Output equation For linear systems, the equation that expresses the output vari-
ables of a system as linear combinations of the state variables.

Overdamped response A step response of a second-order system that is character-
ized by no overshoot.

Partial-fraction expansion A mathematical equation where a fraction with n factors
in its denominator is represented as the sum of simpler fractions.

Particular solution See forced response.

Passive network A physical network that only stores or dissipates energy. No energy
is produced by the network.

Peak time, Tp The time required for the underdamped step response to reach the
first, or maximum, peak.

Percent overshoot, %OS The amount that the underdamped step response over-
shoots the steady-state, or final, value at the peak time, expressed as a percentage of
the steady-state value.

Phasemargin The amount of additional open-loop phase shift required at unity gain
to make the closed-loop system unstable.

Phase-margin frequency The frequency at which the magnitude frequency response
plot equals zero dB. It is the frequency at which the phase margin is measured.

Phase variables State variables such that each subsequent state variable is the
derivative of the previous state variable.
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Phasor A rotating vector that represents a sinusoid of the form A cosðvt þ fÞ.
Pickoff point A block diagram symbol that shows the distribution of one signal to
multiple subsystems.

Plant or process The subsystem whose output is being controlled by the system.

Poles (1) The values of the Laplace transform variable, s, that cause the transfer
function to become infinite; and (2) any roots of factors of the characteristic
equation in the denominator that are common to the numerator of the transfer
function.

Position constant lim
s!0

GðsÞ
Positive feedback The case where a feedback signal is added to a previous signal in
the forward path.

Proportional-plus-derivative (PD) controller A controller that feeds forward to the
plant a proportion of the actuating signal plus its derivative for the purpose of
improving the transient response of a closed-loop system.

Proportional-plus-integral (PI) controller A controller that feeds forward to the
plant a proportion of the actuating signal plus its integral for the purpose of
improving the steady-state error of a closed-loop system.

Proportional-plus-integral-plus-derivative (PID) controller A controller that feeds
forward to the plant a proportion of the actuating signal plus its integral plus its
derivative for the purpose of improving the transient response and steady-state error
of a closed-loop system.

Quantization error For linear systems, the error associated with the digitizing of
signals as a result of the finite difference between quantization levels.

Raible’s tabular method A tabular method for determining the stability of digital
systems that parallels the Routh-Hurwitz method for analog signals.

Rate gyro A device that responds to an angular position input with an output
voltage proportional to angular velocity.

Residue The constants in the numerators of the terms in a partial-fraction
expansion.

Rise time, Tr The time required for the step response to go from 0.1 of the final
value to 0.9 of the final value.

Root locus The locus of closed-loop poles as a system parameter is varied. Typically,
the parameter is gain. The locus is obtained from the open-loop poles and zeros.

Routh-Hurwitz criterion A method for determining how many roots of a polyno-
mial in s are in the right half of the s-plane, the left half of the s-plane, and on the
imaginary axis. Except in some special cases, the Routh-Hurwitz criterion does not
yield the coordinates of the roots.

Sensitivity The fractional change in a system characteristic for a fractional change in
a system parameter.

Settling time, Ts The amount of time required for the step response to reach and
stay within �2% of the steady-state value. Strictly speaking, this is the definition of
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the 2% settling time. Other percentages, for example 5%, also can be used. This
book uses the 2% settling time.

Signal-flow graph A representation of the interconnection of subsystems that form
a system. It consists of nodes representing signals and lines representing subsystems.

Similarity transformation A transformation from one state-space representation to
another state-space representation. Although the state variables are different, each
representation is a valid description of the same system and the relationship between
the input and the output.

Stability That characteristic of a system defined by a natural response that decays to
zero as time approaches infinity.

Stall torque The torque produced at the armature when a motor’s speed is reduced
to zero under a condition of constant input voltage.

State equations A set of n simultaneous, first-order differential equations with n
variables, where the n variables to be solved are the state variables.

State space The n-dimensional space whose axes are the state variables.

State-space representation A mathematical model for a system that consists of
simultaneous, first-order differential equations and an output equation.

State-transition matrix The matrix that performs a transformation on x(0), taking x
from the initial state, x(0), to the state x(t) at any time, t � 0.

State variables The smallest set of linearly independent system variables
such that the values of the members of the set at time t0 along with known
forcing functions completely determine the value of all system variables for all
t � t0.

State vector A vector whose elements are the state variables.

Static error constants The collection of position constant, velocity constant, and
acceleration constant.

Steady-state error The difference between the input and the output of a system after
the natural response has decayed to zero.

Steady-state response See forced response.

Subsystem A system that is a portion of a larger system.

Summing junction A block diagram symbol that shows the algebraic summation of
two or more signals.

System type The number of pure integrations in the forward path of a unity
feedback system.

System variables Any variable that responds to an input or initial conditions in a
system.

Tachometer A voltage generator that yields a voltage output proportional to
rotational input speed.

Time constant The time for e�at to decay to 37% of its original value at t ¼ 0.

Time-domain representation See state-space representation.
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Torque-speed curve The plot that relates a motor’s torque to its speed at a constant
input voltage.

Transducer A device that converts a signal from one form to another, for example
from a mechanical displacement to an electrical voltage.

Transfer function The ratio of the Laplace transform of the output of a system to the
Laplace transform of the input.

Transient response That part of the response curve due to the system and the way
the system acquires or dissipates energy. In stable systems it is the part of the
response plot prior to the steady-state response.

Tustin transformation A bilinear transformation that converts transfer functions
from continuous to sampled and vice versa. The important characteristic of the
Tustin transformation is that both transfer functions yield the same output response
at the sampling instants.

Type See system type.

Undamped response The step response of a second-order system that is character-
ized by a pure oscillation.

Underdamped response The step response of a second-order system that is charac-
terized by overshoot.

Velocity constant lim
s!0

sGðsÞ
z-transformation A transformation related to the Laplace transformation that is
used for the representation, analysis, and design of sampled signals and systems.

Zero-input response That part of the response that depends upon only the initial
state vector and not the input.

Zero-order sample-and-hold (z.o.h.) A device that yields a staircase approximation
to the analog signal.

Zeros (1) Those values of the Laplace transform variable, s, that cause the transfer
function to become zero; and (2) any roots of factors of the numerator that are
common to the characteristic equation in the denominator of the transfer function.

Zero-state response That part of the response that depends upon only the input and
not the initial state vector.
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Answers
to Selected Problems

Chapter 1

19. c. xðtÞ ¼ 2

5
� e�4t 2

5
cos 3t þ 8

15
sin 3t

� �

20. b. xðtÞ ¼ �e�t þ 9te�t þ 5e�2t þ t � 2

Chapter 2

3. b. xðtÞ ¼ 15

26
e�2t � 3

10
e�4t � 18

65
cos 3t � 1

65
sin 3t

7.
YðsÞ
XðsÞ ¼

s3 þ 4s2 þ 6sþ 8

s3 þ 3s2 þ 5sþ 1

8. c.
d3x

dt3
þ 11

d2x

dt2
þ 12

dx

dt
þ 18x ¼ df

dt
þ 3f ðtÞ

16. a.
VoðsÞ
ViðsÞ ¼ 1

sþ 2

18. b.
VoðsÞ
ViðsÞ ¼ s2 þ 2sþ 2

s4 þ 2s3 þ 3s2 þ 3sþ 2

33.
u2ðsÞ
TðsÞ ¼

3

20s2 þ 13sþ 4

34.
u2ðsÞ
TðsÞ ¼

1

130s2 þ 400sþ 55

43.
u2ðsÞ
EaðsÞ ¼

0:0833

sðsþ 0:75Þ
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Chapter 3

1. _x ¼

� 2

3
� 1

3

1

3

� 1

3
� 2

3

2

3

� 1

3
� 2

3
� 1

3

2
6666664

3
7777775

iL1

iL2

no

2
4

3
5þ

2

3
1

3
1

3

2
6666664

3
7777775
ni

y ¼ 0 0 1½ �
iL1

iL2

no

2
4

3
5

Note: L1 is left-most inductor in Figure P3.1 in the text.

11. a. _x ¼

0 1 0 0

0 0 1 0

0 0 0 1

�13 �5 �1 �5

2
6664

3
7775xþ

0

0

0

1

2
6664

3
7775rðtÞ

cðtÞ ¼ 10 8 0 0½ �x

14. a.
YðsÞ
RðsÞ ¼

10

s3 þ 5s2 þ 2sþ 3

19. _x ¼

�Deq

Jeq
0

Kt

Jeq

N1

N2

1 0 0

�Kb

La

N2

N1
0 �Ra

La

2
666664

3
777775

vL

uL

ia

2
64

3
75þ

0

0
1

La

2
664

3
775ea

y ¼ 0
N2

N1
0

� � vL

uL
ia

2
4

3
5

Chapter 4

14. xðtÞ ¼ 1

5
1 �

ffiffiffiffiffi
20

19

r
e�0:5t cos

ffiffiffiffiffi
19

p

2
t � arctan

1ffiffiffiffiffi
19

p
 !" #

20. a. z ¼ 0:375; vn ¼ 4 rad/s; Ts ¼ 2:67 s; Tp ¼ 0:847 s; %OS ¼ 28:06

23. a. s ¼ �6:67þ� j9:88

35. s ¼ �5:79;�1:21

36. a. s3 � 8s2 � 11sþ 8 ¼ 0 b. s ¼ 9:11; 0:534;�1:64

40. yðtÞ ¼ 2

5
� 2

5
e�5t

43.

FðtÞ ¼
"

1:0455e�0:20871t � 0:045545e�4:7913t 0:21822e�0:20871t � 0:21822e�4:7913t

�0:21822e�0:20871t þ 0:21822e�4:7913t �0:045545e�0:20871t þ 1:0455e�4:7913t

#
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xðtÞ ¼
"

1:0455e�0:20871t � 0:045545e�4:7913t

�0:21822e�0:20871t þ 0:21822e�4:7913t

#

yðtÞ ¼ 0:60911e�0:20871t þ 0:39089e�4:7913t

73. D ¼ 0:143 N-m-s=rad

76. R ¼ 912V

Chapter 5

2.
CðsÞ
RðsÞ ¼

G3ðG1G2 þ 1Þ
1 þG1H1

4.
CðsÞ
RðsÞ ¼

G1G2 þG3

1 þG3H þG1G2H þG2G4

6.
CðsÞ
RðsÞ ¼

G1G5

1 þG1G2 þG1G3G4G5 þG1G3G5G6G7 þG1G5G8

9.
CðsÞ
RðsÞ ¼

G4G6 þG2G5G6 þG3G5G6

1 þG6 þG1G2 þG1G3 þG1G2G6þ
G1G3G6 þG4G6G7 þG2G5G6G7 þG3G5G6G7

26.
CðsÞ
RðsÞ ¼

G1G2G3G4

2 þG2G3G4 þ 2G3G4 þ 2G4

27.
CðsÞ
RðsÞ ¼

G1G6G7ðG2 þG3ÞðG4 þG5Þ
1 �G6G7H3ðG2 þG3ÞðG4 þG5Þ �G6H1 �G7H2 þG6G7H1H2

28.
CðsÞ
RðsÞ ¼

s3 þ 1

2s4 þ s2 þ 2s

30. b. _x ¼

�5 1 0 0

0 �5 0 0

0 0 �7 1

0 0 0 �7

2
6664

3
7775xþ

0

1

0

1

2
6664

3
7775rðtÞ

y ¼ �3

4
1 �5

4
�1

� �
x

37. _x ¼

0 1 0 0

�1 0 1 0

0 0 0 1

1 �1 0 0

2
6664

3
7775xþ

0

0

0

1

2
6664

3
7775rðtÞ

c ¼ �1 1 0 0½ �x
73. DL ¼ 3560 N-m-s/rad

Chapter 6

1. 2 rhp, 3 lhp, 0 jv

3. 3 rhp, 2 lhp, 0 jv
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4. 1 rhp, 0 lhp, 4 jv

5. 0 rhp, 2 lhp, 2 jv

9. Unstable

17. 1 rhp, 2 lhp, 4 jv

23. K >
3

4
; K < �1

39. a. �4 < K < 20:41; b. 1:36 rad=s

41. a. 0 < K < 19:69; b. K ¼ 19:69; c. s ¼ þ� j1:118; �4:5; �3:5

42. �2

3
< K < 0

Chapter 7

4. estepð1Þ ¼ 0; erampð1Þ ¼ 127:5; eparabolað1Þ ¼ 1
7. _eð1Þ ¼ 0:9

10. a. %OS ¼ 14:01; b. Ts ¼ 0:107 sec; c. estepð1Þ ¼ 0;

d. erampð1Þ ¼ 0:075; e. eparabolað1Þ ¼ 1
13. a. Kp ¼ 1

3
; Kn ¼ 0; Ka ¼ 0; b. eð1Þ ¼ 37:5; 1; 1; respectively;

c. Type 0

20. K ¼ 110; 000

27. b ¼ 1; K ¼ 1:16; a ¼ 7:76; or b ¼ �1; K ¼ 5:16; a ¼ 1:74

31. a. K ¼ 831; 744; a ¼ 831:744

35. K1 ¼ 125; 000; K2 ¼ 0:016

41. a. Step: eð1Þ ¼ 1:098; ramp: eð1Þ ¼ 1

Chapter 8

16. Breakaway point ¼ �2:333; asymptotes: sa¼ �5; jv-axis crossing ¼þ� j 7:35

19. b. Asymptotes: sa ¼ �8

3
; c. K ¼ 140:8; d. K ¼ 13:12

20. K ¼ 9997; a ¼ 7

23. a. sa ¼ �5

2
; b. s ¼ �1:38; �3:62; c. 0 < K < 126; d. K ¼ 10:3

26. b. K ¼ 9:4; c. Ts ¼ 4:62 s; Tp ¼ 1:86 s; d. s ¼ �4:27; e. 0 < K < 60

30. a ¼ 9

39. a. 0 < K < 4366; b. K ¼ 827:2; c. K ¼ 527:6

42. a. K ¼ 170:1; b. K ¼ 16:95

Chapter 9

1. GcðsÞ ¼ sþ 0:1

s
; K ’ 72:23 for both cases; KpO ¼ 2:44; KpN ¼ 1;

%OSO ¼ %OSN ¼ 16:3; TsO ¼ TsN ¼ 2:65 s
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9. a. s ¼ �2:5 þ� j5:67; b. Angle ¼ �59:27�; c. s ¼ �5:87

d. K ¼ 225:79; e. s ¼ �11:59; �1:36

10. a. s ¼ �2:4 þ� j4:16; b. s ¼ �6:06; c. K ¼ 29:12;

d. s ¼ �1:263; f. Ka ¼ 4:8

14. a. GcðsÞ ¼ sþ 7

sþ 37:42
; K ¼ 5452; dominant poles ¼ �4:13 þ� j10:78

24. a. Kuc ¼ 10; Kc ¼ 9:95; b. Kpuc ¼ 1:25; Kpc ¼ 6:22;

c. %OSuc ¼ %OSc ¼ 4:32;

d. Uncompensated: exact second-order system, approximation OK;
compensated: closed-loop pole at �0:3, closed-loop zero at �0:5, simulate

e. Approach to final value longer than settling time of uncompensated system

f. GLLCðsÞ ¼ 404:1ðsþ 0:5Þðsþ 4Þ
ðsþ 2Þðsþ 4Þðsþ 0:1Þðsþ 28:36Þ yields approximately a 5 times

improvement in speed.

25. GcðsÞ ¼ ðsþ 6:93Þðsþ 0:1Þ
s

; K ¼ 3:08

28. Poles¼ �0:747 þ� j1:237; �2:51 ; zeros—none

Chapter 10

10. System 1: 0 < K < 490:2; System 2: 0 < K < 1:4; System 3: 1 < K < 1
(Answers are from exact frequency response)

11. a. System 1: GM ¼ �6:38 dB; FM ¼ �20:3� (Answers are from exact frequency
response)

15. c. vBW ¼ 2:29 rad=s

23. System 2: Ts ¼ 2:23 sec, Tp ¼ 0:476 s, %OS ¼ 42:62 (Answers are from exact
frequency response)

44. GM ¼ 1:17 dB, FM ¼ 6:01� (Answers are from exact frequency response)

Chapter 11

1. a. K ¼ 2113 (Answer is from exact frequency response)

2. a. K ¼ 2365 (Answer is from exact frequency response)

3. a. K ¼ 575 (Answer is from exact frequency response)

12. GcðsÞ ¼ sþ 2:701

sþ 5:954
; K ¼ 7936

(Answer is from exact frequency response)

21. GcðsÞ ¼ ðsþ 0:097Þðsþ 2:16Þ
s

; K ¼ 25:189

(Answer is from exact frequency response)

Chapter 12

1. d. For function i: TðsÞ ¼ sþ 3

s2 þ ðk2 þ 8Þsþ ðk1 þ 16Þ
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3. b. For function i: GðsÞ ¼ 6:25

s
� 27:5

sþ 10
þ 71:25

sþ 20
; TðsÞ ¼ 200ðs2 þ 7sþ 25Þ

4s3 þ as2 þ bsþ c

where a ¼ ð25k3 � 110k2 þ 285k1 þ 120Þ
b ¼ ð750k3 � 2200k2 þ 2850k1 þ 800Þ
c ¼ 5000k3

and C ¼ ½ 1 1 1 �; B ¼ ½ 71:25 �27:5 6:25�T was used

11. a. Uncontrollable; b. Controllable; c. Controllable

14. K ¼ ½ 92:35 36:78 �7 � for a characteristic polynomial of

ðsþ 6Þðs2 þ 8sþ 45:78Þ ¼ s3 þ 14s2 þ 93:78sþ 274:7

23. L ¼ ½�671:19 1472:4 �T for a characteristic polynomial of s2 þ 144sþ 14; 400

Chapter 13

3. a. f ðkTÞ ¼ 229:5ð0:4Þk � 504ð0:6Þk þ 275:5ð0:8Þk

6. c. GðzÞ ¼ 0:395
ðzþ 0:2231Þ

ðz� 0:2231Þðz2 þ 0:1857zþ 0:04979Þ

8. b. GðzÞ ¼ 0:0517
z2 þ 2:2699zþ 0:2995

ðz� 1Þðz� 0:2231Þðz� 0:4065Þ

9. a. TðzÞ ¼ G1ðzÞG2ðzÞ
1 þG1ðzÞG2HðzÞ

14. 0 < K < 15:76

15. a. Kp ¼ 1

2
; e�ð1Þ ¼ 2

3
; Kn ¼ 0; e�ð1Þ ¼ 1; Ka ¼ 0; e�ð1Þ ¼ 1

17. K ¼ 14:18 for 16:3% of overshoot; 0 < K < 109:28 for stability
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Credits

Figure and Photo Credits

Figures, photos, Case Studies, Examples,
and Problems in Chapters 4, 5, 6, 8, 9, 13,
Appendix B, and rear endpapers:
Adapted from Johnson, H., et al.
Unmanned Free-Swimming Submersible
(UFSS) System Description, NRL Mem-
orandum Report 4393 (Washington,
D.C.: Naval Research Laboratory, 1980).
MATLAB screen shots in Appendixes C
and E were reprinted with permission
from The MathWorks.

Chapter 1

1.3: (a): # Bettman/Corbis; (b): ARTon
FILE/# Corbis. 1.4: # Hank Morgan/
Rainbow/PNI. 1.5b: Pioneer Electronics
(USA), Inc. 1.7: # Donald Swartz/
iStockphoto. 1.8: # Peter Menzel.
P1.3: Adapted from Ayers, J. Taking
the Mystery Out of Winder Controls,
Motion System Design, April 1988. Pen-
ton Media, Inc. P1.5: Jenkins, H. E.;
Kurfess, T. R.; and Ludwick, S. J. Deter-
mination of a Dynamic Grinding Model,
Journal of Dynamic Systems, Measure-
ments andControl, vol. 119, June 1997, p.
290. 1997 ASME. Reprinted with per-
mission of ASME. P1.6: Vaughan, N. D.,
and Gamble, J. B. The Modeling and
Simulation of a Proportional Solenoid
Valve, Journal of Dynamic Systems,
Measurements and Control, vol. 118,
March 1996, p. 121. 1996 ASME.
Reprinted with permission of ASME.
P1.7(a), (b), (c): Reprinted figure with
permission from Bechhofer, J., Feedback
for Physicists: ATutuorial Essay on Con-
trol, Reviews of Modern Physics, pp. 77,
783, 2005. Copyright (2007) by the
American Physical Society. P1.8: D. A.
Weinstein/Custom Medical Stock Photo.
P1.11: O’Connor, D. N.; Eppinger, S. D.;
Seering, W. P.; and Wormly, D. N. Active

Control of a High-Speed Pantograph,
Journal of Dynamic Systems, Measure-
ments and Control, vol. 119, March 1997,
p. 2. 1997 ASME. Reprinted with per-
mission of ASME. P1.12, P1.13: Mark
Looper, www.Altfuels.org.; P1.14: Rob-
ert Bosch GmbH, Bosch Automotive
Handbook, 7th ed., Wiley UK.

Chapter 2

2.34: # Debra Lex. 2.51: Adapted from
Milsum, J. H. Biological Control Systems
Analysis (New York: McGraw-Hill,
1966), p. 182. # 1966 McGraw-Hill,
Inc. Used with permission of the pub-
lisher. P2.36: Lin Jung-Shan, Kanellako-
poulos Ioannis. Nonlinear Design of
Active Suspensions, IEEE Control Sys-
tems Magazine, vol. 17, no. 3. June 1997,
pp. 45–49. Fig. 1, p. 46. P2.37: Marttinen
A., Virkkunen J., Salminen R. T. Control
Study with Pilot Crane, IEEE Trans. on
Education, vol. 33, No. 3, August 1990.
Fig. 2, p. 300. P2.38: Wang J. Z., Tie B.,
Welkowitz W., Semmlow J. L., Kostis
J. B. Modeling Sound Generation in Ste-
nosed Coronary Arteries, IEEETrans. on
Biomedical Engineering, vol. 37, no. 11,
November 1990. P2.39(a): From O’Con-
nor, D. N.; Eppinger, S. D.; Seering, W. P.;
and Wormly, D. N. Active Control of a
High-Speed Pantograph, Journal of Dy-
namic Systems, Measurements and Con-
trol, vol. 119, March 1997, p. 2. 1997
ASME. Reprinted with permission of
ASME. P2.39(b): Adapted from O’Con-
nor, D. N.; Eppinger, S. D.; Seering, W. P.;
and Wormly, D. N. Active Control of a
High-Speed Pantograph, Journal of Dy-
namic Systems, Measurement and Con-
trol, vol. 119, March 1997, p. 3. 1997
ASME. Reprinted with permission of
ASME. P2.40: Craig, I. K., Xia, X., and
Venter, J. W. Introducing HIV/AIDS Ed-
ucation into the Electrical Engineering

Curriculum at the University of Pretoria.
IEEE Trans. on Education, vol. 47, no. 1,
February 2004, pp. 65–73. P2.41: Robert
Bosch GmbH, Bosch Automotive Hand-
book, 7th ed., Wiley UK.

