MENG3666

Dr. Saeed Asiri
saeed@asiri.net

Basic Concepts related to State Space

- State State Variables
The smallest set of variables $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ such that the knowledge of these variables at time $t=t_{0}$, together with the knowledge of the input for $t \geq t_{0}$ completely determines the behavior (the values of the state variables) of the system for time $t \geq t_{0}$.
- State Vector

All the state variables $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \cdots, \boldsymbol{q}_{n}\right\}$ can be looked on as components of state vector.

- State Space

A space whose coordinates consist of state variables is called a state space. Any state can be represented by a point in state space.

State Space Representation

- State Space Representation
- Two parts:
- A set of first order ODEs that represents the derivative of each state variable q_{i} as an algebraic function of the set of state variables $\left\{q_{i}\right\}$ and the inputs $\left\{u_{i}\right\}$.

$$
\left\{\begin{array}{l}
\dot{q}_{1}=f_{1}\left(q_{1}, q_{2}, q_{3}, \ldots, q_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right) \\
\dot{q}_{2}=f_{2}\left(q_{1}, q_{2}, q_{3}, \ldots, q_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right) \\
\quad \vdots \\
\dot{q}_{n}=f_{n}\left(q_{1}, q_{2}, q_{3}, \ldots, q_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right)
\end{array}\right.
$$

- A set of equations that represents the output variables as algebraic functions of the set of state variables $\left\{q_{i}\right\}$ and the inputs $\left\{u_{i}\right\}$.

$$
\left\{\begin{array}{l}
y_{1}=g_{1} q_{1}, q_{2}, q_{3}, \ldots, q_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{m} \\
y_{2}=g_{2} q_{1}, q_{2}, q_{3}, \ldots, q_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{m} \\
\quad \vdots \\
y_{p}=g_{p} q_{1}, q_{2}, q_{3}, \ldots, q_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{m}
\end{array}\right.
$$

State Space Representation

Example:
EOM:

$$
M \ddot{x}+B \dot{x}+K x=f(t)
$$

Q: What information about the mass do we need to know to be able to solve for $x(t)$ for $t \geq t_{0}$?

Input: $f(t), t \geq t_{0}$
Initial Conditions (ICs):

$$
\begin{array}{ll}
x\left(t_{0}\right) & q_{1}=x(t) \\
\dot{x}\left(t_{0}\right) & q_{2}=\dot{x}(t)
\end{array}
$$

Rule of Thumb

Number of state variables $=$ Sum of orders of EOMs

State Space Representation

- Example

EOM $\quad M \ddot{x}+B \dot{x}+K x=f(t)$

State Variables:

$$
q_{1}=x,
$$

$$
q_{2}=\dot{x}
$$

Outputs: $\quad y_{1}=\boldsymbol{x}, \quad y_{2}=-\boldsymbol{B} \dot{x}$

State Space Representation:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{q}_{1}=\dot{x}=q_{2} \quad \text { State equation } \\
\dot{q}_{2}=\ddot{x}=\frac{1}{M}\left(-B q_{2}-K q_{1}\right)+\frac{1}{M} f(t)
\end{array}\right. \\
& \{\begin{array}{l}
y_{1}=\boldsymbol{x}=q_{1} \\
y_{2}=-\boldsymbol{B} \dot{\boldsymbol{x}}=-\boldsymbol{B} q_{2}
\end{array} \quad \text { Output equation } \quad\left[\begin{array}{c}
y_{1} \\
y_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -B
\end{array}\right] \cdot\left[\begin{array}{c}
q_{1} \\
q_{2}
\end{array}\right]+\underbrace{}_{\mathrm{D}}+0_{2 \times 1} \cdot \mathbf{u}}_{\mathbf{C}}
\end{aligned}
$$

State Space Representation

- Obtaining State Space Representation
- Identify State Variables
- Rule of Thumb:
- Nth order ODE requires N state variables.
- Position and velocity of inertia elements are natural state variables for translational mechanical systems.
- Eliminate all algebraic equations written in the modeling process.
- Express the resulting differential equations in terms of state variables and inputs in coupled first order ODEs.
- Express the output variables as algebraic functions of the state variables and inputs.
- For linear systems, put the equations in matrix form.

$$
\begin{aligned}
& \qquad \dot{\mathbf{x}}=\mathbf{A} \cdot \underset{\text { State Vector }}{\mathbf{x}}+\mathbf{B} \cdot \underset{\text { Input Vector }}{\mathbf{u}} \\
& \mathbf{y}=\mathbf{C} \cdot \mathbf{x}+\mathbf{D} \cdot \mathbf{u} \\
& \text { Output Vector }
\end{aligned}
$$

State Space Representation

- Exercise

Represent the 2 DOF suspension system in a state space representation. Let the system output be the relative position of mass M_{1} with respect to M_{2}.

$$
\begin{aligned}
& M_{1} \ddot{x}_{1}+B_{1} \dot{x}_{1}-B_{1} \dot{x}_{2}+K_{1} x_{1}-K_{1} x_{2}=0 \\
& M_{2} \ddot{x}_{2}-B_{1} \dot{x}_{1}+B_{1} \dot{x}_{2}-K_{1} x_{1}+\left(K_{1}+K_{2}\right) x_{2}=K_{2} x_{p}
\end{aligned}
$$

State Variables:

$$
q_{1}=x_{1}, \quad q_{2}=\dot{x}_{1}, \quad q_{3}=x_{2}, \quad q_{4}=\dot{x}_{2}
$$

Output: $y=x_{1}-x_{2} \quad$ Input: $\quad x_{p}$

State Space Representation:

$$
\begin{aligned}
& \underset{\dot{\mathbf{x}}}{\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3} \\
\dot{q}_{4}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{K_{1}}{M_{1}} & -\frac{B_{1}}{M_{1}} & \frac{K_{1}}{M_{1}} & \frac{B_{1}}{M_{1}} \\
0 & 0 & 0 & 1 \\
\frac{K_{1}}{M_{2}} & \frac{B_{1}}{M_{2}} & -\frac{K_{1}+K_{2}}{M_{2}} & -\frac{B_{1}}{M_{2}}
\end{array}\right]}_{\mathbf{A}} \underset{\mathbf{x}}{q_{1}}} \begin{array}{c}
q_{2} \\
q_{3} \\
q_{4}
\end{array}]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{K_{2}}{M_{2}}
\end{array}\right] x_{\mathbf{B}} \quad, \\
& \mathrm{y}=\underbrace{\left[\begin{array}{llll}
1 & 0 & -1 & 0
\end{array}\right]}_{\mathbf{C}} \cdot \mathbf{x}+\underset{\mathrm{D}}{\mathbf{0} \cdot \mathbf{u}}
\end{aligned}
$$

Input/Output Representation

- Input/Output Model

Uses one nth order ODE to represent the relationship between the input variable, $u(t)$, and the output variable, $y(t)$, of a system.
For linear time-invariant (LTI) systems, it can be represented by :

$$
a_{n} y^{(n)}+\cdots+a_{2} \ddot{y}+a_{1} \dot{y}+a_{0} y=b_