Chapter 3

3.13: Bruce Frisch/S.S./Photo Research-
ers. P3.14(a), (b): Hong, J.; Tan, X.; Pine-
tte, B.; Weiss, R.; and Riseman, E. M.
Image-Based Homing, IEEE Control
Systems, Feb. 1992, pp. 38–45. # 1992
IEEE. P3.15(a), (b): Adapted from
Cavallo, A.; De Maria, G.; and Verde,
L. Robust Flight Control Systems: A
Parameter Space Design, Journal of
Guidance, Control, and Dynamics, vol.
15, no. 5, September–October, 1992,
pp. 1210–1211. 1992 AIAA. Reprinted
by permission of the American Institute
of Aeronautics and Astronautics, Inc.
P3.16: Adapted from Chiu, D. K., and
Lee, S. Design and Experimentation of a
Jump Impact Controller, IEEE Control
Systems, June 1997, Fig. 1, p. 99. 1997
IEEE. Reprinted with permission.
P3.17: Liceaga-Castro, E., vander Molen
G. M. Submarine H1 Depth Control
Under Wave Disturbances, IEEE Trans.
on Control Systems Technology, vol. 3,
no. 3, 1995. Fig. 1, p. 339. P3.18: Li, S.,
Jarvis, A. J., Leedal, D. T., Are Response
Function Representations of the Global
Carbon Cycle Ever Interpretable?, Tel-
lus vol. 61B, Wiley UK. P3.19: Preitl, Z.,
Bauer, P., Bokor, J., A Simple Control
Solution for Traction Motor Used in
Hybrid Vehicles, 4th International Sym-
posium on Applied Computational in-
telligence and Informantics, 2007. 4th

International Symposium on Applied
Computational Intelligence and Infor-
matics, IEEE, 2007, Fig. 8, p. 2. P3.31(c):
(table) Craig, I. K., Xia, X., and Venter,
J. W. Introducing HIV/AIDS Education
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into the Electrical Engineering Cur-
riculum at the University of Pretoria.
IEEE Trans. on Education, vol. 47, no. 1,
February 2004, pp. 65–73. Table II, p. 67.

Chapter 4

4.22: Yoshikazu Tsuno/AFP/Getty Im-
ages, Inc. 4.27: Adapted from Dorf, R.
C. Introduction to Electric Circuits, 2nd
ed. (New York: John Wiley & Sons, 1989,
1993), p. 583. # 1989, 1993 John Wiley &
Sons. Reprinted by permission of the
publisher. 4.33: Courtesy of Naval Re-
search Laboratory. P4.11: Courtesy of
Pacific Robotics, Inc. P4.12: Borovic B.,
Liu A. Q., Popa D., Lewis F. L.Open-loop
versus closed-loop control of MEMS
devices: choices and issues. J. Micromech.
Microeng. vol. 15, 2005. Fig. 4, p. 1919.
P4.14: DiBona G. F. Physiology in Per-
spective: TheWisdomof theBody. Neural
Control of the Kidney, Am. J. Physiol.
Regul. Integr. Comp. Physiol. vol. 289,
2005. Fig. 6, p. R639. Used with permis-
sion. P4.24: From Manring, N. D., and
Johnson, R. E. Modeling and Designing
a Variable Displacement Open-Loop
Pump, Journal ofDynamic Systems,Mea-
surement andControl, vol. 118, June 1996,
p. 268. 1996 ASME. Reprinted with per-
mission of ASME.

Chapter 5

5.1: NASA-Houston. 5.33: # Rob Cata-
nach, Woods Hole Oceanographic Insti-
tution. P5.32: Tanis, D. Space Shuttle
GN&C Operations Manual (Downey,
CA: Rockwell International), August
1988. P5.35(a): Courtesy of Hank
Morgan/Rainbow/ PNI. P5.36(a): Bailey,
F. N.; Cockburn, J. C.; and Dee, A. Robust
Control for High-Performance Materials
Testing, IEEE Control Systems, April
1992, p. 63.# 1992 IEEE.P5.38:Lepschy
A. M., Mian G. A., Viaro U. Feedback
Control in Ancient Water and Mechani-
cal Clocks, IEEE Trans. on Education,
vol. 35, 1992. Figs. 1 and 2, p. 4. P5.39:
Ben-Dov D., Salcudean S. E. A Force-
Controlled Pneumatic Actuator, IEEE
Trans. on Robotics and Automation,
vol. 11, 1995. Fig. 6, p. 909. P5.43: Lin

Jung-Shan, Kanellakopoulos Ioannis.
Nonlinear Design of Active Suspensions,
IEEEControl SystemsMagazine, vol. 17,
no. 3. June 1997, pp. 45–49. Fig. 3, p. 48.
P5.44: de Vlugt, Schouten A. C., van der
Helm F. C. T. Adaptation of reflexive
feedback during arm posture to different
environments, Biol. Cybern. vol. 87, 2002.
Fig. A1, p. 24. by P5.45: Karkoub, M.,
Her, M-G., Chen, J.M., Design and Con-
trol of a Haptic Interactive Motion,
Robotica vol. 28, 2008. Copyright #
2010 Cambridge University Press.
Reprinted with permission.P5.46:Piccin,
O., Barbe, L., Bayle, B., de Mathelin, M.,
Gangi, A., A Force Teleoperated Needle
Insertion Device Percutaneous Proce-
dures, International Journal of Robotics
Research, vol. 28, 2009. Reprinted with
permission from Sage Publications.
P5.47: Lee, S.R., Ko, S., Dehbonei, H.,
Jeon, C.H., Kwon, O.S., Operational
Characteristics of PV/Diesel Hybrid Dis-
tributed Generation System Using Dual
Voltage Source Inverter for Weak Grid,
ISIS 2007 Proceedings, 8th Symposium on
Advanced Int. Sys. 2007. P5.48: Kong, F.,
de Keyser, R., Identification and Control
of the Mold Level in a Continuous Cast-
ing Machine, 2nd IEEE Conference on
Control Applications. Vancouver, B.C.,
1993. Fig. 1, p. 53, pp. 53–58.

Chapter 6

6.9: Courtesy of Woods Hole Oceano-
graphic Institution. 6.11: Courtesy of
FANUC Robotics North America,
Inc. P6.14(a): Courtesy of Kazuhiko
Kawamura, Vanderbilt University.
P6.16: From Rober, S. J.; Shin, Y. C.;
and Nwokah, O. D. I. A Digital Robust
Controller for Cutting Force Control
in the End Milling Process, Journal of
Dynamic Systems, Measurement and
Control, vol. 119, June 1997, p. 147.
1997 ASME. Reprinted with permission
of ASME. P6.17(a): # Japan Air Lines/
Photo Researchers. P6.17(b): Adapted
from Bittar, A., and Sales, R. M. H2 and
H1 Control for MagLev Vehicles, IEEE
Control Systems, vol. 18, no. 4, August
1998, Equations 7, 8, and Table 2 on
pp. 20–21. # 1998 IEEE. Reprinted
with permission.

Chapter 7

7.9: Chuck O’Rear/Westlight/Corbis Im-
ages. 7.23(a): Isailovic, J., Videodisc and
Optical Memory Technologies, # 1985,
p. 77. Reprinted by permission of Pear-
son Education, Inc., Upper Saddle
River, N.J. P7.22: Lam C. S., Wong M.
C., Han Y. D. Stability Study onDynamic
Voltage Restorer (DVR) Power Elec-
tronics Systems and Applications 2004,
Proceedings First International Confer-
ence on Power Electronics 2004. Fig. 7,
p. 68. P7.28(a), (c): From Kumar, R. R.;
Cooper, P. A.; and Lim, T. W. Sensitivity
of Space Station Alpha Joint Robust
Controller to Structural Modal Parame-
ter Variations, Journal of Guidance,
Control, and Dynamics, vol. 15, no. 6,
Nov/Dec 1992, pp. 1427–1428. # 1992
AIAA. Reprinted by permission of the
American Institute of Aeronautics and
Astronautics, Inc. P7.29: Yin, G., Chen,
N., Li, P., Improving Handling Stability
Performance of Four-Wheel Steering
Vehicle via m-Synthesis Robust Control,
IEEE Transactions on Vehicular Tech-
nology vol. 56, no. 5, 2007. Fig. 2, p. 2434.
pp. 2432–2439 # 2007 IEEE. Reprinted
with permission. P7.32: Hess, R. A.;
Malsbury, T.; and Atencio, A., Jr. Flight
Simulator Fidelity Assessment in a
Rotorcraft Lateral Translation Maneu-
ver, Journal of Guidance, Control, and
Dynamics, vol. 16, no. 1 Jan/Feb 1993, p.
80. # 1992 AIAA. Reprinted by permis-
sion of the American Institute of Aero-
nautics and Astronautics, Inc. P7.33(a),
(b): Ohnishi, K.; Shibata, M.; and Mura-
kami, T. Motion Control for Advanced
Mechatronics, IEEE/ASME Transac-
tions on Mechatronics, vol. 1, no. 1,
March 1996, (a): Fig. 14, p. 62, (b): Fig.
16, p. 62. # 1996 IEEE. Reprinted with
permission.

Chapter 8

8.4(a): Largeformat 4�5/iStockphoto.
P8.13: Tony Dejak/#AP/Wide World
Photos. North America, Inc. P8.13(b):
Adapted from Hardy, H. L. Multi-
Loop Servo Controls Programmed
Robot, Instruments and Control Systems,
June 1967, p. 105. P8.14: GNC FSSR
FCAscent, vol. 1, June 30, 1985 (Downey,
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CA: Rockwell International). P8.15(a):
Bruner, A. M.; Belvin, W. K.; Horta,
L. G.; and Juang, J. Active Vibration
Absorber for the CSI Evolutionary
Model: Design and Experimental Re-
sults, Journal of Guidance, Control, and
Dynamics, vol. 15, no. 5, Sept/Oct 1992,
p. 1254. # 1992 AIAA. Reprinted by
permission of the American Institute of
Aeronautics and Astronautics, Inc.P8.17:
Karlsson, P., and Svensson, J. DC Bus
Voltage Control for a Distributed Power
System, IEEE Trans. Power Electronics,
vol. 18, no. 6, 2003. Fig. 4, p. 1406. pp.
1405–1412. (c) 2003 IEEE. P8.20: Cho,
D., and Hedrick, J. K. Pneumatic Actua-
tors for Vehicle Active Suspension Appli-
cations, ASME Journal of Dynamic
Systems, Measurement and Control,
March 1985, p. 68, Fig. 4. Reprinted
with permission of ASME. P8.23(a),
(b): Adapted from Annaswamy, A. M.,
and Ghonien, A. F. Active Control in
Combustion Systems, IEEE Control Sys-
tems, December 1995, p. 50, 51, and 59.#
1995 IEEE. Reprinted with permission.
P8.24(a): # Hammondovi/iStockphoto.
P8.24(b), (c): Adapted from Anderson,
C. G.; Richon, J.-B.; and Campbell, T. J.
An Aerodynamic Moment-Controlled
Surface for Gust Load Alleviation on
Wind Turbine Rotors, IEEETransactions
on Control System Technology, vol. 6, no.
5, September 1998, pp. 577–595. # 1998
IEEE. P8.25: Reproduced by permission
of M. Spong et al., Robot Modeling and
Control. John Wiley & Sons. Hoboken,
NJ, 2006. Fig. 6.20, p. 221. Reprinted with
permission of John Wiley & Sons, Inc.
P8.26: Reproduced by permission of
M. Spong et al., Robot Modeling and
Control. John Wiley & Sons. Hoboken,
NJ, 2006. Fig 6.22, pg 223.

Chapter 9

9.46: Photo by Mark E. Van Dusen.
P9.5: Romagnoli, J. A., and Palazoglu,
A. Introduction to Process Control, CRC
Press, Boca Raton, 2006. p. 44, Fig. 3.4.
P9.6:Smith, C. A.AutomatedContinuous
Process Control. John Wiley & Sons, New
York,NY,2002.p.128,Fig.6–1.1.P9.14(a):
Cho, D.; Kato, Y.; and Spilman, D. Sliding
Mode and Classical Controllers in

Magnetic Levitation Systems, IEEECon-
trolSystems,Feb.1993,p.43,Fig.1.#1993
IEEE. Reprinted with permission.

Chapter 10

10.1: Courtesy National Instruments
Corporation # 2010 P10.14: # Michael
Rosenfield/ Science Faction/#Corbis.
P10.15(a): # Stephen Sweet/iStock-
photo. P10.17: Van der Zalm, G., Huis-
man, G., Steinbuch, M., Veldpaus, F.,
Frequency Doman Approach for the
Design of Heavy-Duty Vehicle Speed
Controllers, International Journal of
Heavy Vehicle Systems vol 15, no. 1.

Chapter 11

11.10(a), (b): Katharina Bosse/laif/
Redux Pictures. P11.3(a): Rebecca
Cook/Rueters/#Corbis.

Chapter 12

12.1: Robin Nelson/Zuma Press. P12.6:
Tadeo F., P�erez, Lo�epez O., and Alvarez
T. Control of Neutralization Processes
by Robust Loopsharing. IEEE Trans.
on Cont. Syst. Tech., vol. 8, no. 2, 2000.
Fig. 2, p. 239.

Chapter 13

13.12: # David J. Green—Industry/
Alamy 13.28: Adapted from Chassaing,
R. Digital Signal Processing (New York:
John Wiley & Sons, Inc, 1999), p. 137. #
1999 John Wiley & Sons, Inc. Reprinted
with permission of John Wiley & Sons,
Inc. 13.29: Adapted from Chassaing, R.
Digital Signal Processing (New York:
John Wiley & Sons, Inc., 1999), p. 137.
# 1999 John Wiley & Sons, Inc.
Reprinted with permission of John
Wiley & Sons, Inc. 13.36: Adapted
from Chassaing, R. Digital Signal Proc-
essing (New York: John Wiley & Sons,
Inc, 1999), p. 137. # 1999 John Wiley &
Sons, Inc. Reprinted with permission of
John Wiley & Sons, Inc.

Figure Caption Sources

Back Cover: cover photo caption from
Dennis Hong/Virginia Polytechnic

Institute. 1.3(b): The World of Otis,
1991, p. 2, and Tell Me About Eleva-
tors, 1991, pp. 20–25, United Technol-
ogies Otis Elevator Company. # 1991
Otis Elevator Company. 1.8: Overbye,
D. The Big Ear, OMNI, Dec. 1990, pp.
41–48. 5.33: Ballard, R. D. The Discov-
ery of the Titanic (New York: Warner
Books, Inc., 1987). 6.9: Ballard, R. D.
The Riddle of the Lusitania, National
Geographic, April 1994, pp. 68–85. 6.11:
FANUC Robotics North America, Inc.,
7.9: Bylinski, G. Silicon Valley High
Tech: Window to the Future (Hong
Kong: Intercontinental Publishing
Corp., Ltd., 1985). 10.1: National Instru-
ments Corporation

Trademarks

AMTRAK is a registered trademark of
National Railroad Passenger Corpora-
tion. Adobe and Acrobat are trade-
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Index

Abscissa of convergence, 35n
Absorption, 146–148
Acceleration constant, 595
Achouayb, K., 115
Ackerman’s formula, 678
Acoustic waves, 444
Active-circuit realization, of compensation, 504
Active queue management (AQM) algorithm,

383
Active suspension system, 291, 379, 443
Active vibration absorber, 440
Actuating signal, 9
Actuator block diagram, 290
Admittance, 54
AFTI/F-16 aircraft

attack control system, 718
bearing angle control, 527

Aggarwal, J. K., 115
AIDS. See HIV/AIDS
Aircraft attitude, 24
Aircraft longitudinal dynamics, 153
Aircraft roll control system, 658
Alertness monitoring, 27
Alvarez, T., 721
Alvin, 272
Amplifier saturation, 88

load angular velocity response and, 197
Amplifier saturation simulation, with LabVIEW program,

878–880
Amplifiers

operational, 58–61
transfer functions and, 94

Amplitudes, 164
AMTRAK train active suspension system, 443
Anagnost, J. J., 337
Analogs

explanation of, 84–85
parallel, 86–87
series, 85–86

Analog-to-digital control conversion, 726–727
antenna azimuth for, 724
steps to, 727

Analysis
of control systems, 10–15, 18–19
via input substitution, 366–367

Anderson, C. G., 447, 452
Anesthesia regulation, 26, 221
Angles of departure/arrival

from complex pole, 409
in root locus sketching, 407–409

Angular displacement, in lossless gears, 75
Angular velocity, 82
Annaswamy, A. M., 445, 452
Antenna azimuth, 12

analog- to-digital control conversion for, 724
block diagram for, 18
position control system, 13–15, 208

Antenna azimuth position control, state-space design for, 708
Antenna control, 94

cascade compensation and, 650–651
closed-loop response design for, 272–276
controller/observer design and, 704–709
digital cascade compensator design and, 767–769
gain design and, 650–651
lag-lead compensation and, 508–511
open-loop response and, 207–208
root locus for, 426
stability design/transient performance and, 606–607
stability design via gain, 323–325
state-space representation and, 144
steady-state errors and, 368–371
transient design via gain and, 426–427, 765–767

Aquifer system model, 147
Aquifers, 147–148
Aragula, S., 223
Arc welding robot, 439
Armature, 80
Armature circuit, 16, 80
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Armature resistance, 81
Armature voltage, 80

torque-speed curve with, 82
Artificial heart, open-loop transfer function, 223
Ashkenas, I., 233
Assembly-line robots, steady-state errors and, 354
A
�
str€om, K., 299, 452, 616, 623, 759, 780

Asymptotes
break frequency, 542
high-frequency, 542
low-frequency, 542
root locus sketching with, 400–402

Asymptotic approximations, 540–559
Atencio, A., Jr., 386
Atracurium, 221
Automated guided carts, for Chevrolet Volt electric vehicles,

657
Automatic generation control (AGC), 524
Automobile guidance system, 380
Ayers, J., 25, 31

Back electromotive force, 80
Backlash, 74, 88
Backlash effect, on load angular displacement response, 199
Bagchi, S., 337, 623
Bahill, A. T., 31
Bailey, F. N., 289, 299
Ball-drop experiment, 155
Ballard, R. D., 289, 336
Bandwidth, 581
Baratta, R. V., 234
Barkana, I., 377, 386, 661
Barlow, J. B., 532, 721
Barrows, B., 299
Bathtub water level, 25
Bechhoefer, J., 27, 31
Behavior at infinity, root locus sketching and, 399–402
Bell Telephone Laboratories, 5
Belvin, W. K., 452
Ben-Dov, D., 290, 299
Bennett, S., 4n, 31
Benningfield, L. M., 116
Bessemer, Henry, 5
Bicycle dynamics, 295
Bilinear transformations, in digital control systems, 746–747
Biological system, 95–97
Bittanti, S., 525, 531, 616, 623, 775, 780
Bittar, A., 333, 337
Black Hawk (UH-60A) helicopter, 382
Block diagram(s), 17–18

of multiple subsystems, 236–237
Block diagram reduction, 18

digital control systems and, 739–742
by moving blocks, 243–245
of sampled-data systems, 740–741

via familiar forms, 242–243
Block diagram window, in LabVIEW program,

862–868
Block parameters, in MATLAB Simulink program, 843–845
Blood vessel blockages, 108
Bode, H.W., 5
Bode plots

of (sþa), 542
for G(s) ¼ (sþa), 541–544
for G(s) ¼ 1/s, 545–546
for G(s) ¼ 1/(s2 þ 2zvhs þ v2h), 552–556
for gain adjustment, 628
gain margin/phase margin from, 579
for G(s) ¼ s, 545
for G(s) ¼ s2 þ 2zvhs þv2h, 549–550
for lead compensation, 639
range of gain for stability via, 577–578
for ratio of first-order factors, 546–549, 556–559
for ratio of second-order factors, 550–552, 556–559
static error constants from, 595–596
transfer function from, 603–605

Bona, B. E., 160, 233, 300, 337, 722
Bondia, J., 160, 722
Borovic, B., 221, 232
Bottom-up design, 22
Bounded input, 302
Bounded-input bounded-output (BIBO), 302–303
Boutayeb, A., 115
Boyd, M., 780
Branches, root locus sketching and, 397
Breakaway points

explanation of, 402–404, 412
using differential calculus to find, 404
without differentiation, 405–406

Break frequency, 542
Break-in points

explanation of, 402–404, 412
using differential calculus to find, 404
without differentiation, 405–406

Bruner, A. M., 440, 452
Budak, A., 531
Butterworth polynomial, 331

Cai, Y., 386, 453, 623
Campbell, T. J., 452
Cancellation, pole-zero, 195
Cannon, R. H., Jr., 31, 115
Canonical form

controller, 260–262
Jordan, 260
observer, 262–263

Capacitors, 130
Carlson, L. E., 115, 159
Cascade compensation

antenna control and, 650–651
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in digital control systems, 759
steady-state error design via, 626
steady-state errors via, 459–469
transient response improvement via, 469–481

Cascade compensation via s-plane, digital control systems
and, 758–762

Cascade compensators, 494
Cascaded interconnections, 34
Cascaded subsystems, 238
Cascaded systems, load in, 238
Cascade form

of multiple subsystems, 237–239
of state space, 257–259

Cascade PI controller, robotic manipulator with, 447
Catenary, pantograph and, 110
Cavallo, A., 153, 159, 289, 299, 452
Cereijo, M. R., 159
Characterizing response, from damping ratio, 176
Charge-coupled device, in digital camera, 617–618
Chassaing, R., 763n, 780
Chebyshev, P.L., 5
Chemical process, temperature control system, 525
Chesmond, C. J., 380, 386
Chetouani, A., 115
Chevrolet Volt electric vehicles, automated guided carts for,

657
Chignola, R., 109, 115
Chiu, D. K., 153, 159
Cho, D., 153, 452, 531, 715, 721
Circuit, transformed, 49
Classical technique, 118. See also Frequency-domain

technique
Cleveland, J. P., 233
Clifford, William Kingdon, 5
Closed-loop frequency responses, closed-loop transient

responses and, 580–583
Closed-loop/open-loop frequency responses, relation

between, 583–588
Closed-loop polar plot, 587n
Closed-loop poles, 303–305, 388–389, 392, 415, 418,

424, 461
Closed-loop response design, for antenna control,

272–276
Closed-loop step response, with LabVIEW program, 869–871
Closed-loop system, 9, 162

block diagram of, 8
error, 342
for ideal integral compensator, 461
root sensitivity of, 425

Closed-loop transfer function, sensitivity of, 362–363
Closed-loop transient responses

closed-loop frequency responses and, 580–583
open-loop frequency responses and, 589–592

Closed-loop vehicle response, for train stopping, 441
Cochin, I., 115, 159

Cochran, J. E., 332, 337, 661
Cockburn, J. C., 288, 299
Coefficient of viscous friction, 62, 70
Combustor, with microphone/loudspeaker, 445
Companion matrices, 262
Compensated system, root locus for, 462
Compensating zero, via rate feedback, 497–500
Compensation

active-circuit realization of, 504
physical realization of, 503–508
techniques, 458

Compensator, 9
passive realization of, 506
root locus with, 460
root locus without, 460

Completely controllable, 674n
Completely observable, 691n
Complex circuits

via mesh analysis, 51–52
via nodal analysis, 54–56

Complex numbers, vector representation of, 389–391
Complex pole, angle of departure/arrival from, 409
Component design, transient response through,

185–186
Component responses, of three-pole system, 188
Computer-aided design, 20–21
Computer-controlled systems, 9–10
Computer hard disk drive, 10
Computer simulation, of step responses, 429
Conductance, 54n
Conservation, flow for, 148
Constant-acceleration inputs, 341
Constant command, 18
Constant M circles, 583–584, 586
Constant N circles, 583, 585, 586
Constant-velocity inputs, 341
Continuous casting, in steel production, 294
Continuous stirred tank reactor, 715
Contours, 560–563
Control design palette, in LabVIEW program, 883–885
Controllability, 672–676

by inspection, 673–674
via controllability matrix, 675–676

Controllability matrix, 674
controllability via, 675–676

Controlled variable, 34
Controller canonical form, of state space, 260–262
Controller design, 665–672

alternative approaches to, 676–682
by matching coefficients, 677
for phase-variable form, 669–671
by transformation, 679–681

Controller/observer design, antenna control and,
704–709

Control system problem, for root locus, 388–389

Index 909



Apago PDF Enhancer

E1BINDEX 10/27/2010 17:58:9 Page 910

Control systems. See also Feedback control systems; specific
control systems

advantages, 3–4
analysis of, 10–15, 18–19
components, 2
configurations of, 7–10
derivative, 459
description of, 2
design, 18–19
digital computers in, 6
engineering, 21–22
history of, 4–7
integral, 459
prevalence of, 23
proportional, 459
schematic for, 16–17
test waveforms, 19
theory, 5
twentieth-century developments, 5

Control systems analysis, with LabVIEW program, 858–859
Control System Toolbox, 157, 228, 248, 297, 335, 384,

450–451, 530–531, 621, 660, 778–779
Convolution integral, 203
Cook, P. A., 115
Cooper, P. A., 386
Coordinate measuring machine, 525–526
Coulomb friction, 65n
Craig, I. K., 31, 110, 115, 156, 159, 228, 232, 299, 337, 383, 386,

452, 529, 531, 621, 623, 659, 662, 718, 721, 777, 780
Cramer’s rule, 53
Crane loading, 107
Crawshaw, L. I., 32
Critically damped response, 171–172
Critical points, root locus sketching and, 412–414
Crosslapper, 224
Cubitt, William, 5
Cutaneous rabbit, 28
Cutting force control system, 332

D ’Alembert’s principle, 17
D’Ambrosia, R. D., 234
Damped frequency of oscillation, 182
Damper, mass and, 125
Damping, 81
Damping frequency, exponential, 182
Damping ratio

characterizing response from, 176
definition of, 174
natural frequency and, 208
v. percent overshoot, 180
from phase margin, 589–591
v. rise time, 182
of second-order system, 173–175
second-order underdamped responses for, 178

Dancer, 25

Davis, S. A., 115
D’Azzo, J. J., 31, 337, 386, 531, 662, 721
Dc-dc converter, 225
Dc motor, 79

driving rotational mechanical load, 81
load and, 83–84

Dc servomotor, load and, 152
Deadzone effect, on load angular displacement response, 198
Decay frequency, exponential, 174
de Ara�ujo, F. M., 116, 453, 623
Decoupled equations, 292
Decoupled variables, 125
Dee, A., 288, 299
Deflection response, of fluid-filled catheter, 222
Degrees of freedom, 65

in rotational systems, 70
De Keyser, R., 299
Dell’Orto, F., 531, 623, 780
De Maria, G., 153, 159, 299, 452
Dependent source, electrical network with, 128–130
Derivative compensation, ideal, 470–477
Derivative control systems, 459
Design

computer-aided, 20–21
with LabVIEW program, 858–859
objectives, 10–15
theory, 5

Design process
flowchart of, 15
steps of, 15–20

Design via frequency response, with MATLAB program, 818–
823

Design via root locus, with MATLAB, 808–813
Design via state space, with MATLAB program,

823–826
Desoer, C. A., 337
de Vlugt, E., 292, 299
Destination shaft, 76
Diabetes population model, 105
Diagonalizing

system in state space, 270–271
system matrix, 268

DiBona, G. F., 222, 232
Di Carlo, A., 531, 623, 780
Differential calculus, 404
Diesel power distribution system, hybrid solar cell and, 294
Differential equation

coefficients, 5
Laplace transform solution of, 39–40
linearization of, 91–92
single loop via, 48–49
transfer function for, 45

Digital camera, charge-coupled device in, 617–618
Digital cascade compensator design, 760–761

antenna control and, 767–769
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Digital compensator, implementing, 762–765
Digital computers

advantages, 725–726
in control systems, 6
modeling, 727–730
placement within loop, 725

Digital control systems, 723–725
bilinear transformations in, 746–747
block diagram reduction and, 739–742
cascade compensation in, 759
cascade compensation via s-plane and, 758–762
digital system stability in, 742–749
gain design on z-plane and, 755–758
with MATLAB program, 827–833
with MATLAB Simulink program, 852–855
stability design via root locus in, 755–756
steady-state errors and, 749–753
transfer functions of, 735–739
transient response design via gain adjustment and, 756–757
transient response on z-plane, 753–755
z-transform and, 730–735

Digital feedback control system
steady-state errors for, 750
unit parabolic input for, 751
unit ramp input for, 751
unit step input for, 750–751

Digital numerical control, lathe with, 742
Digital system simulation, with LabVIEW program, 881–885
Digital system stability

digital control systems in, 742–749
via Routh-Hurwitz, 748
via s-plane, 747–748
via z-plane, 742–743

Digital-to-analog conversion, 729
Digital versatile disc players, 525
Dirac delta functions, 729
Disk drive arm, 447
Disk drive position control system, 442
Distributed parameter, 71n
Disturbances, steady-state errors for, 356–358
Doebelin, E. O., 31, 115
Dominant-pole argument, 223
Dorf, R. C., 31, 115, 193, 232, 337, 453, 531, 623, 662
Drebbel, Cornelis, 4
Driving simulator, 642
DVD player, 7
Drug absorption, 146–148
D’Souza, A. F., 26, 31, 115
Duals, 263
Dynamic voltage restorer (DVR), 378, 441
Dynamometer, 26
Dynamometer test, 81, 82

Economics, as design consideration, 12
ECU. See Electronic control unit

Edelstein-Keshet, L., 108, 109, 115
Eigenvalues, 268

poles and, 200–202
transfer function poles and, 200–202

Eigenvector, 268, 269
Ekeberg, €O., 159
Electrical constants, of motor transfer function,

82
Electrical network

branch currents in, 126
with dependent source, 128–130
representation of, 126–127
transfer function, 46–61

Electrical to mechanical systems analogies, 62
Electric circuit analogs, 84–87
Electric network, 28
Electric ventricular assist device (EVAD), 292, 776
Electromagnetic systems, 79–84
Electromechanical system transfer functions,

75–80
Electronic control unit (ECU), 30
Elevator response, 2
Elevators, 3
El-Gamal, M., 337, 623
Elkins, J. A., 115, 159
El-Samad, H., 453
Emami-Naeini, A., 31, 115, 159, 232, 453, 623, 721
Energy storage elements, 126
Enzyme breakdown, 107
Eppinger, S. D., 32, 116, 160, 233, 300, 337, 386, 453, 532, 624,

662, 721, 781
Epsilon method, stability vi, 308–309
Equations of motion, 63, 71

by inspection, 67–68, 72–73
Equilibrium, 89
Errors, 9. See also Steady-state errors
Estimator, 682
EVAD. See Electric ventricular assist device
Evans, J., 288, 299
Evans, Walter, 5
Existing transient response, 10
Exponential damping frequency, 182
Exponential decay frequency, 174
Exponential frequency, 167
Exponential response, 164
Exponential time constant, 174

F4-E military aircraft
pitch stabilization loop, 444
steering control, 153

Factoring, via Routh-Hurwitz, 319
Fagergren, A., 155, 159
Fahl�en, P., 337, 624
FANUC M-410iB robot, 323
Feedback amplifier analysis, 5
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Feedback compensation, 495–503
approach 1, 496–500
approach 2, 500–503
generic control system, 495
minor-loop, 500–503

Feedback control systems, 9, 240. See also Control systems;
specific control systems

analysis/design of, 245–246
for ideal derivative compensation, 472
with MATLAB Simulink program, 850–852

Feedback form, of multiple subsystems, 240–241
Feedback path, 9
Feedback system simulation, with LabVIEW program, 880–

881
Fenn’s law, 291
Fertilizer applicator, 448
Final value theorem, steady-state errors using, 365
Finances, of control systems, 12
First-order system, 166–168

poles of, 163
unit step and, 166
zeros of, 163

First-order transfer functions via testing, 167
Fission reaction, 25
Fixed field, 80
Floor vibration eliminator, 447
Floppy disk drive, block diagram, 617
Flower, T. L., 662
Flow for conservation, 148
Fluid-filled catheter, deflection response, 222
Flyball speed governor, 5
Force-displacement, 62
Forced response, 11, 162, 164
Force-velocity, 62
Foroni, R. I., 115
Forssberg, H., 159
Forward-path gain, 251
Forward-path transfer function, 445
Forward transfer function, 339. See also Open-loop transfer

function
Frankle, J. T., 32
Franklin, G. F., 31, 115, 159, 231, 453, 623, 721
Free-body diagram, 63

transformed, 63
Free viruses, 110
Frequency, exponential, 167
Frequency domain modeling, with MATLAB program, 788–

793
Frequency-domain technique, 118. See also Classical

technique
Frequency/gain, at imaginary-axis crossing, 406–407
Frequency response

analytical expressions for, 536–537
concept of, 535–536
lead compensator, 636–637

with MATLAB program, 813–818
sinusoidal, 535
steady-state errors from, 593–597
techniques, 533–608
from transfer function, 538–539

Frequency response design methods
antenna control and, 650–652
lag compensation and, 630–635
lag-lead compensation and, 641–650
lead compensation and, 635–641
overview of, 627
root locus and, 626
transient response via gain adjustment and, 627–630

Frequency response plots, 537–538
of time delay systems, 598–599

Friction, 65n
Fuel-cell power plants, 6
Functional block diagram, 14

drawing of, 16
Functions, linearizing, 90

G(s), steady state error as, 345–348
Gain-adjusted antenna control system, step responses of, 427
Gain adjustment

bode plots for, 628
stability/transient response design via, 626
transient response design via, 415–419, 626
transient response via, 627–630

Gain design
antenna control and, 650–651
for transient response, 247–248

Gain design on z-plane, digital control systems and, 755–758
Gain margin/phase margin

from Bode plots, 579
evaluating, 578
via Nyquist diagram, 574–576

Galvæo, R.K.H., 115, 453, 616, 623
Gamble, J. B., 26, 32, 300
Gas-fired heater, block diagram, 717
Gauthier, M., 234
Gear backlash, 88
Gear driven rotational systems, 75
Gear systems, 74–78

with loss, 77–78
motion equation for, 77
schematic, 74

Gear train, 77
Geselowitz, D. B., 300, 662, 781
Ghonien, A. F., 452
Gillard, D., 234
Glantz, A. S., 222, 232
Global carbon cycle, schematic description of, 155
Golbon, N., 532, 781
Gompertz growth model, 109
Gong, W., 386, 453, 623, 662
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Good, M. C., 233, 623
Graham, D., 233
Graphical user interface (GUI), 196
Griggs, G. E., 115, 159
Graphical user interface (GUI), 20, 21
Grinder system, 26
GUI. See Graphical user interface
Guy, W., 453
Gyro systems, 151

Hacisalihzade, S. S., 32
Hammel, H. T., 32
Han, Y. D., 386, 453
Harbor, R. D., 337, 662
Hardy, H. L., 439, 453, 774, 780
Harmonic drives, robotic manipulator with, 448
Hatopoglu, C., 454
Head, 147
Heat-exchanger process, 521–522
Hedrick, J. K., 452
Hekman, K. A., 333, 337
Heller, H. C., 32
HelpMate transport robot, 288–289
Hess, R. A., 382, 386
High-frequency asymptotes, 542
High-speed proportional solenoid valve, 26
High-speed rail pantograph control problem, 28–29, 109–110,

155–156, 227, 296–297, 334, 383, 449, 528, 620–621, 659,
718, 777

HIV/AIDS control system problem, 29, 110–111, 156,
227–228, 297, 334–335, 383, 449–450, 528–529, 621, 659,
718–719, 777

Hogan, B. J., 32
Hold

zero-order, 728
zero-order sample-and-, 726, 730, 737–738

Hollot, C. V., 386, 441, 453, 623, 662
Home entertainment systems, 6
Homogeneity, 88
Hong, J., 152, 160
Horizontal canards, 153
Hormonal regulation mechanisms, 441
Horta, L. G., 452
Hospital pharmacy robot, 664
Hostetter, G. H., 32, 299, 337, 386, 531, 623, 662, 720, 780
Houpis, C. H., 31, 337, 386, 531, 662, 720
Hsu, J. C., 115
Hubble Space Telescope (HST), 619
Human eye movement, 288
Human growth population, 108
Human leg, transfer function of, 95–96
Human postural dynamics, 107
Human response, to visual cue, 220
Hybrid solar cell, diesel power distribution system and,

294

Hybrid vehicle control problem, 29, 111–112, 156–157, 228,
297–298, 335, 384, 529, 621, 660, 719, 777–778

Hydraulic actuator, 26
Hydraulic circuits, 227
Hydraulic pumps, 227

diagram of, 227
Hypothalamic-pituitary-adrenal axis, linear

time-invariant model of, 154

ICE. See Internal combustion engine
Ideal compensators, 458
Ideal derivative compensation, 469, 470–480

design, 472–476
feedback control system for, 472
predicted characteristics for, 471
root locus for, 473, 475
uncompensated/compensated system, 472–473

Ideal integral compensated system response, uncompensated
system response and, 463

Ideal integral compensator, 459, 461
closed-loop system for, 461
effect of, 461
implementing, 463

Ideal sampling, zero-order hold and, 730
Identity matrix, 139
Ignatoski, M. A., 300, 622, 781
Imaginary-axis crossing, frequency/gain at, 406–407
Impedance for mechanical components, 64
Impedance relationships, 48
Impedance rotational relationships, 70
Impedance translational relationships, 62
Implantable medical devices, with in-body batteries, 447
Impulse, 18, 19
In-body batteries, implantable medical devices with, 447
Inductors, 130
Industrial robots, 200–221, 617. See also Robots
Inertia, 17, 70, 81

moment of, 70
Inherent disturbance suppression, 775
Inigo, R. M., 160
Initial conditions, 45
Inner ear hair cell transducers, 105
Innocenti, M., 337, 661
Input, 2
Input potentiometer, 94
Input signals

root locus and, 421
test of, 18

Input substitution
analysis via, 366–367
steady-state errors using, 367

Input transducer, 8
Insect flight dynamics, 225
Inspection, mesh equations via, 56–57
Instability, 11, 302, 303–304. See also Stability

Index 913



Apago PDF Enhancer

E1BINDEX 10/27/2010 17:58:9 Page 914

Insulin concentration-time evolution, 153–154
Integral control

design, 701–703
steady-state error design via, 700–704
systems, 459

Intelligent Soft Arm Control (ISAC), 331, 332
Interconnection of subsystems, block diagram of, 34
Internal combustion engine (ICE), 29
Inverse Laplace transform, 35, 36, 166
Inverse z-transform

via partial-fraction expansion, 733–734
via power series method, 734

Inverting operational amplifier, 58
circuit, 59
schematic, 58

Ionescu, C., 233
Ionic polymer-metal composite, 225
ISAC. See Intelligent Soft Arm Control
Isailovic, J., 386
Isoflurane, 221

Jannett, T. C., 221, 233
Jason, 317
Jason Junior, 272
Jenkins, H. E., 26, 32
Johansson, R., 116
Johnson, H., 233, 289, 299, 337, 453, 531, 780, 800, 835
Johnson, R. E., 227, 233
Joint flexibility, model representing, 448
Jordan canonical form, 260
Juang, J., 452
Jury’s stability test, 745
jv-axis crossings, root locus sketching and, 405–407

Kailath, T., 35, 116, 160, 721
Kandel, A., 160
Kanellakopoulos, I., 107, 116, 291, 300, 386
Kara, A., 337, 616, 623
Kato, Y., 531, 721
Katz, P., 781
Kawamura, K., 332, 337, 623
Kermurjian, A., 116
Kesson, M., 116
Khaminash, M., 453
Kharitonov’s theorem, 330
Khodabakhshian, A., 524, 532, 776
Kirchhoff’s current law, 17, 47, 84
Kirchhoff’s nodal equations. See Nodal equations
Kirchhoff’s voltage law, 17
Klaasens, J. B., 234, 722
Klapper, J., 32
Klein, R. E., 299, 452, 623
Knight, B., 234
Koontz, J. W., 300, 662, 781
Kostis, J. B., 109, 116

Krishnamurthy, B., 299
Ktesibios’ water clock, 4, 290
Kumar, R. R., 380, 386
Kuo, B. C., 233, 453, 532, 623, 662, 745n, 781
Kuo, F. F., 116, 623
Kurfess, T. R., 26, 32
Kurland, M., 287, 299
Kwatny, H. G., 453, 662
Kyrylov, V., 154, 160, 714, 721

LabVIEW program, 21
amplifier saturation simulation with, 878–880
analysis examples with, 862–875
block diagram window in, 862–868
closed-loop step response with, 869–871
control design palette in, 883–885
control systems analysis with, 858–859
design examples with, 862–875
design with, 858–859
digital system simulation with, 881–885
feedback system simulation with, 880–881
linear systems simulation with, 876–878
open-loop/closed-loop sinusoidal frequency analysis/design

with, 873–875
open-loop step response with, 862–869
root locus analysis/design with, 871–872
simulation palette in, 881–882
simulation with, 858–859
using, 859–862

Lag compensation, 464–469, 630–635
design procedure, 631–634
root locus and, 465
type 1 systems, 464
visualizing, 630–631

Lag compensator, 459
design, 466–468

Lag-lead compensation, 641–643
antenna control and, 508–511
design procedure, 643–646
using Nichols chart, 646–649

Lag-lead compensator, 487
design, 487–491
ramp response error for, 491
root locus for, 488, 489, 490

Lago, G., 116
Lam, C. S., 379, 386, 453
Landesberg, A., 300
Laplace transform, 17, 35–36

definition of, 35
of differential equation, 39–40
inverse, 35, 36
review, 35–44
of state-transition matrix, 203–204
state-transition matrix via, 206–207
table, 36
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theorems, 37
of time function, 35–36

Laplace transformed circuit, 49
Laplace transform solution, 200–202

of state equations, 198–202
Lathe, with digital numerical control, 742
Lead compensation, 477–481

Bode plots for, 639
design, 478–481, 637–640
geometry of, 477
possible solutions, 478
visualizing, 635–636

Lead compensator, 469
frequency response, 636–637
realization, 507

Ledgerwood, B. K., 115
Lee, Edmund, 4
Lee, S., 153, 159
Lennartsson, A., 299, 452, 623
Leo, D. J., 233
Lepschy, A. M., 289, 300, 377, 386
Lewis, F. L., 222, 232
Liang, S. Y., 337
Liceage-Castro, E., 154, 160
Liew, K. M., 386, 453, 623
Lim, T. W., 386
Lin, J.-S., 107, 116, 291, 300, 379, 386
Lin, R., 338, 454, 662
Linear combination, 121
Linear control systems analysis, 5
Linear independence

explanation of, 123
state variables and, 123–124

Linear systems, 88
Linear system simulation

with LabVIEW program, 876–878
with MATLAB Simulink program, 842–848

Linear time-invariant differential equation, 17
Linear time-invariant model, of hypothalamic-pituitary-

adrenal axis, 154
Linear voltage differential transformer (LVDT), 26, 223
Linearity, 88
Linearization, 89–97

about a point, 89
of differential equations, 91–92
of function, 90
state-space representation and, 141–143

Linearized magnetic levitation system block, 440
Linearly dependent motions, 65
Linearly increasing command, 19
Linearly independent, 122

state variables, 124–125
Linkens, D. A., 221, 233
Liquid-level control, 4
Lithium-ion battery charger, 333

Liu, A. Q., 222, 232
Load

in cascaded systems, 238
dc motor and, 83–84
dc servomotor and, 152
motor and, 95, 144–145
tester, 289

Load angular displacement response
backlash effect on, 199
deadzone effect on, 198

Load angular velocity response, amplifier saturation and, 197
Log-magnitude plots, 541–542, 551–552, 576–577
Longitudinal flight model linearization, 224
Look-ahead offset, 334
Loop analysis. See Mesh analysis
Loop gain, 241, 251
Loops

major, 496
minor, 495, 496
nontouching, 251

Lordi, N. G., 160
Lossless gears, 75

angular displacement in, 75
system with, 76–77

Low back pain, motor trunk patterns and, 223
Low, K. H., 386, 453, 616, 623
Low-frequency asymptotes, 550
LTI Viewer, 217, 229, 230, 575, 579
Ludwick, S. J., 26, 32
Luenberger, D. G., 721
Lumelsky, V., 299
Lumped parameter, 71n
Lusitania, 317
Lyapunov, Alexandr Michailovich, 5

Mablekos, V. E., 116
Magnetic levitation transportation system, 332, 526–527
Magnitude frequency response, 536
Magnitude plots, 537
Magnusson, M., 116
Mallavarapu, K., 225, 233
Malsbury, T., 386
Malthus, Thomas, 108
Manned submersible, 272
Manring, N. D., 227, 233
Mapping contour, 560–561
Mapping only positive jv-axis, stability via, 571–573
Marginally stable systems, 303, 304
Marginal stability, 302
Martin, R. H., Jr., 32
Marttinen, A., 108, 116, 330, 337, 616, 623
Mason, S. J., 251, 300
Mason’s rule

multiple subsystems and, 251–254
transfer function via, 252–253

Index 915



Apago PDF Enhancer

E1BINDEX 10/27/2010 17:58:9 Page 916

Mass, 62, 64
damper and, 125

Matching coefficients, controller design by, 677
Mathematical models, 17–18

from physical system schematics, 34
MathWorks Inc., 20
MATLAB program, 20–21

command summary for, 833–835
design via frequency response with, 818–823
design via root locus with, 808–813
design via state space with, 823–826
digital control systems with, 827–833
examples, 788–833
frequency domain modeling with, 788–793
frequency response techniques with, 813–818
M-files with, 787
multiple subsystems with, 799–804
root locus with, 806–808
stability with, 804–805
time domain modeling with, 793–795
time response with, 795–799
using, 787

MATLAB Simulink program
accessing, 837
block parameters in, 843–845
creating new model with, 838
digital control systems with, 852–855
examples, 841–855
feedback systems with, 850–852
libraries, 838–841
linear system simulation with, 842–848
saturation nonlinearity with, 848–850
simulation parameters in, 846–847
using, 836–841

Matrices
companion, 262
controllability, 674–676
observability, 691–693
state-transition, 203, 204, 206–207
system, 268, 270–271
transformation, 266, 268, 270, 272

Maxwell, James Clerk, 5
May, F. P., 722
Mayr, O., 4n, 32
McRuer, D., 224, 233
Mechanical constants, 81
Mechanical displacement, 62
Mechanical system

into parallel analog, 87
into series analog, 86

Mechanical system transfer functions
rotational, 69–74
translational, 61–69

Meier, R., 32
MEMS (Micro Electromechanical System), 221

Mendoza, C., 116
Mesh, 48–49
Mesh analysis

complex circuits via, 51–52
single loop via, 48–50

Mesh equations, via inspection, 56–57
Meyer, A. U., 116
M-files, with MATLAB program, 787
Mian, G. A., 290, 300, 386
Michaelis-Menten equations, 107
Micro Optical Electromechanical Systems (MOEMS),

221
Milhorn, H. T., Jr., 288, 300, 721
Milsum, J. H., 105, 116
Minnichelli, R. J., 300, 337
Minor loop, 495, 496
Minor-loop feedback compensation, 500–503

root locus for, 502
step response simulation for, 503

Minorsky, Nicholas, 5
Misra, V., 386, 453, 623, 662
Missile control system

modeling of, 743–745
stability of, 743–745

Missile steering control, 152
MOEMS. See Micro Optical Electromechanical Systems
Monahemi, M. M., 532, 721
Moment of inertia, 70
Momentum wheel, pitch axis attitude control system with,

444
Motion equation, for gear systems, 77
Motors

explanation of, 79–80
transfer functions and, 95–96

Motor, load and, 95, 144–145
Motorcycle radio volume, 25
Motor dead zone, 88
Motor transfer function, electrical constants of, 82
Motor trunk patterns, low back pain and, 223
Mott, C., 27, 32
Multiple loops, 52–53
Multiple nodes, 54

with current sources, 55–56
Multiple root of multiplicity, 40
Multiple subsystems. See also Subsystems

background on, 236
block diagrams of, 236–237
cascade form of, 237–239
feedback form of, 240–241
Mason’s rule, 251–254
with MATLAB program, 799–804
parallel form of, 239
signal-flow graphs of, 248–251
similarity transformations, 266–277
in space shuttle, 237

916 Index



Apago PDF Enhancer

E1BINDEX 10/27/2010 17:58:9 Page 917

Multiplicity, 40
Murakami, T., 386
Muscle relaxation, 221

Nafion sheet, 225
Nagle, H. T., 233, 781
Nakamura, M., 223, 233
Nano-positioning device, 223
NASA flight simulator robot arm, 79
Nashner, L. M., 221, 233
National Instruments PXI, 534
Natural frequency

damping ratio and, 208
of general second-order system, 172

Natural period, 174
Natural response, 11, 162, 164
n-channel enhancement-mode MOSFET Source Follower

circuit, 280–281
Neamen, D. A., 291, 300
Negative feedback, 240n
Negative-feedback systems, 421
Negative step response, of pitch control, 212
Network theory, 127
Newbury, K., 233
Newton’s laws, 17, 63
Nichols charts, 587–588

lag-lead compensation design using, 646–649
Nieuwland, J., 32
Nilsson, J. W., 116, 624
No, T. S., 337, 661
No-load speed, 82
Nodal analysis

complex circuits via, 54–56
simple circuits via, 50–51

Nodal equations
form of, 56
method to write, 54, 55

Nodes, of signal-flow graphs, 248–249
No integration systems, steady state error for, 347–348
Noload speed, 82
Noninverting operational amplifier, 59–60

circuit, 60
schematic, 60

Nonlinear electrical network, 92–93
Nonlinearities, 88–89

physical, 88
time response and, 196–198

Nonlinear systems, 88
representation of, 142–143

Nonlinear translational mechanical system, 143
Nonminimum-phase electric circuit, 193
Nonminimum-phase system

step responses of, 192, 194
transfer function of, 192–194

Nontouching loops, 251–252

Nonunity feedback systems
steady-state actuating signal for, 361
steady-state errors for, 358–362

Norton’s theorem, 55
Notch filter, 492–494

root locus for, 492–493
Novosad, J. P., 32
nth-order differential equations

converted to n simultaneous first-order differential
equations, 120

explanation of, 17–18
Nwokah, O.D.I., 321
Nuclear power generating plant, 25
Nuclear reactor, 25
Nyquist, H, 5
Nyquist criterion, 559–576

derivation of, 560–563
range of gain for stability via, 570–571
stability determination with, 563–564

Nyquist diagram
gain margin/phase margin via, 574–576
for open-loop function, 567–569
sketching, 564–569
stability via, 569–573

Nyquist sampling rate, 726

Observability, 689–693
by inspection, 690
via observability matrix, 691–692

Observability matrix, 691
observability via, 691–692
unobservability via, 692–693

Observer, 682
Observer canonical form

observer design for, 686–688
of state space, 262–265

Observer design, 682–689
alternative approaches, 693–700
by matching coefficients, 697–699
for observer canonical form, 686–688
by transformation, 695–697

O’Connor, D. N., 28, 32, 109, 116, 160, 227, 233, 296, 300, 334, 337,
383, 386, 449, 453, 528, 532, 620, 624, 659, 662, 718, 777, 781

Octave, 541
Ogata, K., 32, 116, 233, 532, 624, 662, 674n, 678n, 691n, 721,

726n, 750n, 759n, 781
Ohnishi, K., 383, 386
O’Leary, D. P., 532, 721
OMS. See Orbital maneuvering system
One integration systems, steady state error for, 348–349
Open-loop/closed-loop sinusoidal frequency analysis/design,

with LabVIEW program, 873–875
Open-loop frequency responses

closed-loop transient responses and, 589–592
response speed from, 591–592
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Open-loop function, Nyquist diagram for, 567–569
Open-loop pitch response, UFSS and, 207–208
Open-loop poles, 381–382, 385, 391, 399–400, 441
Open-loop response, antenna control and, 207–208
Open-loop step response, with LabVIEW program, 862–869
Open-loop systems, 8–9

block diagram of, 8
Open-loop transfer function, 241

for artificial heart, 223
Operational amplifier, 58, 193

schematic of, 58
Optical disk recording system, 6
Orbital maneuvering system (OMS), 6
Oscillations

damped, 14–15, 174
damped frequency of, 170

O’Sullivan, D. M., 234, 722
Output, 2
Output engine fan speed, 330
Output equation, 121, 123
Output potentiometer, 94
Output response, 162
Output transducer, 9
Overdamped behavior, 213
Overdamped response, 170, 172
Overshoot, 178, 410, 416–417, 600–601
€ozel, T., 526, 532
€ozg€uner, €U., 337, 454

Packet information flow, 383
Pad�e approximation, 334, 382
Palazoglu, A., 532
Pantograph, catenary and, 110
Pantograph head displacement, 110
Papin, Denis, 4
Papson, T. P., 299
Parabolic inputs, 19

steady state error and, 347
Parallel analog, 86–87

development of, 87
mechanical system converted into, 87
parameters for, 87

Parallel form
of multiple subsystems, 239
of state space, 259–260

Parallel hybrid-electric vehicle, 29–30
Parallel subsystems, 238
Paramagnetic oxygen analyzer, 380
Partial-fraction expansion, 37–44

inverse z-transform via, 733–734
Particular solutions, 11, 162n
Passive-circuit realization, 506–507
PD controllers. See Proportional-plus-derivative controllers
Peak time, 178

evaluation of, 179

lines of constant, 183
from pole location, 184
from transfer function, 181–182

Pendulum, simple, 142
Percent overshoot, 178

v. damping ratio, 180
evaluation of, 180
lines of constant, 183
from pole location, 184
for time delay systems, 600–601
from transfer function, 181–182

Performance, 2
P�erez L�opez, O., 721
Pfleiderer, H. J., 160, 722
Pharmaceutical drug absorption, 146–147
Pharmaceutical drug-level concentrations, 146
Phase frequency response, 536
Phase margin, damping ratio from, 589–591
Phase shift oscillator, 333
Phase-variable representation

controller design for, 669–671
for plant, 667

Phase variables, 133
block diagram of, 135
choice, 133

Phasors, 535
Philco Technological Center, 160
Phillips, C. L., 233, 337, 662, 781
Philon of Byzantium, 4
pH processes, modeling/control of, 224
Phugoid mode, 224
Physical system, transform requirements into, 16
Physical system schematics, mathematical models from, 34
Pickoff points, 236
Pic�o, J., 160, 722
PI controllers. See Proportional-plus-integral controllers
PID controllers. See Proportional-plus-integral-

plus-derivative controllers
Piecewise linear systems, 104
Pinette, B., 152, 160
Pioneer Electronics, Inc., 7
Piper, G. E., 444, 453, 662
Pitch angle control representation, in UFSS, 276–277
Pitch axis attitude control system, momentum wheel with, 444
Pitch control loop

root locus of, 428
for UFSS vehicle, 211

Pitch control loop without rate feedback, step responses, 429
Pitch control loop with rate feedback, step responses of, 430
Pitch control system

negative step response of, 212
for space shuttle, 287–288

Pitch gain, 324
Pitch stabilization loop, of F4-E military aircraft, 444
Plant
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phase-variable representation for, 667
pole placement for, 668–669
state-space representation of, 666
with state-variable feedback, 706

Plate dispenser, 105
Polar plot, 587n
Pole(s), 162–163

eigenvalues and, 200–202
evaluating response with, 165
of first-order system, 163
imaginary part of, 214
real part of, 214
of transfer function, 163
underdamped response using, 171

Pole distribution, via Routh table with row of zeros, 312–313
Pole location

peak time from, 184
percent overshoot from, 184
for plant, 668–669
for root locus, 393
settling time from, 184
topology for, 666

Pole plot, for underdamped second-order system, 182
Pole sensitivity, root locus and, 424–425
Pole-zero plot, 164
Popa, D., 232
Position constant, 593–594
Position control system, 12, 34

antenna azimuth, 13–15, 208
response of, 14
tachometer as, 495

Positive-feedback systems, root locus for, 421–424
Postural arm reflexes, 292–293
Potentiometer, 9, 24
Powell, J. D., 31, 115, 159, 232, 453, 623, 721
Power amplifier, 94, 144
Power series method, inverse z-transform via, 734
Preamp, 94
Precision grip dynamics, 155
Prewarping, 759
Process control industry, 6
Processes, 2, 8
Prochazka, A., 234
Proportional control system, 459
Proportional-plus-derivative (PD) controllers, 469
Proportional-plus-integral (PI) controllers, 459, 464
Proportional-plus-integral-plus-derivative (PID) controllers,

5
characteristics of, 484
design, 482–486
implementing, 505
root locus for, 483

Pulse transfer function
derivation of, 736–737
of feedback system, 740–741

Pupil dilation, 26–27
Pythagorean theorem, 182

Qualitative analysis and design, 162
Qualitative method, 162
Quantization error, 726
Quarter-car model, for suspension design, 107

Radio antenna, 12
Raible’s tabular method, 745
Ramp, 19
Ramp input

steady state error and, 346–347
steady-state error and, 341, 342

Ramp response error, for lag-lead compensator, 491
Random-access memory (RAM), 354
Random early detection (RED) algorithm, 383, 441, 656
Range of gain for stability

for time delay systems, 599–600
via Bode plots, 577–578
via Nyquist criterion, 570–571

Range of sampling interval, for stability, 745–746
Rate feedback, compensating zero via, 497–500
Raven, F. H., 116, 662
RCS. See Reaction control system
Reaction control system (RCS), 6
Read/write head displacement, 330
Real-axis breakaway, root locus sketching and, 402–405
Real-axis break-in points, root locus sketching and, 402–405
Real-axis pole, transient response and, 165
Real-axis segments, root locus sketching and, 398
Realization

active-circuit, 404–405
of lag-lead compensator, 509
passive-circuit, 506–507

Reciprocal, of time constant, 167
Reference, 8
Reference input, 34
Remote-controlled robot, 3
Residues, 195
Resistance, 49
Resistor, 47
Response, exponential, 164
Response speed, from open-loop frequency response, 591–592
Retinal light flux, 443
Reverse coefficients, stability via, 310
Richon, J.-B., 452
Riedel, S. A., 116
Riegelman, S., 160
Riseman, E. M., 152, 160
Rise time, 167, 178

v. damping ratio, 182
evaluation of, 181–183
from transfer function, 181–182

Rober, S. J., 332, 337
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Robotic manipulator
with cascade PI controller, 447
harmonic drives with, 448
target environment and, 153

Robots, 3. See also specific robots
arc welding, 439
assembly-line, 354
FANUC M-410iB, 323
hospital pharmacy, 664
industrial, 220, 617
input commands to, 187
leg of, 142
remote-controlled, 3
with television imaging system, 152
transport, 288–289
vacuum, 220
walking, 141

Robust design, 12
Rockwell International, 6, 30, 691
Romagnoli, J. A., 532, 775, 781
Room temperature control, 521
Root locus, 5

for antenna control, 426
for compensated system, 462
with compensator, 460
without compensator, 460
control problem for, 388–389
definition, 388, 392–394
design via, 455–459
from general control system, 394
generalized, 419–421
for ideal derivative compensation, 473, 475
lag compensation and, 465
for lag-lead compensator, 488, 489, 490
with MATLAB program, 806–808
for minor-loop feedback compensation, 502
for notch filter, 492–493
for PID controllers, 483
of pitch control loop, 428
plotting/calibrating, 410
pole location for, 393
pole plot for, 393
pole sensitivity and, 424–425
for positive-feedback systems, 421–424
properties of, 394–397
sample, 456
for security camera system, 392–393
starting/ending points and, 398–399
for uncompensated system, 462
vector representation of complex numbers and, 389–391

Root locus analysis/design, with LabVIEW program, 871–872
Root locus sketching

angles of departure/arrival in, 407–409
with asymptotes, 400–402
behavior at infinity, 399–402

branches and, 397
critical points and, 412–414
jv-axis crossings and, 405–407
real-axis breakaway and, 402–405
real-axis break-in points and, 402–405
real-axis segments and, 398
refining, 402–411
rules for, 411–412
symmetry and, 397–398

Root sensitivity, of closed-loop system, 425
Roots of denominator of F(s)

complex or imaginary, 41–44
real and distinct, 38–40
real and repeated, 40–41

Rotational mechanical impedances, 76
Rotational mechanical load, DC motor driving, 81
Rotational mechanical system transfer functions, 69–74
Rotational systems

degrees of freedom in, 70
driven by gears, 75

Rotor, 80
Routh, Edward John, 5
Routh-Hurwitz criterion

digital system stability via, 748
examples of, 314–320
factoring via, 319
special cases of, 308–313
of stability, 305–308
with zero in first column, 314–315

Routh table
generating, 306–307
interpreting, 307
pole distribution via, 312–313
with row of zeros, 312–313, 316–317
stability via, 310–311
zero in, 308–311

Rover, 3
Rubbertuators, 331
Running resistances, 111

Safety valve, 4
Salapaka, M. V., 223, 233
Salapaka, S., 233
Salcudean, S. E., 290, 299
Sales, R. M., 337
Salminen, R. T., 108, 116, 337, 623
Sampled-data system. See Digital control systems
Sampled-data systems

block diagram reduction of, 740–741
transfer functions and, 735–739
z-transform and, 739

Sampler, modeling, 728–729
Sarcomere, 292
Saturation nonlinearity, with MATLAB Simulink program,

848–850
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Savant, C. J., Jr., 32, 299, 337, 386, 531, 623, 662, 721
Savaresi, S. M., 531, 623, 780
Sawusch, M. R., 233
Scanning probe microscope, 775
Schematic, for control system, 16–17
Schierman, J. D., 330, 337
Schmidt, D. K., 337
Schneider, R. T., 220, 233, 383, 386
Schnell, S., 116
Schouten, A. C., 292, 299
Sebastian, A., 233
Second-order step response approximation, 195
Second-order step response components, 170
Second-order system damping cases, step responses for,

172
Second-order systems, 169–177

damping ratio of, 173–175
natural frequency of, 172

Second-order transfer functions, via testing, 186
Second-order underdamped responses

for damping ratio values, 178
specifications, 178

Second-order underdamped systems, step responses of, 184
Security camera system, root locus for, 392–393
Seering, W. P., 28, 32, 110, 116, 160, 233, 300, 337, 386, 453,

532, 624, 662, 721, 781
Segway personal transporter, 27
Self-guiding vehicle, bearing angle control of, 527
Semmlow, J. L., 109, 116
Sensitivity

of closed-loop transfer function, 362–363
steady-state errors and, 362–364

Sensor, 9
Serial hybrid-electric vehicle, 29
Series analog, 85–86

mechanical system converted into, 86
Series RLC electrical network, 49
Settling time, 167, 178

lines of constant, 183
from pole location, 184
from transfer function, 181–182

Severyanova, L. A., 160, 721
Shaw, D. A., 32
Shibata, M., 386
Shin, Y. C., 337
Shinners, S. M., 721
Ship roll axis, 212
Ship stability, 5
Ship steering, 5
Shortening muscle velocity, 292
Short period mode, 224
Signal-flow graphs

components, 248
converting block diagrams to, 249–250
development stages of, 254

of multiple subsystems, 248–251
of state equations, 254–256

Similarity transformations
of multiple subsystems, 266–277
on state equations, 267

Simple circuits
via nodal analysis, 50–51
via voltage division, 51

Simulation, with LabVIEW program, 858–859
Simulation palette, in LabVIEW program, 881–882
Simulation parameters, in MATLAB Simulink program,

846–847
Simulink (MATLAB), 190, 196, 199, 225, 228, 247, 297, 335,

384, 720–721, 758, 787–835
Single loop

via differential equation, 48–49
via mesh analysis, 48–50
via transform methods, 50

Single node, 50–51
Sinha, N. K., 721
Sinusoidal frequency analysis, 5
Sinusoidal inputs, 19
SISO Design Tool, 20
Sivan, R., 300
Skewis, T., 299
Smith, C. A., 532, 662
Smith, C. L., 781
Smoother, block diagram, 440
Soft Arm, 616
Solar alpha rotary joints, 380
Solar arrays, in space station, 380
Soleimani-Mosheni, M., 337, 624
Solenoid coil circuit, 289
Solomonow, M., 234
Son, M., 662
Source shaft, 76
Space shuttle, 6

automatic steering program,
439

main engine controller, 10
multiple subsystems in, 237
pitch control system, 287–288

Space station
solar arrays, 380
vibration stabilization, 440

Sparks, A. W., 775, 781
Speed control, 4–5
Sperry Gyroscope Company, 5
Spilman, D., 531, 721
s-plane, digital system stability via, 747–748
s-plane mapping, onto z-plane, 743
Split-power hybrid-electric vehicle, 30
Spring constant, 62, 70
Spruijt, J. N., 234, 722
Squid jet locomotion, 109
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Stability, 11
closed-loop poles/response in, 304–305
definition, 302
determining, 576
evaluation of, 303
with MATLAB program, 804–805
Maxwell’s criterion of, 5
of missile control system, 743–745
range of sampling interval for, 745–746
Routh-Hurwitz criterion of, 305–308
in state space, 320–323
via epsilon method, 308–309
via mapping only positive jv-axis, 571–573
via Nyquist diagram, 569–573
via reverse coefficients, 310
via Routh-Hurwitz criterion, 318–319
via Routh table, 310–311

Stability design/transient performance, antenna control and,
606–607

Stability design via gain
in antenna control, 323–324
in UFSS, 324

Stability design via root locus, in digital control systems, 755–
756

Stability/transient response design, via gain adjustment, 626
Stable systems, steady-state error and, 341
Stall torque, 82
State equations, 122, 123, 124

Laplace transform solution of, 198–202
signal-flow graphs of, 254–256
similarity transformations on, 267

State-feedback design, 683
State solutions, time domain solution of,

203–212
State space, 123

alternative representations in, 256–265
cascade form of, 257–259
controller canonical form of, 260–262
diagonalizing system in, 270–271
graphic representation of, 123
observer canonical form of, 262–265
parallel form of, 259–260
stability in, 320–323
transfer function conversion to, 132–138

State space conversion, to transfer function,
139–141

State-space design, 663–665
for antenna azimuth position control, 708

State-space representation, 18, 117
advantages of, 119
antenna control and, 144
application of, 124–132
computer simulation and, 149
general, 123–124
linearization and, 141–143

of plant, 666
to transfer function, 140

State-transition matrix, 203
Laplace transform of, 203–204
via Laplace transform, 206–207

State-variable feedback, plant with, 706
State variables, 123

linearly independent, 124–125
minimum number of, 125–126

State vector, 123
graphic representation of, 123

Static error constants, 349–350, 464
from Bode plots, 595–596
steady-state error via, 350–352

Steady-state actuating signal, for nonunity feedback systems,
361

Steady-state error design
via cascade compensation, 626
via integral control, 700–704

Steady-state errors, 2, 15, 19. See also Errors
antenna control and, 368–371
assembly-line robots and, 354
definition, 340
digital control systems and, 749–753
digital feedback control system for,

750
for disturbances, 356–358
evaluating, 341–342
finding, 752
from frequency response, 593–597
improving, 457–458, 482–494
with MATLAB program, 805–806
for no integration systems, 347–348
for nonunity feedback systems, 358–362
for one integration systems, 348–349
parabolic input and, 347
ramp input and, 341, 342, 346–347
sensitivity of, 362–364
sources of, 343
specifications, 353–356
stable systems and, 341
from step disturbances, 357
step input and, 346
for systems in state space, 364–367
system type and, 352–353
in terms of G(s), 345–348
in terms of T(s), 344–345
test inputs, 340–341
test waveforms for, 340
transient response, 19, 482–494
for unity feedback systems, 343–349
using final value theorem, 365
using input substitution, 367
via cascade compensation, 459–469
via static error constants, 350–352
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Steady-state response, 11
Steady-state velocity error, 375
Steam-driven power generators, 524
Steam generator, water level control in, 333
Steam pressure control, 4
Steel production, continuous casting in, 294
Steering control, of F4-E military aircraft, 153
Stefani, R. T., 32, 220, 233, 299, 337, 380, 386, 531,

623, 662, 721
Stefanides, E. J., 662
Step, 19
Step disturbances, steady-state errors from, 357
Step input, steady state error and, 346
Step responses

computer simulation of, 429
of gain-adjusted antenna control system, 427
of nonminimum-phase network, 194
of nonminimum-phase system, 192
of pitch control loop without rate feedback,

429
of pitch control loop with rate feedback, 430
for second-order system damping cases, 172
of second-order underdamped systems, 184
of three-pole systems, 189
for transfer functions, 190

Step response simulation, for minor-loop feedback
compensation, 503

s-transform, table of, 732
Strobel, K. L., 221, 623
Student population control system, 25
Submarine autopilot, 154
Subsystems, 2. See also Multiple subsystems
Summers, T. A., 233
Summing admittances, 56, 86
Summing impedances, 56, 57
Summing junctions, 8

block diagram for, 241
Summing torques, of pendulum, 142
Summing voltages, 57
Sun, M., 225, 233
Superposition, 88
Susceptance, 54n
Suspension design, for quarter-car model, 107
Sweet, L. M., 233, 623
Symbolic Math Toolbox, 21
Symbols list, 783
Symmetry, root locus sketching and, 397–398
System matrix, diagonalizing a, 268
System representation, block diagram of, 34
System response, 162–163

with additional poles, 186–190
from transfer function, 46
with zeros, 191–196

Systems in state space, steady-state errors for,
364–367

System step response test, laboratory results of, 168
System type, steady-state errors and, 352–353
System variable, 123

T(s), steady state error as, 344–345
Tabular method (Raible), 745
Tachometer

as position control system, 495
transfer function of, 496

Tadeo, F., 721
Tanis, D., 287
Tan, X., 152, 160
Tar�ın, C., 153, 160, 715, 722
Tactile feedback suit, 27–28
Target environment, robotic manipulator and,

153
Tasch, U., 292, 300, 776, 781
Taylor series, 58, 59, 80, 142
Television imaging system, robot with, 152
Temperature control system, 4, 24

chemical process, 525
Testing

first-order transfer functions via, 167–168
second-order transfer functions via, 186

Test inputs, for steady-state error, 340–341
Test waveforms, 19

for steady-state error, 340
Teufel, E., 160, 722
Theophylline concentration, 221
Thermistor, 9
Thermostat, 6
Third-order observer, 684
Third-order system gain design, 416–419

system characteristics, 417–418
Thomas, B., 333, 337, 532, 616, 624
Three-loop electrical network, 56
Three-mode controllers. See PID (proportional-plus-integral-

plus-derivative) controllers
Three-pole systems

comparing responses of, 189–190
component responses of, 188
step responses of, 189

Thrust vectoring, 287
Thukral, A., 337, 661
Tie, B., 109, 116
Time constant, 166–167

exponential, 174
reciprocal of, 167

Time delay systems, 597–602
frequency response plots of, 598–599
percent overshoot for, 600–601
range of gain for stability for, 599–600

Time domain modeling, 117–122
with MATLAB program, 793–795
of state solutions, 203–212

Index 923



Apago PDF Enhancer

E1BINDEX 10/27/2010 17:58:9 Page 924

Time function
Laplace transform of, 35–36
z-transform of, 731–732

Time response
with MATLAB program, 795–799
nonlinearities and, 196–198

Time-varying systems, 118
Timothy, L. K., 160, 233, 300, 337, 722
Titanic, 272
Top-down design, 22
Torque, of motor, 80
Torque-angular displacement, 70
Torque-angular velocity, 70
Torque equivalent mechanical loading, 80
Torque-speed curve, 82, 83

with armature voltage, 82
Total response, 11
Tou, J., 781
Towed vehicle roll control, 332
Tower Trainer 60 Unmanned Aerial Vehicle, 657
Towsley, D., 386, 453, 623, 662
Tracking radar, 382
Train stopping, closed-loop vehicle response for, 441
Transducer

inner ear hair cell, 105
input, 8
output, 9

Transfer function(s), 17
block diagram of, 45
from Bode plots, 603–605
decomposing, 136, 137
for differential equation, 45
of digital control systems, 735–739
electrical network, 47–61
experimentally obtaining, 602–605
frequency response from, 538–539
of human leg, 95–96
matrix, 139
nonminimum-phase system of, 192–194
peak time from, 181–182
percent overshoot from, 181–182
poles of, 163
rise time from, 181–182
sampled-data systems and, 735–739
second-order approximation, 190
settling time from, 181–182
state space conversion to, 140
state-space representation to, 140
step responses for, 190
system response from, 46
of translational mechanical system, 61–69
via Mason’s rule, 252–253
zeros of, 163

Transfer function conversion
with constant term in numerator, 134–135

with polynomial in numerator, 136–137
to state space, 132–138

Transfer function poles, eigenvalues and, 200–202
Transformation

controller design by, 679–681
observer design by, 695–697

Transformation matrix, 266, 268, 270, 272
Transformations

bilinear, 746–747
to canonical form, 260–263
controller design by, 678–681
observer design by, 693–697
similarity, 266–270

Transformed circuit, 49
Transformed free-body diagram, 63
Transform methods, single loop via, 50
Transform of the response, 177
Transient response, 2, 10

through component design, 185–186
desired, 10
gain design for, 247–248
improving, 456–457
modeling, 19
real-axis pole and, 165
steady-state errors and, 19, 482–494
via gain adjustment, 627–630

Transient response design, via gain adjustment, 415–419, 626
Transient response design via gain adjustment

antenna control and, 426–427, 765–767
digital control systems and, 756–757
UFSS and, 427–430

Transient response improvement, via cascade compensation,
469–481

Transient response modeling steady-state error, 19
Transient response on z-plane, digital control systems and,

753–755
Transition method, 303
Translational mechanical system

representation of, 130–131
transfer functions, 61–69

Transpose, 128
ATreatise on the Stability of a Given State of Motion (Routh), 5
TryIt, 40-43, 46, 57, 72, 138, 141, 186, 190, 191, 195, 202, 245,

248, 261, 263, 271, 308, 316, 322, 353, 355, 359, 364, 365,
391, 397, 414, 467, 477, 559, 570, 576, 579, 588, 601, 630,
634, 641, 672, 676, 689, 693, 738, 758

Tumor cell growth model, 109
Turnbull, G. A., 32
Tustin transformation, 759
Twizell, E. H., 115
Two degrees of freedom translational mechanical system,

65–66
Two-lop electrical network, 52–53
Two-pole system, zeros and, 191
Two-tank liquid control system, 521
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Tyberg, V. J., 232
Tyner, M., 722

UFSS. See Unmanned Free-Swimming Submersible
UNAIDS, 32
Unbounded input, 302
Uncompensated/compensated system, of ideal derivative

compensation, 472–473
Uncompensated system

ideal derivative compensation and, 472
root locus for, 462

Uncompensated system response, ideal integral compensated
system response and, 463

Uncontrollable system, 673
Undamped response, 171, 172
Undamped second-order systems, 177–186
Undamped sinusoidal oscillations, 213
Underdamped curve, 174
Underdamped response, 170, 172

using poles, 171
Underdamped second-order system, pole plot for, 182
Underwater remote-controlled vehicle, 317
Uniform-rate sampling, 728
Uniform rectangular pulse train, 729
Unit multiplicity, 312n
Unit parabolic input, for digital feedback control system,

751
Unit ramp input, for digital feedback control system, 751
Unit step, first-order system and, 166
Unit step input, for digital feedback control system, 750–751
Unity feedback systems

forming an equivalent, 358
steady state error for, 343–349

Unity gain, 9
Unmanned autonomous vehicle, 527–528
Unmanned Free-Swimming Submersible (UFSS),

162, 272
lead/feedback compensation in, 511–513
open-loop pitch response and, 207–208
pitch angle control representation, 276–277
pitch control loop for, 211
stability design via gain in, 324
transient design via gain and, 427–430

Unobservability, via observability matrix, 692–693
Unstable systems, 303. See also Stability
€Unyelioglu, K. A., 337, 454

Vacuum robot, 220
van der Helm, F. C. T., 292, 299
van der Molen, G. M., 154, 160
Van de Vegte, J., 532
Van Dijk, E., 225, 234, 722
Van Valkenburg, M. E., 116
Variable speed wind turbine, feedback control, 718
Vaughan, N. D., 26, 32, 289, 300

Vector-matrix form, 127
Vector representation, of complex numbers, 389–391
Vectors

evaluation of complex function via, 391
Laplace transform of, 139n
state, 123

Vehicle steering control model, 441
Velocity, 374
Velocity constant, 594
Vertical spindle surface grinding, 333
Venter, J. W., 31, 110, 115, 159, 232, 299, 337, 386, 455, 531,

623, 662, 721, 789
Verde, L., 153, 159, 299, 452
Vertical risers, 4
Viaro, U., 290, 300, 386
Vibration stabilization, in space station, 440
Video disc laser recording, 370
Vidyasagar, M., 116, 386, 453
Vieira, A., 160, 721
Virkkunen, J., 108, 116, 337, 623
Virtual Experiment, 65, 83, 142, 166, 182, 247, 313, 357,

473, 501
Virtual reality simulator, 293
Viscous damper, 64, 125
Viscous damping, 17
Visual cue, human response to, 220
Voltage-charge, 48
Voltage-current, 48
Voltage-dependent current source, 128
Voltage division, simple circuits via, 51
Voltage droop control, 442

Walking robots. See Robots
Wang, H., 386, 453, 623
Wang, J. Z., 109, 116
Water clock, 4
Water level control, in steam generator, 333
Watt, James, 5
Waveforms, 19
Weiss, R., 152, 160
Welkowitz, W., 109, 116
Wie, B., 624
Winders, 25
Windmill speed control, 4–5
Wind turbines, 446
Wittenmark, B., 759, 780
Wolfson, P., 233
Wong, M. C., 386, 453
Woods Hole Oceanographic Institution, 317
Wormly, D. N., 28, 32, 110, 116, 160, 233, 300, 337, 386, 453,

532, 624, 662, 721

Xia, X., 31, 110, 115, 159, 232, 299, 337, 386, 452, 531, 623, 662,
721, 780

Xiong, Y., 233
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Yan, T., 330, 338, 447, 454, 662
Yaniv, Y., 292, 300
Yingst, J. C., 780
Yoneyama, T., 116, 453, 623

Zbinden, A. M., 32
Zedka, M., 223, 234
Zero(s), 162–163

entire row is, 310–311
in first column, 308–309, 314–315
of first-order system, 163
in Routh table, 308–311
system response with, 191–196
of transfer function, 163
two-pole system and, 191

Zero-input response, 203

Zero-order hold
ideal sampling and, 730
modeling, 729–730

Zero-order sample-and-hold, 726,
730

Zero-state response, 203, 214
Zhou, B. H., 221, 234
z-plane

digital system stability via, 742–743
s-plane mapping onto, 743

z-transform, 728, 730–735
digital control systems and, 730–735
sampled-data systems and, 739
table of, 732
theorems, 733
of time function, 731–732
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Block Diagram

Potentiometer Preamplifier
Power

amplifier
Motor

and load Gears
Desired
azimuth

angle

Azimuth
angle

qi(s) qo(s)

s + a

K1K Kg
s(s+am)

K1

Potentiometer

Kpot

+

–

qm(s)Ea(s)Ve(s)Vi(s) Vp(s)
Kpot

Schematic Parameters

Block Diagram Parameters

Parameter Configuration 1 Configuration 2 Configuration 3

V 10 10 10

n 10 1 1

K — — —

K1 100 150 100

a 100 150 100

Ra 8 5 5

Ja 0.02 0.05 0.05

Da 0.01 0.01 0.01

Kb 0.5 1 1

Kt 0.5 1 1

N1 25 50 50

N2 250 250 250

N3 250 250 250

JL 1 5 5

DL 1 3 3

Parameter Configuration 1 Configuration 2 Configuration 3

Kpot 0.318

K —

K1 100

a 100

Km 2.083

am 1.71

Kg 0.1

Note: reader may fill in Configuration 2 and Configuration 3 columns after completing
the antenna control Case Study challenge problems in Chapters 2 and 10, respectively.
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Key Equations

Modeling

VoðsÞ
ViðsÞ ¼ �Z2ðsÞ

Z1ðsÞ ð2:97Þ; VoðsÞ
ViðsÞ ¼ Z1ðsÞ þ Z2ðsÞ

Z1ðsÞ ð2:104Þ

u2

u1
¼ r1

r2
¼ N1

N2
ð2:133Þ; T2

T1
¼ u1

u2
¼ N2

N1
ð2:135Þ

Number of teeth of
gear on destination shaft

Number of teeth of
gear on source shaft

0
B@

1
CA

2

ðsee after 2:138Þ

umðsÞ
EaðsÞ ¼

Kt= RaJmð Þ
s sþ 1

Jm
Dm þ KtKb

Ra

� �� � ð2:153Þ

Kt

Ra
¼ Tstall

ea
ð2:162Þ; Kb ¼ ea

vno-load
ð2:163Þ

TðsÞ ¼ YðsÞ
UðsÞ ¼ CðsI�AÞ�1BþD ð3:73Þ

Time Response

Tr ¼ 2:2

a
ð4:9Þ; Ts ¼ 4

a
ð4:10Þ

GðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð4:22Þ

%OS ¼ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ � 100 ð4:38Þ

z ¼ �ln ð%OS=100Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln2 ð%OS=100Þ

q ð4:39Þ

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð4:34Þ; Ts ¼ 4

zvn
ð4:42Þ

Steady-State Error

eð1Þ ¼ estepð1Þ ¼ 1

1 þ lim
s!0

GðsÞ ð7:30Þ; Kp ¼ lim
s!0

GðsÞ ð7:33Þ

eð1Þ ¼ erampð1Þ ¼ 1

lim
s!0

sGðsÞ ð7:31Þ; Kv ¼ lim
s!0

sGðsÞ ð7:34Þ

eð1Þ ¼ eparabolað1Þ ¼ 1

lim
s!0

s2GðsÞ ð7:32Þ; Ka ¼ lim
s!0

s2GðsÞ ð7:35Þ

Root Locus

ffKGðsÞHðsÞ ¼ �1 ¼ 1ffð2kþ 1Þ180� ð8:13Þ

sa ¼
P

finite poles �P finite zeros

# finite poles � # finite zeros
ð8:27Þ

ua ¼ ð2kþ 1Þp
# finite poles � # finite zeros

ð8:28Þ

u ¼P finite zero angles �P finite pole angles

K ¼ 1

jGðsÞHðsÞj ¼
1

M
¼
Q

finite pole lengthsQ
finite zero lengths

ð8:51Þ

Frequency Response

Mp ¼ 1

2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð10:52Þ; vp ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2

p
ð10:53Þ

vBW ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 2z2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4 � 4z2 þ 2

pq
ð10:54Þ

FM ¼ tan�1 2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4z4

pq ð10:73Þ

fmax ¼ tan�1 1 � b

2
ffiffiffi
b

p ¼ sin�1 1 � b

1 þ b
ð11:11Þ

vmax ¼ 1

T
ffiffiffi
b

p ð11:9Þ; jGcðjvmaxÞj ¼ 1ffiffiffi
b

p ð11:12Þ

State Space

CM ¼ ½B AB A2B � � � An�1B � ð12:26Þ

_x ¼ ðA� BKÞxþ Br; y ¼ Cx ð12:3Þ; OM ¼
C
CA
..
.

CAn�1

2
664

3
775 ð12:79Þ

_ex ¼ ðA� LCÞex; y� ŷ ¼ Cex ð12:64Þ

Digital Control

e�ð1Þ ¼ lim
z!1

ð1 � z�1ÞEðzÞ ð13:66Þ

Kp ¼ lim
z!1

GðzÞ ð13:70Þ; Kv ¼ 1

T
lim
z!1

ðz� 1ÞGðzÞ ð13:73Þ

Ka ¼ 1

T 2
lim
z!1

ðz� 1Þ2GðzÞ ð13:75Þ
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Solutions to Skill-Assessment
Exercises

CHAPTER 2

2.1

The Laplace transform of t is
1

s2
using Table 2.1, Item 3. Using Table 2.2, Item 4,

F sð Þ ¼ 1

sþ 5ð Þ2
.

2.2

Expanding F(s) by partial fractions yields:

F sð Þ ¼ A

s
þ B

sþ 2
þ C

sþ 3ð Þ2
þ D

sþ 3ð Þ
where,

A ¼ 10

sþ 2ð Þ sþ 3ð Þ2

�����
S!0

¼ 5

9
B ¼ 10

s sþ 3ð Þ2

�����
S!�2

¼ �5

C ¼ 10

s sþ 2ð Þ
����
S!�3

¼ 10

3
; and D ¼ sþ 3ð Þ2 dF sð Þ

ds

����
s!�3

¼ 40

9

Taking the inverse Laplace transform yields,

f tð Þ ¼ 5

9
� 5e�2t þ 10

3
te�3t þ 40

9
e�3t

2.3

Taking the Laplace transform of the differential equation assuming zero initial
conditions yields:

s3C sð Þ þ 3s2C sð Þ þ 7sC sð Þ þ 5C sð Þ ¼ s2R sð Þ þ 4sR sð Þ þ 3R sð Þ
Collecting terms,

s3 þ 3s2 þ 7sþ 5
� �

C sð Þ ¼ s2 þ 4sþ 3
� �

R sð Þ
Thus,

C sð Þ
R sð Þ ¼

s2 þ 4sþ 3

s3 þ 3s2 þ 7sþ 5

1
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2.4

G sð Þ ¼ C sð Þ
R sð Þ ¼

2sþ 1

s2 þ 6sþ 2

Cross multiplying yields,

d2c

dt2
þ 6

dc

dt
þ 2c ¼ 2

dr

dt
þ r

2.5

C sð Þ ¼ R sð ÞG sð Þ ¼ 1

s2
� s

sþ 4ð Þ sþ 8ð Þ ¼
1

s sþ 4ð Þ sþ 8ð Þ ¼
A

s
þ B

sþ 4ð Þ þ
C

sþ 8ð Þ
where

A ¼ 1

sþ 4ð Þ sþ 8ð Þ
����
S!0

¼ 1

32
B ¼ 1

s sþ 8ð Þ
����
S!�4

¼ � 1

16
; and C ¼ 1

s sþ 4ð Þ
����
S!�8

¼ 1

32

Thus,

c tð Þ ¼ 1

32
� 1

16
e�4t þ 1

32
e�8t

2.6

Mesh Analysis

Transforming the network yields,

+V(s)

I1(s) I2(s)

V1(s)

V2(s)

I9(s)

+

1 1

s s

s

_

_

Now, writing the mesh equations,

sþ 1ð ÞI1 sð Þ � sI2 sð Þ � I3 sð Þ ¼ V sð Þ
�sI1 sð Þ þ 2sþ 1ð ÞI2 sð Þ � I3 sð Þ ¼ 0
�I1 sð Þ � I2 sð Þ þ sþ 2ð ÞI3 sð Þ ¼ 0

Solving the mesh equations for I2(s),

I2 sð Þ ¼

sþ 1ð Þ V sð Þ �1
�s 0 �1
�1 0 sþ 2ð Þ

������

������
sþ 1ð Þ �s �1
�s 2sþ 1ð Þ �1
�1 �1 sþ 2ð Þ

������

������

¼ s2 þ 2sþ 1
� �

V sð Þ
s s2 þ 5sþ 2ð Þ

2 Solutions to Skill-Assessment Exercises
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But, VL sð Þ ¼ sI2 sð Þ
Hence,

VL sð Þ ¼ s2 þ 2sþ 1
� �

V sð Þ
s2 þ 5sþ 2ð Þ

or

VL sð Þ
V sð Þ ¼ s2 þ 2sþ 1

s2 þ 5sþ 2

Nodal Analysis

Writing the nodal equations,

1

s
þ 2

� �
V1 sð Þ � VL sð Þ ¼ V sð Þ

�V1 sð Þ þ 2

s
þ 1

� �
VL sð Þ ¼ 1

s
V sð Þ

Solving for VL(s),

VL sð Þ ¼

1

s
þ 2

� �
V sð Þ

�1
1

s
V sð Þ

�������

�������
1

s
þ 2

� �
�1

�1
2

s
þ 1

� �
��������

��������

¼ s2 þ 2sþ 1
� �

V sð Þ
s2 þ 5sþ 2ð Þ

or

VL sð Þ
V sð Þ ¼ s2 þ 2sþ 1

s2 þ 5sþ 2

2.7

Inverting

G sð Þ ¼ �Z2 sð Þ
Z1 sð Þ ¼

�100000

105=s
� � ¼ �s

Noninverting

G sð Þ ¼ Z1 sð Þ þ Z sð Þ½ �
Z1 sð Þ ¼

105

s
þ 105

 !

105

s

 ! ¼ sþ 1

2.8

Writing the equations of motion,

s2 þ 3sþ 1
� �

X1 sð Þ � 3sþ 1ð ÞX2 sð Þ ¼ F sð Þ
� 3sþ 1ð ÞX1 sð Þ þ s2 þ 4sþ 1

� �
X2 sð Þ ¼ 0

Chapter 2 Solutions to Skill-Assessment Exercises 3
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Solving for X2(s),

X2 sð Þ ¼
s2 þ 3sþ 1
� �

F sð Þ
� 3sþ 1ð Þ 0

����
����

s2 þ 3sþ 1
� � � 3sþ 1ð Þ
� 3sþ 1ð Þ s2 þ 4sþ 1

� �
�����

�����
¼ 3sþ 1ð ÞF sð Þ

s s3 þ 7s2 þ 5sþ 1ð Þ

Hence,
X2 sð Þ
F sð Þ ¼ 3sþ 1ð Þ

s s3 þ 7s2 þ 5sþ 1ð Þ

2.9

Writing the equations of motion,

s2 þ sþ 1
� �

u1 sð Þ � sþ 1ð Þu2 sð Þ ¼ T sð Þ
� sþ 1ð Þu1 sð Þ þ 2sþ 2ð Þu2 sð Þ ¼ 0

where u1 sð Þ is the angular displacement of the inertia.
Solving for u2 sð Þ,

u2 sð Þ ¼
s2 þ sþ 1
� �

T sð Þ
� sþ 1ð Þ 0

����
����

s2 þ sþ 1
� � � sþ 1ð Þ
� sþ 1ð Þ 2sþ 2ð Þ

����
����
¼ sþ 1ð ÞF sð Þ

2s3 þ 3s2 þ 2sþ 1

From which, after simplification,

u2 sð Þ ¼ 1

2s2 þ sþ 1

2.10

Transforming the network to one without gears by reflecting the 4 N-m/rad spring to
the left and multiplying by (25/50)2, we obtain,

Writing the equations of motion,

s2 þ s
� �

u1 sð Þ � sua sð Þ ¼ T sð Þ
�su1 sð Þ þ sþ 1ð Þua sð Þ ¼ 0

where u1 sð Þ is the angular displacement of the 1-kg inertia.
Solving for ua sð Þ,

ua sð Þ ¼
s2 þ s
� �

T sð Þ
�s 0

����
����

s2 þ s
� � �s

�s sþ 1ð Þ

����
����
¼ sT sð Þ

s3 þ s2 þ s

4 Solutions to Skill-Assessment Exercises
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From which,
ua sð Þ
T sð Þ ¼

1

s2 þ sþ 1

But, u2 sð Þ ¼ 1

2
ua sð Þ:

Thus,

u2 sð Þ
T sð Þ ¼

1=2

s2 þ sþ 1

2.11

First find the mechanical constants.

Jm ¼ Ja þ JL
1

5
� 1

4

� �2

¼ 1 þ 400
1

400

� �
¼ 2

Dm ¼ Da þDL
1

5
� 1

4

� �2

¼ 5 þ 800
1

400

� �
¼ 7

Now find the electrical constants. From the torque-speed equation, set vm ¼ 0 to
find stall torque and set Tm ¼ 0 to find no-load speed. Hence,

Tstall ¼ 200

vno�load ¼ 25

which,

Kt

Ra
¼ Tstall

Ea
¼ 200

100
¼ 2

Kb ¼ Ea

vno�load
¼ 100

25
¼ 4

Substituting all values into the motor transfer function,

um sð Þ
Ea sð Þ ¼

KT

RaJm

s sþ 1

Jm

� �
Dm þKTKb

Ra

� � ¼ 1

s sþ 15

2

� �

where um sð Þ is the angular displacement of the armature.

Now uL sð Þ ¼ 1

20
um sð Þ. Thus,

uL sð Þ
Ea sð Þ ¼

1=20

s sþ 15

2

� �

2.12

Letting

u1 sð Þ ¼ v1 sð Þ=s
u2 sð Þ ¼ v2 sð Þ=s

Chapter 2 Solutions to Skill-Assessment Exercises 5
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in Eqs. 2.127, we obtain

J1sþD1 þK

s

� �
v1 sð Þ �K

s
v2 sð Þ ¼ T sð Þ

�K

s
v1 sð Þ þ J2sþD2 þK

s

� �
v2 sð Þ

From these equations we can draw both series and parallel analogs by considering
these to be mesh or nodal equations, respectively.

–
+

J1

J1

J2

J2

D1

D1

D2

D2

T(t)

T(t)

w1(t)

w1(t)

w2(t)

w2(t)

1 1

K

1

1

Series analog

Parallel analog

K

2.13

Writing the nodal equation,

C
dv

dt
þ ir � 2 ¼ i tð Þ

But,

C ¼ 1

v ¼ vo þ dv

ir ¼ evr ¼ ev ¼ evoþdv

Substituting these relationships into the differential equation,

d vo þ dvð Þ
dt

þ evoþdv � 2 ¼ i tð Þ ð1Þ

We now linearize ev.
The general form is

f vð Þ � f voð Þ � df

dv

����
vo

dv

Substituting the function, f vð Þ ¼ ev, with v ¼ vo þ dv yields,

evoþdv � evo � dev

dv

����
vo

dv

6 Solutions to Skill-Assessment Exercises
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Solving for evoþdv,

evoþdv ¼ evo þ dev

dv

����
vo

dv ¼ evo þ evodv

Substituting into Eq. (1)

ddv

dt
þ evo þ evodv� 2 ¼ i tð Þ ð2Þ

Setting i tð Þ ¼ 0 and letting the circuit reach steady state, the capacitor acts like an
open circuit. Thus, vo ¼ vr with ir ¼ 2. But, ir ¼ evr or vr ¼ lnir.

Hence, vo ¼ ln 2 ¼ 0:693. Substituting this value of vo into Eq. (2) yields

ddv

dt
þ 2dv ¼ i tð Þ

Taking the Laplace transform,

sþ 2ð Þdv sð Þ ¼ I sð Þ

Solving for the transfer function, we obtain

dv sð Þ
I sð Þ ¼ 1

sþ 2

or

V sð Þ
I sð Þ ¼ 1

sþ 2
about equilibrium:

CHAPTER 3

3.1

Identifying appropriate variables on the circuit yields

–

+

–
+

C1

iL iC2

iC1
iR
C2

R

L vo(t)v1(t)

Writing the derivative relations

C1
dvC1

dt
¼ iC1

L
diL
dt

¼ vL

C2
dvC2

dt
¼ iC2

ð1Þ

Chapter 3 Solutions to Skill-Assessment Exercises 7
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Using Kirchhoff’s current and voltage laws,

iC1 ¼ iL þ iR ¼ iL þ 1

R
vL � vC2ð Þ

vL ¼ �vC1 þ vi

iC2 ¼ iR ¼ 1

R
vL � vC2ð Þ

Substituting these relationships into Eqs. (1) and simplifying yields the state
equations as

dvC1

dt
¼ � 1

RC1
vC1 þ

1

C1
iL � 1

RC1
vC2 þ

1

RC1
vi

diL
dt

¼ � 1

L
vC1 þ

1

L
vi

dvC2

dt
¼ � 1

RC2
vC1 �

1

RC2
vC2

1

RC2
vi

where the output equation is

vo ¼ vC2

Putting the equations in vector-matrix form,

_x ¼

� 1

RC1

1

C1
� 1

RC1

� 1

L
0 0

� 1

RC2
0 � 1

RC2

2
66666664

3
77777775
xþ

1

RC1

1

L

1

RC2

2
66666664

3
77777775
vi tð Þ

y ¼ 0 0 1½ �x

3.2

Writing the equations of motion

s2 þ sþ 1
� �

X1 sð Þ �sX2 sð Þ ¼ F sð Þ
�sX1 sð Þ þ s2 þ sþ 1

� �
X2 sð Þ �X3 sð Þ ¼ 0

�X2 sð Þ þ s2 þ sþ 1
� �

X3 sð Þ¼ 0

Taking the inverse Laplace transform and simplifying,

€x1 ¼ � _x1 � x1 þ _x2 þ f

€x2 ¼ _x1 � _x2 � x2 þ x3

€x3 ¼ � _x3 � x3 þ x2

Defining state variables, zi,

z1 ¼ x1; z2 ¼ _x1; z3 ¼ x2; z4 ¼ _x2; z5 ¼ x3; z6 ¼ _x3

8 Solutions to Skill-Assessment Exercises
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Writing the state equations using the definition of the state variables and the inverse
transform of the differential equation,

_z1 ¼ z2

_z2 ¼ €x1 ¼ � _x1 � x1 þ _x2 þ f ¼ �z2 � z1 þ z4 þ f

_z3 ¼ _x2 ¼ z4

_z4 ¼ €x2 ¼ _x1 � _x2 � x2 þ x3 ¼ z2 � z4 � z3 þ z5

_z5 ¼ _x3 ¼ z6

_z6 ¼ €x3 ¼ � _x3 � x3 þ x2 ¼ �z6 � z5 þ z3

The output is z5. Hence, y ¼ z5. In vector-matrix form,

_z ¼

0 1 0 0 0 0

�1 �1 0 1 0 0

0 0 0 1 0 0

0 1 �1 �1 1 0

0 0 0 0 0 1

0 0 1 0 �1 �1

2
666666664

3
777777775
zþ

0

1

0

0

0

0

2
666666664

3
777777775
f tð Þ; y ¼ 0 0 0 0 1 0½ �z

3.3

First derive the state equations for the transfer function without zeros.

X sð Þ
R sð Þ ¼

1

s2 þ 7sþ 9

Cross multiplying yields

s2 þ 7sþ 9
� �

X sð Þ ¼ R sð Þ
Taking the inverse Laplace transform assuming zero initial conditions, we get

€x þ 7 _xþ 9x ¼ r

Defining the state variables as,

x1 ¼ x

x2 ¼ _x

Hence,

_x1 ¼ x2

_x2 ¼ €x ¼ �7 _x� 9xþ r ¼ �9x1 � 7x2 þ r

Using the zeros of the transfer function, we find the output equation to be,

c ¼ 2 _xþ x ¼ x1 þ 2x2

Putting all equation in vector-matrix form yields,

_x ¼
0 1

�9 �7

" #
xþ

0

1

" #
r

c ¼ 1 2½ �x

Chapter 3 Solutions to Skill-Assessment Exercises 9
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3.4

The state equation is converted to a transfer function using

G sð Þ ¼ C sI�Að Þ�1B ð1Þ

where

A ¼ �4 �1:5

4 0

	 

;B ¼ 2

0

	 

; and C ¼ 1:5 0:625½ �:

Evaluating sI�Að Þ yields

sI�Að Þ ¼ sþ 4 1:5

�4 s

	 


Taking the inverse we obtain

sI�Að Þ�1 ¼ 1

s2 þ 4sþ 6

s �1:5

4 sþ 4

	 


Substituting all expressions into Eq. (1) yields

G sð Þ ¼ 3sþ 5

s2 þ 4sþ 6

3.5

Writing the differential equation we obtain

d2x

dt2
þ 2x2 ¼ 10 þ df tð Þ ð1Þ

Letting x ¼ xo þ dx and substituting into Eq. (1) yields

d2 xo þ dxð Þ
dt2

þ 2 xo þ dxð Þ2 ¼ 10 þ df tð Þ ð2Þ

Now, linearize x2.

xo þ dxð Þ2 � x2
o ¼ d x2

� �
dx

����
xo

dx ¼ 2xodx

from which

xo þ dxð Þ2 ¼ x2
o þ 2xodx ð3Þ

Substituting Eq. (3) into Eq. (1) and performing the indicated differentiation gives
us the linearized intermediate differential equation,

d2dx

dt2
þ 4xodx ¼ �2x2

o þ 10 þ df tð Þ ð4Þ

The force of the spring at equilibrium is 10 N. Thus, since F ¼ 2x2; 10 ¼ 2x2
o from

which

xo ¼
ffiffiffi
5

p

10 Solutions to Skill-Assessment Exercises
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Substituting this value of xo into Eq. (4) gives us the final linearized differential
equation.

d2dx

dt2
þ 4

ffiffiffi
5

p
dx ¼ df tð Þ

Selecting the state variables,

x1 ¼ dx

x2 ¼ _dx

Writing the state and output equations

_x1 ¼ x2

_x2 ¼€dx ¼ �4
ffiffiffi
5

p
x1 þ df tð Þ

y ¼ x1

Converting to vector-matrix form yields the final result as

_x ¼ 0 1

�4
ffiffiffi
5

p
0

	 

xþ 0

1

	 

df tð Þ

y ¼ 1 0½ �x

CHAPTER 4

4.1

For a step input

C sð Þ ¼ 10 sþ 4ð Þ sþ 6ð Þ
s sþ 1ð Þ sþ 7ð Þ sþ 8ð Þ sþ 10ð Þ ¼

A

s
þ B

sþ 1
þ C

sþ 7
þ D

sþ 8
þ E

sþ 10

Taking the inverse Laplace transform,

c tð Þ ¼ Aþ Be�t þ Ce�7t þDe�8t þ Ee�10t

4.2

Since a ¼ 50; Tc ¼ 1

a
¼ 1

50
¼ 0:02s; Ts ¼ 4

a
¼ 4

50
¼ 0:08 s; and

Tr ¼ 2:2

a
¼ 2:2

50
¼ 0:044 s.

4.3

a. Since poles are at �6 � j 19:08; c tð Þ ¼ Aþ Be�6tcos 19:08t þ fð Þ.
b. Since poles are at �78:54 and �11:46; c tð Þ ¼ Aþ Be�78:54t þ Ce�11:4t.
c. Since poles are double on the real axis at �15 c tð Þ ¼ Aþ Be�15t þ Cte�15t:
d. Since poles are at �j 25; c tð Þ ¼ Aþ B cos 25t þ fð Þ.
4.4

a. vn ¼ ffiffiffiffiffiffiffiffi
400

p ¼ 20 and 2zvn ¼ 12; ;z ¼ 0:3 and system is underdamped.

b. vn ¼ ffiffiffiffiffiffiffiffi
900

p ¼ 30 and 2zvn ¼ 90; ;z ¼ 1:5 and system is overdamped.

c. vn ¼ ffiffiffiffiffiffiffiffi
225

p ¼ 15 and 2zvn ¼ 30; ;z ¼ 1 and system is critically damped.

d. vn ¼
ffiffiffiffiffiffiffiffi
625

p
¼ 25 and 2zvn ¼ 0; ;z ¼ 0 and system is undamped.

Chapter 4 Solutions to Skill-Assessment Exercises 11
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4.5

vn ¼
ffiffiffiffiffiffiffiffi
361

p ¼ 19 and 2zvn ¼ 16; ;z ¼ 0:421:

Now, Ts ¼ 4

zvn
¼ 0:5 s and Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ 0:182 s.

From Figure 4.16, vnTr ¼ 1:4998. Therefore, Tr ¼ 0:079 s.

Finally, %os ¼ e

�zpffiffiffi
1

p
� z2 � 100 ¼ 23:3%

4.6

a. The second-order approximation is valid, since the dominant poles have a real
part of �2 and the higher-order pole is at �15, i.e. more than five-times further.

b. The second-order approximation is not valid, since the dominant poles have a real
part of �1 and the higher-order pole is at �4, i.e. not more than five-times further.

4.7

a. Expanding G(s) by partial fractions yields G sð Þ ¼ 1

s
þ 0:8942

sþ 20
� 1:5918

sþ 10
� 0:3023

sþ 6:5
.

But �0:3023 is not an order of magnitude less than residues of second-order terms
(term 2 and 3). Therefore, a second-order approximation is not valid.

b. Expanding G(s) by partial fractions yields G sð Þ ¼ 1

s
þ 0:9782

sþ 20
� 1:9078

sþ 10
� 0:0704

sþ 6:5
.

But 0.0704 is an order of magnitude less than residues of second-order terms
(term 2 and 3). Therefore, a second-order approximation is valid.

4.8

See Figure 4.31 in the textbook for the Simulink block diagram and the output responses.

4.9

a. Since sI�A ¼ s �2

3 sþ 5

	 

; sI�Að Þ�1 ¼ 1

s2 þ 5sþ 6

sþ 5 2

�3 s

	 

: Also,

BU sð Þ ¼
0

1= sþ 1ð Þ

" #
.

The state vector is X sð Þ ¼ sI�Að Þ�1 x 0ð Þ þ BU sð Þ½ � ¼ 1

sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ�

2 s2 þ 7sþ 7
� �
s2 � 4s� 6

" #
. The output is Y sð Þ ¼ 1 3½ �X sð Þ ¼ 5s2 þ 2s� 4

sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ ¼

� 0:5

sþ 1
� 12

sþ 2
þ 17:5

sþ 3
. Taking the inverse Laplace transform yields y tð Þ ¼

�0:5e�t � 12e�2t þ 17:5e�3t.
b. The eigenvalues are given by the roots of jsI�Aj ¼ s2 þ 5sþ 6, or �2 and �3.

4.10

a. Since sI�Að Þ ¼ s �2

2 sþ 5

	 

; sI�Að Þ�1 ¼ 1

s2 þ 5sþ 4

sþ 5 2

�2 s

	 

. Taking the

Laplace transform of each term, the state transition matrix is given by

F tð Þ ¼
4

3
e�t � 1

3
e�4t 2

3
e�t � 2

3
e�4t

� 2

3
e�t þ 2

3
e�4t � 1

3
e�t þ 4

3
e�4t

2
664

3
775:
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b. Since F t � tð Þ ¼
4

3
e� t�tð Þ � 1

3
e�4 t�tð Þ 2

3
e� t�tð Þ � 2

3
e�4 t�tð Þ

� 2

3
e� t�tð Þ þ 2

3
e�4 t�tð Þ � 1

3
e� t�tð Þ þ 4

3
e�4 t�tð Þ

2
664

3
775 and

Bu tð Þ ¼ 0

e�2t

	 

; F t � tð ÞBu tð Þ ¼

2

3
e�te�t � 2

3
e2te�4t

� 1

3
e�te�t þ 4

3
e2te�4t

2
664

3
775:

Thus, x tð Þ ¼ F tð Þx 0ð Þ þ R t0 F t � tð Þ

BU tð Þdt ¼
10

3
e�t � e�2t � 4

3
e�4t

� 5

3
e�t þ e�2t þ 8

3
e�4t

2
664

3
775

c. y tð Þ ¼ 2 1½ �x ¼ 5e�t � e�2t

CHAPTER 5

5.1

Combine the parallel blocks in the forward path. Then, push
1

s
to the left past the

pickoff point.

1

s

s

s

ss2 + 1
+

–

–

R(s) C(s)

Combine the parallel feedback paths and get 2s. Then, apply the feedback formula,

simplify, and get, T sð Þ ¼ s3 þ 1

2s4 þ s2 þ 2s
.

5.2

Find the closed-loop transfer function, T sð Þ ¼ G sð Þ
1 þG sð ÞH sð Þ ¼

16

s2 þ asþ 16
, where

and G sð Þ ¼ 16

s sþ að Þ and H sð Þ ¼ 1. Thus, vn ¼ 4 and 2zvn ¼ a, from which z ¼ a

8
.

But, for 5% overshoot, z ¼
�ln

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln2 %

100

� �s ¼ 0:69. Since, z ¼ a

8
; a ¼ 5:52.
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5.3

Label nodes.

++

+–

–
R(s)

s

s
N1 (s) N2 (s) N3 (s) N4 (s)

N6 (s)N5 (s)

N7 (s)

s
C(s)

1
s

1
s

Draw nodes.

R(s) N1(s) N2(s)

N5(s)

N7(s)

N6(s)

N3(s) N4(s) C (s)

Connect nodes and label subsystems.

R(s) C(s)1

1
s

s

−1

ss

1 1

−1

1
1
sN1 (s) N2 (s)

N5 (s) N6 (s)

N7 (s)

N3 (s) N4 (s)

Eliminate unnecessary nodes.

R(s) C(s)1 ss 1
s

1
s

–s

–1

14 Solutions to Skill-Assessment Exercises
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5.4

Forward-path gains are G1G2G3 and G1G3.
Loop gains are �G1G2H1; �G2H2; and �G3H3.
Nontouching loops are �G1G2H1½ � �G3H3½ � ¼ G1G2G3H1H3 and
�G2H2½ � �G3H3½ � ¼ G2G3H2H3.

Also, D ¼ 1 þG1G2H1 þG2H2 þG3H3 þG1G2G3H1H3 þG2G3H2H3:
Finally, D1 ¼ 1 and D2 ¼ 1.

Substituting these values into T sð Þ ¼ C sð Þ
R sð Þ ¼

P
k
TkDk

D
yields

T sð Þ ¼ G1 sð ÞG3 sð Þ 1 þG2 sð Þ½ �
1 þG2 sð ÞH2 sð Þ þG1 sð ÞG2 sð ÞH1 sð Þ½ � 1 þG3 sð ÞH3 sð Þ½ �

5.5

The state equations are,
_x1 ¼ �2x1 þ x2

_x2 ¼ �3x2 þ x3

_x3 ¼ �3x1 � 4x2 � 5x3 þ r

y ¼ x2

Drawing the signal-flow diagram from the state equations yields

1
s

1
s

1
s11 1

1

–5

–4

–2–3

–3

r x1x2x3 y

5.6

From G sð Þ ¼ 100 sþ 5ð Þ
s2 þ 5sþ 6

we draw the signal-flow graph in controller canonical form

and add the feedback.

1

–5

–6

100

500

–1

y
r 1

s
1
sx1 x2
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Writing the state equations from the signal-flow diagram, we obtain

x ¼
�105 �506

1 0

" #
xþ

1

0

" #
r

y ¼ 100 500½ �x
5.7

From the transformation equations,

P�1 ¼ 3 �2

1 �4

	 


Taking the inverse,

P ¼ 0:4 �0:2

0:1 �0:3

	 


Now,

P�1AP ¼
3 �2

1 �4

" #
1 3

�4 �6

" #
0:4 �0:2

0:1 �0:3

" #
¼

6:5 �8:5

9:5 �11:5

" #

P�1B ¼
3 �2

1 �4

" #
1

3

" #
¼

�3

�11

" #

CP ¼ 1 4½ �
0:4 �0:2

0:1 �0:3

" #
¼ 0:8 �1:4½ �

Therefore,

_z ¼
6:5 �8:5

9:5 �11:5

" #
zþ

�3

�11

" #
u

y ¼ 0:8 �1:4½ �z

5.8

First find the eigenvalues.

jlI�Aj ¼ l 0

0 l

	 

� 1 3

�4 �6

	 
����
���� ¼ l� 1 �3

4 lþ 6

����
���� ¼ l2 þ 5lþ 6

From which the eigenvalues are �2 and �3.
Now use Axi ¼ lxi for each eigenvalue, l.
Thus,

1 3

�4 �6

	 

x1

x2

	 

¼ l

x1

x2

	 


For l ¼ �2,

3x1 þ 3x2 ¼ 0
�4x1 � 4x2 ¼ 0
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Thus x1 ¼ �x2

For l ¼ �3

4x1 þ 3x2 ¼ 0
�4x1 � 3x2 ¼ 0

Thus x1 ¼ �x2 and x1 ¼ �0:75x2; from which we let

P ¼ 0:707 �0:6

�0:707 0:8

	 


Taking the inverse yields

P�1 ¼ 5:6577 4:2433

5 5

	 


Hence,

D ¼ P�1AP ¼
5:6577 4:2433

5 5

" #
1 3

�4 �6

" #
0:707 �0:6

�0:707 0:8

" #
¼

�2 0

0 �3

" #

P�1B ¼
5:6577 4:2433

5 5

" #
1

3

" #
¼

18:39

20

" #

CP ¼ 1 4½ �
0:707 �0:6

�0:707 0:8

" #
¼ �2:121 2:6½ �

Finally,

_z ¼
�2 0

0 �3

" #
zþ

18:39

20

" #
u

y ¼ �2:121 2:6½ �z

CHAPTER 6

6.1

Make a Routh table.

s7 3 6 7 2

s6 9 4 8 6

s5 4.666666667 4.333333333 0 0

s4 �4.35714286 8 6 0

s3 12.90163934 6.426229508 0 0

s2 10.17026684 6 0 0

s1 �1.18515742 0 0 0

s0 6 0 0 0

Since there are four sign changes and no complete row of zeros, there are four right
half-plane poles and three left half-plane poles.

6.2

Make a Routh table. We encounter a row of zeros on the s3 row. The even polynomial
is contained in the previous row as �6s4 þ 0s2 þ 6. Taking the derivative yields
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�24s3 þ 0s. Replacing the row of zeros with the coefficients of the derivative yields
the s3 row. We also encounter a zero in the first column at the s2 row. We replace the
zero with e and continue the table. The final result is shown now as

s6 1 �6 �1 6

s5 1 0 �1 0

s4 6 0 6 0

s3 �24 0 0 0 ROZ

s2 e 6 0 0

s1 144=e 0 0 0

s0 6 0 0 0

There is one sign change below the even polynomial. Thus the even polynomial
(4th order) has one right half-plane pole, one left half-plane pole, and 2 imaginary
axis poles. From the top of the table down to the even polynomial yields one sign
change. Thus, the rest of the polynomial has one right half-plane root, and one left
half-plane root. The total for the system is two right half-plane poles, two left half-
plane poles, and 2 imaginary poles.

6.3

Since G sð Þ ¼ K sþ 20ð Þ
s sþ 2ð Þ sþ 3ð Þ ; T sð Þ ¼ G sð Þ

1 þG sð Þ ¼
K sþ 20ð Þ

s3 þ 5s2 þ 6 þKð Þsþ 20K

Form the Routh table.

s3 1 6 þKð Þ
s2 5 20K

s1 30 � 15K

5
s0 20K

From the s1 row, K < 2. From the s0 row, K > 0. Thus, for stability, 0 < K < 2.

6.4

First find

sI�Aj j ¼
s 0 0

0 s 0

0 0 s

2
64

3
75�

2 1 1

1 7 1

�3 4 �5

2
64

3
75

�������

�������
¼

s� 2ð Þ �1 �1

�1 s� 7ð Þ �1

3 �4 sþ 5ð Þ

�������

�������
¼ s3 � 4s2 � 33sþ 51

Now form the Routh table.

s3 1 �33

s2 �4 51

s1 �20:25

s0 51

There are two sign changes. Thus, there are two rhp poles and one lhp pole.
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CHAPTER 7

7.1

a. First check stability.

T sð Þ ¼ G sð Þ
1 þG sð Þ ¼

10s2 þ 500sþ 6000

s3 þ 70s2 þ 1375sþ 6000
¼ 10 sþ 30ð Þ sþ 20ð Þ

sþ 26:03ð Þ sþ 37:89ð Þ sþ 6:085ð Þ

Poles are in the lhp. Therefore, the system is stable. Stability also could be checked
via Routh-Hurwitz using the denominator of T(s). Thus,

15u tð Þ : estep 1ð Þ ¼ 15

1 þ lim
s!0

G sð Þ ¼
15

1 þ1 ¼ 0

15tu tð Þ : eramp 1ð Þ ¼ 15

lim
s!0

sG sð Þ ¼
15

10�20�30

25�35

¼ 2:1875

15t2u tð Þ : eparabola 1ð Þ ¼ 15

lim
s!0

s2G sð Þ ¼
30

0
¼ 1; since L 15t2

�  ¼ 30

s3

b. First check stability.

T sð Þ ¼ G sð Þ
1 þG sð Þ ¼

10s2 þ 500sþ 6000

s5 þ 110s4 þ 3875s3 þ 4:37e04s2 þ 500sþ 6000

¼ 10 sþ 30ð Þ sþ 20ð Þ
sþ 50:01ð Þ sþ 35ð Þ sþ 25ð Þ s2 � 7:189e� 04sþ 0:1372ð Þ

From the second-order term in the denominator, we see that the system is unstable.
Instability could also be determined using the Routh-Hurwitz criteria on the
denominator of T(s). Since the system is unstable, calculations about steady-state
error cannot be made.

7.2

a. The system is stable, since

T sð Þ ¼ G sð Þ
1 þG sð Þ ¼

1000 sþ 8ð Þ
sþ 9ð Þ sþ 7ð Þ þ 1000 sþ 8ð Þ ¼

1000 sþ 8ð Þ
s2 þ 1016sþ 8063

and is of Type 0. Therefore,

Kp ¼ lim
s!0

G sð Þ ¼ 1000�8

7�9
¼ 127; Kv ¼ lim

s!0
sG sð Þ ¼ 0;

and Ka ¼ lim
s!0

s2G sð Þ ¼ 0

b.

estep 1ð Þ ¼ 1

1 þ lim
s!0

G sð Þ ¼
1

1 þ 127
¼ 7:8e� 03

eramp 1ð Þ ¼ 1

lim
s!0

sG sð Þ ¼
1

0
¼ 1

eparabola 1ð Þ ¼ 1

lim
s!0

s2G sð Þ ¼
1

0
¼ 1
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7.3

System is stable for positive K. System is Type 0. Therefore, for a step input

estep 1ð Þ ¼ 1

1 þKp
¼ 0:1. Solving for Kp yields Kp ¼ 9 ¼ lim

s!0
G sð Þ ¼ 12K

14�18
; from

which we obtain K ¼ 189.

7.4

System is stable. Since G1 sð Þ ¼ 1000, and G2 sð Þ ¼ sþ 2ð Þ
sþ 4ð Þ,

eD 1ð Þ ¼ � 1

lim
s!0

1

G2 sð Þ þ lim G1
s!0

sð Þ
¼ 1

2 þ 1000
¼ �9:98e� 04

7.5

System is stable. Create a unity-feedback system, where He sð Þ ¼ 1

sþ 1
� 1 ¼ �s

sþ 1
The system is as follows:

+

–
–

R(s) Ea(s) C(s)100
s + 4

−s
s + 1

Thus,

Ge sð Þ ¼ G sð Þ
1 þG Sð ÞHe sð Þ ¼

100

sþ 4ð Þ
1 � 100s

sþ 1ð Þ sþ 4ð Þ
¼ 100 sþ 1ð Þ

S2 � 95sþ 4

Hence, the system is Type 0. Evaluating Kp yields

Kp ¼ 100

4
¼ 25

The steady-state error is given by

estep 1ð Þ ¼ 1

1 þKp
¼ 1

1 þ 25
¼ 3:846e� 02

7.6

Since G sð Þ ¼ K sþ 7ð Þ
s2 þ 2sþ 10

; e 1ð Þ ¼ 1

1 þKp
¼ 1

1 þ 7K

10

¼ 10

10 þ 7K
.

Calculating the sensitivity, we get

Se:K ¼ K

e

@e

@K
¼ K

10

10 þ 7K

� � �10ð Þ7
10 þ 7Kð Þ2

¼ � 7K

10 þ 7K
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7.7

Given

A ¼ 0 1

�3 �6

	 

; B ¼ 0

1

	 

; C ¼ 1 1½ �; R sð Þ ¼ 1

s
:

Using the final value theorem,

estep 1ð Þ ¼ lim
s!0

sR sð Þ 1 � C sI�Að Þ�1B
h i

¼ lim
s!0

1 � 1 1½ �
s �1

3 sþ 6

" #�1
0

1

" #2
4

3
5

¼ lim
s!0

1 � 1 1½ �

sþ 6 1

�3s s

" #

s2 þ 6sþ 3

0

1

" #
2
66664

3
77775 ¼ lim

s!0

s2 þ 5sþ 2

s2 þ 6sþ 3
¼ 2

3

Using input substitution,

step 1ð Þ ¼ 1 þ CA�1B ¼ 1 � 1 1½ �
0 1

�3 �6

" #�1
0

1

" #

¼ 1 þ 1 1½ �

�6 �1

3 0

" #

3

0

1

" #
¼ 1 þ 1 1½ � � 1

3

0

2
4

3
5 ¼ 2

3

CHAPTER 8

8.1

a. F �7 þ j9ð Þ ¼ �7 þ j9 þ 2ð Þ �7 þ j9 þ 4ð Þ0:0339

�7 þ j9ð Þ �7 þ j9 þ 3ð Þ �7 þ j9 þ 6ð Þ ¼
�5 þ j9ð Þ �3 þ j9ð Þ

�7 þ j9ð Þ �4 þ j9ð Þ �1 þ j9ð Þ
¼ �66 � j72ð Þ

944 � j378ð Þ ¼ �0:0339 � j0:0899 ¼ 0:096 < �110:7�

b. The arrangement of vectors is shown as follows:
jw

s

s-plane

X X
–2–4 –1–3–6 –5–7

X

M1 M2 M3 M4 M5

(–7+j9)

0
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From the diagram,

F �7 þ j9ð Þ ¼ M2M4

M1M3M5
¼ �3 þ j9ð Þ �5 þ j9ð Þ

�1 þ j9ð Þ �4 þ j9ð Þ �7 þ j9ð Þ ¼
�66 � j72ð Þ
944 � j378ð Þ

¼ �0:0339 � j0:0899 ¼ 0:096 <;�110:7�

8.2

a. First draw the vectors.

jw

s

s-plane

X

X

–2–3 0–1

j1

j2

j3

–j1

–j2

–j3

From the diagram,

P
angles ¼ 180� � tan�1 �3

�1

� �
� tan�1 �3

1

� �
¼ 180� � 108:43� þ 108:43� ¼ 180�:

b. Since the angle is 180�, the point is on the root locus.

c. K ¼ P pole lengths

P zero lengths
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 32

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 32

p� �

1
¼ 10

8.3

First, find the asymptotes.

sa ¼
P

poles �P zeros

# poles �# zeros
¼ �2 � 4 � 6ð Þ � 0ð Þ

3 � 0
¼ �4

ua ¼ 2kþ 1ð Þp
3

¼ p

3
; p;

5p

3
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Next draw root locus following the rules for sketching.

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3
–5

–4

–3

–2

–1

0

1

2

3

4

5

Real Axis

Im
ag

 A
xi

s

8.4

a.

j3

s

jw

s-plane

X

X

O
–2 2

–j3

0

b. Using the Routh-Hurwitz criteria, we first find the closed-loop transfer function.

T sð Þ ¼ G sð Þ
1 þG sð Þ ¼

K sþ 2ð Þ
s2 þ K � 4ð Þsþ 2K þ 13ð Þ

Using the denominator of T(s), make a Routh table.

We get a row of zeros for K ¼ 4. From the s2 row with K ¼ 4; s2 þ 21 ¼ 0. From

which we evaluate the imaginary axis crossing at
ffiffiffiffiffi
21

p
.

c. From part (b), K ¼ 4.
d. Searching for the minimum gain to the left of �2 on the real axis yields �7 at a

gain of 18. Thus the break-in point is at �7.

s2 1 2K þ 13

s1 K � 40 0

s0 2K þ 13 0
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e. First, draw vectors to a point e close to the complex pole.
jw

s

s-plane

X

X

–2 20

j3

–j3

At the point e close to the complex pole, the angles must add up to zero. Hence,
angle from zero – angle from pole in 4th quadrant – angle from pole in 1st quadrant ¼
180�, or tan�1 3

4

� �
� 90� � u ¼ 180�. Solving for the angle of departure,

u ¼ �233:1.

8.5

a.
jw

4–3

X

X
s-plane

o
0

z = 0.5

j4

–j4

s
2

o
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b. Search along the imaginary axis and find the 180� point at s ¼ �j4:06.
c. For the result in part (b), K ¼ 1.
d. Searching between 2 and 4 on the real axis for the minimum gain yields the break-in

at s ¼ 2:89.
e. Searching along z ¼ 0:5 for the 180� point we find s ¼ �2:42 þ j4:18.
f. For the result in part (e), K ¼ 0:108.
g. Using the result from part (c) and the root locus, K < 1.

8.6

a.

s

jw
z = 0.591

–2–4–6
XXX

0

s-plane

b. Searching along the z ¼ 0:591 (10% overshoot) line for the 180� point yields
�2:028 þ j2:768 with K ¼ 45:55.

c. Ts ¼ 4

jRej ¼
4

2:028
¼ 1:97 s; Tp ¼ p

jImj ¼
p

2:768
¼ 1:13 s; vnTr ¼ 1:8346 from the

rise-time chart and graph in Chapter 4. Since vn is the radial distance to the pole,

vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:0282 þ 2:7682

p
¼ 3:431. Thus, Tr ¼ 0:53 s; since the system is Type 0,

Kp ¼ K

2�4�6
¼ 45:55

48
¼ 0:949. Thus,

estep 1ð Þ ¼ 1

1 þKp
¼ 0:51:

d. Searching the real axis to the left of �6 for the point whose gain is 45.55, we find
�7:94. Comparing this value to the real part of the dominant pole, �2:028, we find
that it is not five times further. The second-order approximation is not valid.

8.7

Find the closed-loop transfer function and put it the form that yields pi as the root
locus variable. Thus,

T sð Þ ¼ G sð Þ
1 þG sð Þ ¼

100

s2 þ pisþ 100
¼ 100

s2 þ 100ð Þ þ pis
¼

100

s2 þ 100

1 þ pis

s2 þ 100
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Hence, KG sð ÞH sð Þ ¼ pis

s2 þ 100
. The following shows the root locus.

s

jw

–j10X

O

s-plane

0

X j10

8.8

Following the rules for plotting the root locus of positive-feedback systems, we
obtain the following root locus:

s

jw

–2–4
X

s-plane

–1
XXo

0–3

8.9

The closed-loop transfer function is T sð Þ ¼ K sþ 1ð Þ
s2 þ K þ 2ð ÞsþK

. Differentiating the

denominator with respect to K yields

2s
@s

@K
þ K þ 2ð Þ @s

@K
þ sþ 1ð Þ ¼ 2sþK þ 2ð Þ @s

@K
þ sþ 1ð Þ ¼ 0

Solving for
@s

@K
, we get

@s

@K
¼ � sþ 1ð Þ

2sþK þ 2ð Þ. Thus, Ss:K ¼ K

s

@s

@K
¼ �K sþ 1ð Þ

s 2sþK þ 2ð Þ :

Substituting K ¼ 20 yields Ss:K ¼ �10 sþ 1ð Þ
s sþ 11ð Þ .

Now find the closed-loop poles when K ¼ 20. From the denominator of T sð Þ;
s1;2 ¼ �21:05; � 0:95, when K ¼ 20.
For the pole at �21:05,

Ds ¼ s Ss:Kð ÞDK
K

¼ �12:05
�10 �21:05 þ 1ð Þ

�21:05 �21:05 þ 11ð Þ
� �

0:05 ¼ �0:9975:
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For the pole at �0:95,

Ds ¼ s Ss:Kð ÞDK
K

¼ 0:95
�10 �0:95 þ 1ð Þ

�0:95 �0:95 þ 11ð Þ
� �

0:05 ¼ �0:0025:

CHAPTER 9

9.1

a. Searching along the 15% overshoot line, we find the point on the root locus at
�3:5 þ j5:8 at a gain of K ¼ 45:84. Thus, for the uncompensated system,
Kv ¼ lim

s!0
sG sð Þ ¼ K=7 ¼ 45:84=7 ¼ 6:55.

Hence, eramp uncompensated 1ð Þ ¼ 1=Kv ¼ 0:1527.
b. Compensator zero should be 20x further to the left than the compensator pole.

Arbitrarily select Gc sð Þ ¼ sþ 0:2ð Þ
sþ 0:01ð Þ.

c. Insert compensator and search along the 15% overshoot line and find the root
locus at �3:4 þ j5:63 with a gain, K ¼ 44:64. Thus, for the compensated system,

Kv ¼ 44:64 0:2ð Þ
7ð Þ 0:01ð Þ ¼ 127:5 and eramp compensated 1ð Þ ¼ 1

Kv
¼ 0:0078.

d.
eramp uncompensated

eramp compensated
¼ 0:1527

0:0078
¼ 19:58

9.2

a. Searching along the 15% overshoot line, we find the point on the root locus at
�3:5 þ j5:8 at a gain of K ¼ 45:84. Thus, for the uncompensated system,

Ts ¼ 4

jRej ¼
4

3:5
¼ 1:143 s:

b. The real part of the design point must be three times larger than the un-
compensated pole’s real part. Thus the design point is 3 �3:5ð Þþ j 3 5:8ð Þ ¼
�10:5 þ j 17:4. The angular contribution of the plant’s poles and compensator
zero at the design point is 130:8�. Thus, the compensator pole must contribute
180� � 130:8� ¼ 49:2�. Using the following diagram,

–pc

s

jw

s-plane

–10.5

j17.4

49.2°

we find
17:4

Pc � 10:5
¼ tan 49:2�, from which, pc ¼ 25:52. Adding this pole, we find

the gain at the design point to be K ¼ 476:3. A higher-order closed-loop pole is
found to be at �11:54. This pole may not be close enough to the closed-loop zero
at �10. Thus, we should simulate the system to be sure the design requirements
have been met.
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9.3

a. Searching along the 20% overshoot line, we find the point on the root locus at
�3:5 þ 6:83 at a gain of K ¼ 58:9. Thus, for the uncompensated system,

Ts ¼ 4

jRej ¼
4

3:5
¼ 1:143 s:

b. For the uncompensated system, Kv ¼ lim
s!0

sG sð Þ ¼ K=7 ¼ 58:9=7 ¼ 8:41. Hence,

eramp uncompensated 1ð Þ ¼ 1=Kv ¼ 0:1189.
c. In order to decrease the settling time by a factor of 2, the design point is twice the

uncompensated value, or �7 þ j 13:66. Adding the angles from the plant’s poles
and the compensator’s zero at �3 to the design point, we obtain �100:8�. Thus,
the compensator pole must contribute 180� � 100:8� ¼ 79:2�. Using the following
diagram,

–pc

s

jw

s-plane

79.2°

–7

j13.66

we find
13:66

Pc � 7
¼ tan79:2�, from which, pc ¼ 9:61. Adding this pole, we find the

gain at the design point to be K ¼ 204:9.
Evaluating Kv for the lead-compensated system:

Kv ¼ lim
s!0

sG sð ÞGlead ¼ K 3ð Þ= 7ð Þ 9:61ð Þ½ � ¼ 204:9ð Þ 3ð Þ= 7ð Þ 9:61ð Þ½ � ¼ 9:138:

Kv for the uncompensated system was 8.41. For a 10x improvement in steady-state
error, Kv must be 8:41ð Þ 10ð Þ ¼ 84:1. Since lead compensation gave us Kv ¼ 9:138,
we need an improvement of 84:1=9:138 ¼ 9:2. Thus, the lag compensator zero
should be 9.2x further to the left than the compensator pole. Arbitrarily select

Gc sð Þ ¼ sþ 0:092ð Þ
sþ 0:01ð Þ .

Using all plant and compensator poles, we find the gain at the design point to
be K ¼ 205:4. Summarizing the forward path with plant, compensator, and gain
yields

Ge sð Þ ¼ 205:4 sþ 3ð Þ sþ 0:092ð Þ
s sþ 7ð Þ 9:61ð Þ sþ 0:01ð Þ :

Higher-order poles are found at �0:928 and �2:6. It would be advisable to simulate
the system to see if there is indeed pole-zero cancellation.

28 Solutions to Skill-Assessment Exercises



Apago PDF Enhancer

E1SM 11/11/2010 9:29:19 Page 29

9.4

The configuration for the system is shown in the figure below.

1

s(s+ 7)(s +10)

R(s) C(s)+
K

+

––

Kfs

Minor-Loop Design:

For the minor loop, G sð ÞH sð Þ ¼ Kf

sþ 7ð Þ sþ 10ð Þ. Using the following diagram, we

find that the minor-loop root locus intersects the 0.7 damping ratio line at
�8:5 þ j 8:67. The imaginary part was found as follows: u ¼ cos�1z ¼ 45:57�. Hence,
Im

8:5
¼ tan45:57�, from which Im ¼ 8:67.

s

jw

s-plane

–7

z = 0.7

X X
−10 −8.5

(-8.5 + j8.67)

q

Im

The gain, Kf , is found from the vector lengths as

Kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:52 þ 8:672

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:52 þ 8:672

p
¼ 77:42

Major-Loop Design:
Using the closed-loop poles of the minor loop, we have an equivalent forward-path
transfer function of

Ge sð Þ ¼ K

s sþ 8:5 þ j8:67ð Þ sþ 8:5 � j8:67ð Þ ¼
K

s s2 þ 17sþ 147:4ð Þ :

Using the three poles of Ge sð Þ as open-loop poles to plot a root locus, we search
along z ¼ 0:5 and find that the root locus intersects this damping ratio line at�4:34 þ
j7:51 at a gain, K ¼ 626:3.
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9.5

a. An active PID controller must be used. We use the circuit shown in the following
figure:

+

–

Z1(s)

Z2(s)

I1(s)

V1(s)
Vo(s)

Vi(s)

Ia(s)

I2(s)

where the impedances are shown below as follows:
C1

R1

Z1(s) Z2(s)

C2R2

Matching the given transfer function with the transfer function of the PID
controller yields

Gc sð Þ ¼ sþ 0:1ð Þ sþ 5ð Þ
s

¼ s2 þ 5:1sþ 0:5

s
¼ sþ 5:1 þ 0:5

8

¼ � R2

R1
þ C1

C2

� �
þ R2C1sþ

1

R1C2

s

2
664

3
775

Equating coefficients

1

R1C2
¼ 0:5 ð1Þ

R2C1 ¼ 1 ð2Þ
R2

R1
þ C1

C2

� �
¼ 5:1 ð3Þ

In Eq. (2) we arbitrarily let C1 ¼ 10�5. Thus, R2 ¼ 105. Using these values along with
Eqs. (1) and (3) we find C2 ¼ 100mF and R1 ¼ 20 kV.
b. The lag-lead compensator can be implemented with the following passive net-

work, since the ratio of the lead pole-to-zero is the inverse of the ratio of the lag
pole-to-zero:

R1

C1
R2

C2

+

–

+

–

vo(t)vi(t)
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Matchingthegiventransferfunctionwiththetransferfunctionofthepassive lag-lead
compensator yields

Gc sð Þ ¼ sþ 0:1ð Þ sþ 2ð Þ
sþ 0:01ð Þ sþ 20ð Þ ¼

sþ 0:1ð Þ sþ 2ð Þ
s2 þ 20:01sþ 0:2

¼
sþ 1

R1C1

� �
sþ 1

R2C2

� �

s2 þ 1

R1C1
þ 1

R2C2
þ 1

R2C1

� �
sþ 1

R1R2C1C2

Equating coefficients
1

R1C1
¼ 0:1 ð1Þ

1

R2C2
¼ 0:1 ð2Þ

1

R1C1
þ 1

R2C2
þ 1

R2C1

� �
¼ 20:01 ð3Þ

Substituting Eqs. (1) and (2) in Eq. (3) yields
1

R2C1
¼ 17:91 ð4Þ

Arbitrarily letting C1 ¼ 100mF in Eq. (1) yields R1 ¼ 100 kV.
Substituting C1 ¼ 100mF into Eq. (4) yields R2 ¼ 558 kV.
Substituting R2 ¼ 558 kV into Eq. (2) yields C2 ¼ 900mF.

CHAPTER 10

10.1

a.
G sð Þ ¼ 1

sþ 2ð Þ sþ 4ð Þ ; G jvð Þ ¼ 1

8 þ v2ð Þ þ j6v

M vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � v2ð Þ2 þ 6vð Þ2

q

For v <
ffiffiffi
8

p
, f vð Þ ¼ �tan�1 6v

8 � v2

� �
:

For v <
ffiffiffi
8

p
, f vð Þ ¼ � pþ tan�1 6v

8 � v2

	 
� �
:

b.
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c.

Real Axis
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y 
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s

Nyquist Diagrams
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10.2
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10.3

The frequency response is 1/8 at an angle of zero degrees at v ¼ 0. Each pole rotates
90� in going from v ¼ 0 to v ¼ 1. Thus, the resultant rotates �180� while its
magnitude goes to zero. The result is shown below.

Re

Im

0 1

8

w = ∞ w = 0

10.4

a. The frequency response is 1/48 at an angle of zero degrees at v ¼ 0. Each pole
rotates 90� in going from v ¼ 0 to v ¼ 1. Thus, the resultant rotates �270� while
its magnitude goes to zero. The result is shown below.

Im

Re
1

48

w = 0w = ∞
0

w = 6.63

1
480

–

b. Substituting jv into G sð Þ ¼ 1

sþ 2ð Þ sþ 4ð Þ sþ 6ð Þ ¼
1

s3 þ 12s2 þ 44sþ 48
and

simplifying, we obtain G jvð Þ ¼ 48 � 12v2
� �� j 44v� v3

� �
v6 þ 56v4 þ 784v2 þ 2304

. The Nyquist diagram

crosses the real axis when the imaginary part of G jvð Þ is zero. Thus, the Nyquist

diagram crosses the real axis at v2 ¼ 44; or v ¼ ffiffiffiffiffi
44

p ¼ 6:63 rad=s. At this fre-

quency G jvð Þ ¼ � 1

480
. Thus, the system is stable for K < 480.
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10.5

If K ¼ 100, the Nyquist diagram will intersect the real axis at �100=480. Thus,

GM ¼ 20 log
480

100
¼ 13:62 dB. From Skill-Assessment Exercise Solution 10.4, the

180� frequency is 6.63 rad/s.

10.6

a.

0001001011
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b. The phase angle is 180� at a frequency of 36.74 rad/s. At this frequency the gain is
�99:67 dB. Therefore, 20 logK ¼ 99:67, or K ¼ 96; 270. We conclude that the
system is stable for K < 96; 270.

c. For K ¼ 10; 000, the magnitude plot is moved up 20log10; 000 ¼ 80 dB. Therefore,
the gain margin is 99:67 � 80 ¼ 19:67 dB. The 180� frequency is 36.7 rad/s. The
gain curve crosses 0 dB at v ¼ 7:74 rad=s, where the phase is 87:1�. We calculate
the phase margin to be 180� � 87:1� ¼ 92:9�.

10.7

Using z ¼ �ln %=100ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln2 %100ð Þ

q , we find z ¼ 0:456, which corresponds to 20% over-

shoot. Using Ts ¼ 2; vBW ¼ 4

Tsz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4 � 4

p
z2 þ 2

q
¼ 5:79 rad=s.
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10.8

For both parts find that G jvð Þ ¼ 160

27
� 6750000 � 101250v2
� �þ j1350 v2 � 1350

� �
v

v6 þ 2925v4 þ 1072500v2 þ 25000000
.

For a range of values for v, superimpose G jvð Þ on the a. M and N circles, and on the
b. Nichols chart.
a.

M = 1.3

1.4

1.5
1.6

1.8
2.0

M = 0.7

0.6
0.5

0.4

M = 1.0

–2

–1

1

2

3

Im

Re

1 2–1–2–3

–3

Φ = 20°

25°

30°

–20°

–40°
–50°

–30°

–70°

40°

50°

70°

–25°

G-plane

–4

b.

Open-Loop Phase (deg)

O
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e
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o
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d

B
)
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Plotting the closed-loop frequency response from a. or b. yields the following plot:
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10.9

The open-loop frequency response is shown in the following figure:
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The open-loop frequency response is �7 at v ¼ 14:5 rad=s. Thus, the estimated
bandwidth is vWB ¼ 14:5 rad=s. The open-loop frequency response plot goes
through zero dB at a frequency of 9.4 rad/s, where the phase is 151:98�.
Hence, the phase margin is 180� � 151:98� ¼ 28:02�. This phase margin corre-
sponds to

z ¼ 0:25: Therefore; %OS ¼ e� zp=
ffiffiffiffiffiffiffiffi
1�z2

p� �
� 100 ¼ 44:4%

Ts ¼ 4

vBWz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4 � 4z2 þ 2

pq
¼ 1:64 s and

Tp ¼ p

vBW

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4 � 4z2 þ 2

pq
¼ 0:33 s

10.10

The initial slope is 40 dB/dec. Therefore, the system is Type 2. The initial slope

intersects 0 dB at v ¼ 9:5 rad=s. Thus, Ka ¼ 9:52 ¼ 90:25 and Kp ¼ Kv ¼ 1.

10.11

a. Without delay, G jvð Þ ¼ 10

jv jvþ 1ð Þ ¼
10

v �vþ jð Þ, from which the zero dB fre-

quency is found as follows: M ¼ 10

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 1

p ¼ 1. Solving for v; v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 1

p ¼ 10, or

after squaring both sides and rearranging, v4 þ v2 � 100 ¼ 0. Solving for the
roots, v2 ¼ �10:51; 9:51. Taking the square root of the positive root, we find the
0 dB frequency to be 3.08 rad/s. At this frequency, the phase angle, f ¼
�ff �vþ jð Þ ¼ �ff �3:08 þ jð Þ ¼ �162�. Therefore the phase margin is 180�

�162� ¼ 18�.
b. With a delay of 0.1 s,

f ¼ �ff �vþ jð Þ � vT ¼ �ff �3:08 þ jð Þ � 3:08ð Þ 0:1ð Þ 180=pið Þ
¼ �162 � 17:65 ¼ �179:65�

Therefore the phase margin is 180� � 179:65� ¼ 0:35�. Thus, the system is table.
c. With a delay of 3 s,

f ¼ �ff �vþ jð Þ � vT ¼ �ff �3:08 þ jð Þ � 3:08ð Þ 3ð Þ 180=pið Þ ¼ �162� � 529:41�

¼ � 691:41� ¼ 28:59 deg:

Therefore the phase margin is 28:59 � 180 ¼ �151:41 deg. Thus, the system is
unstable.

10.12

Drawing judicially selected slopes on the magnitude and phase plot as shown below
yields a first estimate.
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We see an initial slope on the magnitude plot of �20 dB/dec. We also see a final
�20 dB/dec slope with a break frequency around 21 rad/s. Thus, an initial estimate is

G1 sð Þ ¼ 1

s sþ 21ð Þ. Subtracting G1 sð Þ from the original frequency response yields the

frequency response shown below.
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Drawing judicially selected slopes on the magnitude and phase plot as shown
yields a final estimate. We see first-order zero behavior on the magnitude and
phase plots with a break frequency of about 5.7 rad/s and a dc gain of about
44 dB ¼ 20log 5:7Kð Þ, or K ¼ 27:8. Thus, we estimate G2 sð Þ ¼ 27:8 sþ 7ð Þ. Thus,

G sð Þ ¼ G1 sð ÞG2 sð Þ ¼ 27:8 sþ 5:7ð Þ
s sþ 21ð Þ . It is interesting to note that the original problem

was developed from G sð Þ ¼ 30 sþ 5ð Þ
s sþ 20ð Þ.

CHAPTER 11

11.1

The Bode plot for K ¼ 1 is shown below.
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A 20% overshoot requires z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:456. This damping ratio implies a

phase margin of 48.10, which is obtained when the phase angle ¼ �1800 þ 48:10
¼ 131:9�. This phase angle occurs at v ¼ 27:6 rad=s. The magnitude at this frequency

is 5:15 � 10�6. Since the magnitude must be unity K ¼ 1

5:15 � 10�6
¼ 194; 200.

11.2

To meet the steady-state error requirement, K ¼ 1; 942; 000. The Bode plot for this
gain is shown below.
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A 20% overshoot requires z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:456. This damping ratio

implies a phase margin of 48:1�. Adding 10� to compensate for the phase angle
contribution of the lag, we use 58:1�. Thus, we look for a phase angle of
�180� þ 58:1� ¼ �129:9�. The frequency at which this phase occurs is 20.4 rad/s.
At this frequency the magnitude plot must go through zero dB. Presently, the
magnitude plot is 23.2 dB. Therefore draw the high frequency asymptote of the lag
compensator at �23:2 dB. Insert a break at 0:1 20:4ð Þ ¼ 2:04 rad=s. At this frequency,
draw �23:2 dB/dec slope until it intersects 0 dB. The frequency of intersection
will be the low frequency break or 0.141 rad/s. Hence the compensator is

Gc sð Þ ¼ Kc
sþ 2:04ð Þ
sþ 0:141ð Þ, where the gain is chosen to yield 0 dB at low frequencies,

or Kc ¼ 0:141=2:04 ¼ 0:0691. In summary,

Gc sð Þ ¼ 0:0691
sþ 2:04ð Þ
sþ 0:141ð Þ and G sð Þ ¼ 1;942;000

s sþ 50ð Þ sþ 120ð Þ
11.3

A 20% overshoot requires z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:456. The required bandwidth

is then calculated as vBW ¼ 4

Tsz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4 � 4z2 þ 2

pq
¼ 57:9 rad/s. In order

to meet the steady-state error requirement of Kv ¼ 50 ¼ K

50ð Þ 120ð Þ, we calculate

K ¼ 300; 000. The uncompensated Bode plot for this gain is shown below.
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The uncompensated system’s phase margin measurement is taken where the
magnitude plot crosses 0 dB. We find that when the magnitude plot crosses 0 dB,
the phase angle is �144:8�. Therefore, the uncompensated system’s phase margin is
�180� þ 144:8� ¼ 35:2�. The required phase margin based on the required damping

ratio is FM ¼ tan�1 2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4z4

pq ¼ 48:1�. Adding a 10� correction factor, the

required phase margin is 58:1�. Hence, the compensator must contribute

fmax ¼ 58:1� � 35:2� ¼ 22:9�. Using fmax ¼ sin�1 1 � b

1 þ b
, b ¼ 1 � sinfmax

1 þ sinfmax
¼ 0:44.

The compensator’s peak magnitude is calculated as Mmax ¼ 1ffiffiffi
b

p ¼ 1:51. Now find

the frequency at which the uncompensated system has a magnitude 1=Mmax, or
�3:58 dB. From the Bode plot, this magnitude occurs at vmax ¼ 50 rad=s. The

compensator’s zero is at zc ¼ 1

T
. vmax ¼ 1

T
ffiffiffi
b

p Therefore, zc ¼ 33:2.

The compensator’s pole is at Pc ¼ 1

bT
¼ zc

b
¼ 75:4. The compensator gain is

chosen to yield unity gain at dc.

Hence, Kc ¼ 75:4=33:2 ¼ 2:27. Summarizing, Gc sð Þ ¼ 2:27
sþ 33:2ð Þ
sþ 75:4ð Þ, and

G sð Þ 300;000

s sþ 50ð Þ sþ 120ð Þ.
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11.4

A 10% overshoot requires z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:591. The required bandwidth

is then calculated as vBW ¼ p

Tp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4 � 4z2 þ 2

pq
¼ 7:53 rad=s:

In order to meet the steady-state error requirement of Kv ¼ 10 ¼ K

8ð Þ 30ð Þ, we

calculate K ¼ 2400. The uncompensated Bode plot for this gain is shown below.
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Let us select a new phase-margin frequency at 0:8vBW ¼ 6:02 rad=s. The
required phase margin based on the required damping ratio is FM ¼ tan�1

2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4z4

pq ¼ 58:6�. Adding a 5� correction factor, the required phase

margin is 63:6�. At 6.02 rad/s, the new phase-margin frequency, the phase angle
is–which represents a phase margin of 180� � 138:3� ¼ 41:7�. Thus, the lead com-
pensator must contribute fmax ¼ 63:6� � 41:7� ¼ 21:9�.

Using fmax ¼ sin�1 1 � b

1 þ b
, b ¼ 1 � sinfmax

1 þ sinfmax
¼ 0:456.

We now design the lag compensator by first choosing its higher break frequency one
decade below the new phase-margin frequency, that is, zlag ¼ 0:602 rad=s. The lag
compensator’s pole is plag ¼ bzlag ¼ 0:275. Finally, the lag compensator’s gain is
Klag ¼ b ¼ 0:456.
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Now we design the lead compensator. The lead zero is the product of the new

phase margin frequency and
ffiffiffi
b

p
, or zlead ¼ 0:8vBW

ffiffiffi
b

p ¼ 4:07. Also, plead ¼ zlead
b

¼ 8:93. Finally, Klead ¼ 1

b
¼ 2:19. Summarizing,

Glag ¼ sð Þ ¼ 0:456
sþ 0:602ð Þ
sþ 0:275ð Þ ;Glead sð Þ ¼ 2:19

sþ 4:07ð Þ
sþ 8:93ð Þ ; and k ¼ 2400:

CHAPTER 12

12.1

We first find the desired characteristic equation. A 5% overshoot requires

z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:69. Also, vn ¼ p

Tp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ 14:47 rad=s. Thus, the char-

acteristic equation is s2 þ 2zvnsþ v2
n ¼ s2 þ 19:97sþ 209:4. Adding a pole at �10 to

cancel the zero at �10 yields the desired characteristic equation,
s2 þ 19:97sþ 209:4
� �

s þ 10ð Þ ¼ s3 þ 29:97s2 þ 409:1sþ 2094. The compensated sys-
tem matrix in phase-variable form is

A� BK ¼
0 1 0

0 0 1

� k1ð Þ � 36 þ k2ð Þ � 15 þ k3ð Þ

2
64

3
75. The characteristic equation for this

system is jsI� A� BKð Þj ¼ s3 þ 15 þ k3ð Þs2 þ 36 þ k2ð Þsþ k1ð Þ. Equating coeffi-
cients of this equation with the coefficients of the desired characteristic equation
yields the gains as

K ¼ k1 k2 k3½ � ¼ 2094 373:1 14:97½ �:

12.2

The controllability matrix is CM ¼ B AB A2B
�  ¼

2 1 1

1 4 �9

1 �1 16

2
64

3
75. Since

jCMj ¼ 80, CM is full rank, that is, rank 3. We conclude that the system is controllable.

12.3

First check controllability. The controllability matrix is CMz ¼ B AB A2B
�  ¼

0 0 1

0 1 �17

1 �9 81

2
64

3
75. Since jCMzj ¼ �1, CMz is full rank, that is, rank 3. We conclude that

the system is controllable. We now find the desired characteristic equation. A 20%

overshoot requires z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:456. Also, vn ¼ 4

zTs
¼ 4:386 rad=s.
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Thus, the characteristic equation is s2 þ 2zvnsþ v2
n ¼ s2 þ 4sþ 19:24. Adding a pole

at �6 to cancel the zero at �6 yields the resulting desired characteristic equation,

s2 þ 4sþ 19:24
� �

s þ 6ð Þ ¼ s3 þ 10s2 þ 43:24sþ 115:45:

Since G sð Þ ¼ sþ 6ð Þ
sþ 7ð Þ sþ 8ð Þ sþ 9ð Þ ¼

sþ 6

s3 þ 24s2 þ 191sþ 504
, we can write the phase-

variable representation as Ap ¼
0 1 0

0 0 1

�504 �191 �24

2
64

3
75 ; Bp ¼

0

0

1

2
64
3
75;Cp ¼

6 1 0½ �. The compensated system matrix in phase-variable form is Ap � BpKp ¼
0 1 0

0 0 1

� 504 þ k1ð Þ � 191 þ k2ð Þ � 24 þ k3ð Þ

2
64

3
75. The characteristic equation for this

system is jsI� Ap � BpKp
� �j ¼ s3 þ 24 þ k3ð Þs2 þ 191 þ k2ð Þsþ 504 þ k1ð Þ. Equat-

ing coefficients of this equation with the coefficients of the desired characteristic
equation yields the gains as Kp ¼ k1 k2 k3½ � ¼ �388:55 �147:76 �14½ �. We
now develop the transformation matrix to transform back to the z-system.

CMz ¼ Bz AzBz A2
zB z

h i
¼

0 0 1

0 1 �17

1 �9 81

2
64

3
75 and

CMp ¼ Bp ApBp A2
pBp

h i
¼

0 0 1

0 1 �24

1 �24 385

2
64

3
75:

Therefore,

P ¼ CMzC
�1
Mx ¼

0 0 1

0 1 �17

1 �9 81

2
64

3
75

191 24 1

24 1 0

1 0 0

2
64

3
75 ¼

1 0 0

7 1 0

56 15 1

2
64

3
75

Hence, Kz ¼ KpP
�1 ¼ �388:55 �147:76 �14½ �

1 0 0

�7 1 0

49 �15 1

2
64

3
75

¼ �40:23 62:24 �14½ �.
12.4

For the given system e _x ¼ A� LCð Þex ¼
� 24 þ l1ð Þ 1 0

� 191 þ l2ð Þ 0 1

� 504 þ l3ð Þ 0 0

2
64

3
75ex. The characteristic

polynomial is given by j sI� A� LCð Þ½ �j ¼ s3 þ 24 þ l1ð Þs2 þ 191 þ l2ð Þs þ
504 þ l3ð Þ. Now we find the desired characteristic equation. The dominant poles

from Skill-Assessment Exercise 12.3 come from s2 þ 4sþ 19:24
� �

. Factoring yields
�2 þ j3:9ð Þ and �2 � j3:9ð Þ. Increasing these poles by a factor of 10 and adding a

third pole 10 times the real part of the dominant second-order poles yields the
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desired characteristic polynomial, sþ 20 þ j39ð Þ sþ 20 � j39ð Þ sþ 200ð Þ ¼ s3 þ 240s2

þ 9921sþ 384200. Equating coefficients of the desired characteristic equation to the

system’s characteristic equation yields L ¼
216

9730

383696

2
64

3
75.

12.5

The observability matrix is OM ¼
C

CA

CA2

2
64

3
75 ¼

4 6 8

�64 �80 �78

674 848 814

2
64

3
75, where

A2 ¼
25 28 32

�7 �4 �11

77 95 94

2
64

3
75. The matrix is of full rank, that is, rank 3, since

jOMj ¼ �1576. Therefore the system is observable.

12.6

The system is represented in cascade form by the following state and output
equations:

_z ¼
�7 1 0

0 �8 1

0 0 �9

2
64

3
75zþ

0

0

1

2
64
3
75u

y ¼ 1 0 0½ �z

The observability matrix is OMz ¼
Cz

CzAz

CzA
2
z

2
64

3
75 ¼

1 0 0

�7 1 0

49 �15 1

2
64

3
75,

where A2
z ¼

49 �15 1

0 64 �17

0 0 81

2
64

3
75. Since G sð Þ ¼ 1

sþ 7ð Þ sþ 8ð Þ sþ 9ð Þ

¼ 1

s3 þ 24s2 þ 191sþ 504
, we can write the observable canonical form as

_x ¼
�24 1 0

�191 0 1

�504 0 0

2
64

3
75xþ

0

0

1

2
64
3
75u

y ¼ 1 0 0½ �x

The observability matrix for this form is OMx ¼
Cx

CxAx

CxA
2
x

2
64

3
75 ¼

1 0 0

�24 1 0

385 �24 1

2
64

3
75,
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where

A2
x ¼

385 �24 1

4080 �191 0

12096 504 0

2
64

3
75:

We next find the desired characteristic equation. A 10% overshoot requires

z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:591. Also,vn ¼ 4

zTs
¼ 67:66 rad=s. Thus, the characteristic

equation is s2 þ 2zvnsþ v2
n ¼ s2 þ 80sþ 4578:42. Adding a pole at �400, or 10 times

the real part of the dominant second-order poles, yields the resulting desired character-

istic equation, s2 þ 80sþ 4578:42
� �

sþ 400ð Þ ¼ s3þ 480s2 þ 36580sþ 1:831x106. For
the system represented in observable canonical form e _x ¼ Ax � LxCxð Þ ex ¼

� 24 þ l1ð Þ 1 0

� 191 þ l2ð Þ 0 1

� 504 þ l3ð Þ 0 0

2
64

3
75ex. The characteristic polynomial is given by

j sI� Ax � LxCxð Þ½ �j ¼ s3 þ 24 þ l1ð Þs2 þ 191 þ l2ð Þsþ 504 þ l3ð Þ. Equating coeffi-
cients of the desired characteristic equation to the system’s characteristic equation

yields Lx ¼
456

36; 389

1; 830; 496

2
64

3
75.

Now, develop the transformation matrix between the observer canonical and
cascade forms.

P ¼ O�1
MzOMx ¼

1 0 0

�7 1 0

49 �15 1

2
6664

3
7775

�1 1 0 0

�24 1 0

385 �24 1

2
6664

3
7775

¼
1 0 0

7 1 0

56 15 1

2
6664

3
7775

1 0 0

�24 1 0

385 �24 1

2
6664

3
7775

¼
1 0 0

�17 1 0

81 �9 1

2
6664

3
7775

Finally,

Lz ¼ PLx ¼
1 0 0

�17 1 0

81 �9 1

2
64

3
75

456

36; 389

1; 830; 496

2
64

3
75 ¼

456

28; 637

1; 539; 931

2
64

3
75 �

456

28; 640

1; 540; 000

2
64

3
75.
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12.7

We first find the desired characteristic equation. A 10% overshoot requires

z ¼
�log

%

100

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ log2 %

100

� �s ¼ 0:591

Also, vn ¼ p

Tp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ 1:948 rad=s. Thus, the characteristic equation is s2þ

2zvnsþ v2
n ¼ s2 þ 2:3sþ 3:79. Adding a pole at �4, which corresponds to the

original system’s zero location, yields the resulting desired characteristic equation,
s2 þ 2:3sþ 3:79
� �

sþ 4ð Þ ¼ s3 þ 6:3s2 þ 13sþ 15:16.

Now,
_x

_xN

	 

¼ A� BKð Þ BKe

�C 0

	 

x

xN

	 

þ 0

1

	 

r; and y ¼ C 0½ � x

xN

	 

,

where

A� BK ¼ 0 1
�7 �9

	 

� 0

1

	 

k1 k2½ � ¼ 0 1

�7 �9

	 

� 0 0

k1 k2

	 


¼ 0 1
� 7 þ k1ð Þ � 9 þ k2ð Þ
	 


C ¼ 4 1½ �

Bke ¼ 0
1

	 

ke ¼ 0

ke

	 


Thus,

_x1

_x2

_xN

2
64

3
75 ¼

0 1 0

� 7 þ k1ð Þ � 9 þ k2ð Þ ke

�4 �1 0

2
64

3
75

x1

x2

xN

2
64

3
75þ 0

1

	 

r; y ¼ 4 1 0½ �

x1

x2

xN

2
64

3
75.

Finding the characteristic equation of this system yields

sI� A� BKð Þ BKe

�C 0

	 
����
���� ¼

s 0 0

0 s 0

0 0 s

2
64

3
75�

0 1 0

� 7 þ k1ð Þ � 9 þ k2ð Þ ke

�4 �1 0

2
64

3
75

�������

�������

¼
s �1 0

7 þ k1ð Þ sþ 9 þ k2ð Þ �ke

4 1 s

2
64

3
75

�������

�������
¼ s3 þ 9 þ k2ð Þs2 þ 7 þ k1 þ keð Þsþ 4ke

Equating this polynomial to the desired characteristic equation,

s3 þ 6:3s2 þ 13sþ 15:16 ¼ s3 þ 9 þ k2ð Þs2 þ 7 þ k1 þ keð Þsþ 4ke

Solving for the k’s,

K ¼ 2:21 �2:7½ � and ke ¼ 3:79:
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CHAPTER 13

13.1

f tð Þ ¼ sin vkTð Þ; f � tð Þ ¼ P1
k¼0

sin vkTð Þd t � kTð Þ;

F� sð Þ ¼
X1
k¼0

sin vkTð Þe�kTs ¼
X1
k¼0

ejvkT � e�jvkT
� �

e�kTs

2j

¼ 1

2j

X1
k¼0

eT s�jvð Þ
� ��k

� eT sþjvð Þ
� ��k

But,
P1
k¼0

x�k ¼ 1

1 � x�1

Thus,

F� sð Þ ¼ 1

2j

1

1 � e�T s�jvð Þ �
1

1 � e�T sþjvð Þ

	 

¼ 1

2j

e�TsejvT � e�TsejvT

1 � e�TsejvT � e�TsejvTð Þ þ e�2Ts

	 


¼ e�Ts sin vTð Þ
1 � e�Ts2cos vTð Þ þ e�2Ts

	 

¼ z�1sin vTð Þ

1 � 2z�1cos vTð Þ þ z�2

13.2

F zð Þ ¼ z zþ 1ð Þ zþ 2ð Þ
z� 0:5ð Þ z� 0:7ð Þ z� 0:9ð Þ

F zð Þ
z

¼ z zþ 1ð Þ zþ 2ð Þ
z� 0:5ð Þ z� 0:7ð Þ z� 0:9ð Þ

¼ 46:875
z

z� 0:5
� 114:75

1

z� 0:7
þ 68:875

z

z� 0:9

F zð Þ ¼ 46:875
z

z� 0:5
� 114:75

z

z� 0:7
þ 68:875

z

z� 0:9
;

f kTð Þ ¼ 46:875 0:5ð Þk � 114:75 0:7ð Þk þ 68:875 0:9ð Þk

13.3

Since G sð Þ ¼ 1 � e�Ts
� � 8

s sþ 4ð Þ,

G zð Þ ¼ 1 � z�1
� �

z
8

s sþ 4ð Þ
� �

¼ z� 1

z
z

A

s
þ B

sþ 4

� �
¼ z� 1

z
z

2

s
þ 2

sþ 4

� �
:

Let G2 sð Þ ¼ 2

s
þ 2

sþ 4
. Therefore, g2 tð Þ ¼ 2 � 2e�4t, or g2 kTð Þ ¼ 2 � 2e�4kT .

Hence, G2 zð Þ ¼ 2z

z� 1
� 2z

z� e�4T
¼ 2z 1 � e�4T

� �
z� 1ð Þ z� e�4Tð Þ.
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Therefore, G zð Þ ¼ z� 1

z
G2 zð Þ ¼ 2 1 � e�4T

� �
z� e�4Tð Þ .

For T ¼ 1

4
s, G zð Þ ¼ 1:264

z� 0:3679
.

13.4

Add phantom samplers to the input, feedback after H(s), and to the output. Push
G1(s)G2(s), along with its input sampler, to the right past the pickoff point and obtain
the block diagram shown below.

H(s)G1(s)G2(s)

G1(s)G2(s)
R(s) C(s)+

–

Hence, T zð Þ ¼ G1G2 zð Þ
1 þHG1G2 zð Þ.

13.5

Let G sð Þ ¼ 20

sþ 5
. Let G2 sð Þ ¼ G sð Þ

s
¼ 20

s sþ 5ð Þ ¼
4

s
� 4

sþ 5
. Taking the inverse

Laplace transform and letting t ¼ kT, g2 kTð Þ ¼ 4 � 4e�5kT . Taking the z-transform

yields G2 zð Þ ¼ 4z

z� 1
� 4z

z� e�5T
¼ 4z 1 � e�5T

� �
z� 1ð Þ z� e�5Tð Þ.

Now, G zð Þ ¼ z� 1

z
�G2 zð Þ ¼ 4 1 � e�5T

� �
z� e�5Tð Þ .

Finally, T zð Þ ¼ G zð Þ
1 þG zð Þ ¼

4 1 � e�5T
� �

z� 5e�5T þ 4
.

The pole of the closed-loop system is at 5e�5T � 4. Substituting values of T, we find
that the pole is greater than 1 if T > 0:1022 s. Hence, the system is stable for
0 < T < 0:1022 s.

13.6

Substituting z ¼ sþ 1

s� 1
into D zð Þ ¼ z3 � z2 � 0:5zþ 0:3, we obtain D sð Þ ¼ s3 � 8s2

�27s� 6. The Routh table for this polynomial is shown below.

s3 1 �27

s2 �8 �6

s1 �27:75 0

s0 �6 0

Since there is one sign change, we conclude that the system has one pole outside the
unit circle and two poles inside the unit circle. The table did not produce a row of
zeros and thus, there are no jv poles. The system is unstable because of the pole
outside the unit circle.
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13.7

Defining G(s) as G1(s) in cascade with a zero-order-hold,

G sð Þ ¼ 20 1 � e�Ts
� � sþ 3ð Þ

s sþ 4ð Þ sþ 5ð Þ
	 


¼ 20 1 � e�Ts
� � 3=20

s
þ 1=4

sþ 4ð Þ �
2=5

sþ 5ð Þ
	 


:

Taking the z-transform yields

G zð Þ ¼ 20 1 � z�1
� � 3=20ð Þz

z� 1
þ 1=4ð Þz
z� e�4T

� 2=5ð Þz
z� e�5T

	 

¼ 3 þ 5 z� 1ð Þ

z� e�4T
� 8 z� 1ð Þ
z� e�5T

:

Hence for T ¼ 0:1 second, Kp ¼ lim
z!1

G zð Þ ¼ 3, and Kv ¼ 1

T
lim
z!1

z� 1ð ÞG zð Þ ¼ 0, and

Ka ¼ 1

T2
lim
z!1

z� 1ð Þ2G zð Þ ¼ 0. Checking for stability, we find that the system is

stable for T ¼ 0:1 second, since T zð Þ ¼ G zð Þ
1 þG zð Þ ¼

1:5z� 1:109

z2 þ 0:222z� 0:703
has poles

inside the unit circle at �0:957 and þ 0:735. Again, checking for stability, we find that

the system is unstable for T ¼ 0:5 second, since T zð Þ ¼ G zð Þ
1 þG zð Þ ¼

3:02z� 0:6383

z2 þ 2:802z� 0:6272
has poles inside and outside the unit circle at þ0:208 and

�3:01, respectively.

13.8

Draw the root locus superimposed over the z ¼ 0:5 curve shown below. Searching
along a 54:3� line, which intersects the root locus and the z ¼ 0:5 curve, we find the
point 0:587ff54:3� ¼ 0:348 þ j 0:468ð Þ and K ¼ 0:31.

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

–1.5

–1

–0.5

0

0.5

1

1.5

Real Axis

Im
ag

 A
xi

s

z-Plane Root Locus

54.3°

(0.348 + j0.468)
K = 0.31

13.9

Let

Ge sð Þ ¼ G sð ÞGc sð Þ ¼ 100K

s sþ 36ð Þ sþ 100ð Þ
2:38 sþ 25:3ð Þ

sþ 60:2ð Þ ¼ 342720 sþ 25:3ð Þ
s sþ 36ð Þ sþ 100ð Þ sþ 60:2ð Þ :
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The following shows the frequency response of Ge jvð Þ.

Frequency (rad/sec)

Ph
as

e 
(d

eg
);

 M
ag

ni
tu

de
 (

dB
)

Bode Diagrams

–60

–40

–20

0

20

40

10–1 100 101 102 103

–250

–200

–150

–100

We find that the zero dB frequency, vFM , for Ge jvð Þ is 39 rad/s. Using Astrom’s
guideline the value of T should be in the range, 0:15=vFM ¼ 0:0038 second to
0:5=vFM ¼ 0:0128 second. Let us use T ¼ 0:001 second. Now find the Tustin

transformation for the compensator. Substituting s ¼ 2 z� 1ð Þ
T z� 1ð Þ into Gc sð Þ ¼

2:38 sþ 25:3ð Þ
sþ 60:2ð Þ with T ¼ 0:001 second yields

Gc zð Þ ¼ 2:34
z� 0:975ð Þ
z� 0:9416ð Þ :

13.10

Gc zð Þ ¼ X zð Þ
E zð Þ ¼

1899z2 � 3761zþ 1861

z2 � 1:908zþ 0:9075
. Cross-multiply and obtain z2 � 1:908zþ�

0:9075X zð Þ ¼ 1899z2 � 3761zþ 1861
� �

E zð Þ. Solve for the highest power of z

operating on the output, X(z), and obtain z2X zð Þ ¼ 1899z2 � 3761zþ 1861
� �

E zð Þ � �1:908zþ 0:9075ð ÞX zð Þ. Solving for X(z) on the left-hand side yields
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X zð Þ ¼ 1899 � 3761z�1 þ 1861z�2
� �

E zð Þ� �1:908z�1 þ 0:9075z�2
� �

X zð Þ. Finally,
we implement this last equation with the following flow chart:

e*(t) x*(t)

e*(t-0.1) x*(t-0.1)

x*(t-0.2)e*(t-0.2)

Delay
0.1 second

1899

–3761

1861 0.9075

–1.9.08

+

+
+

+
–

–

Delay
0.1 second

Delay
0.1 second

Delay
0.1 second
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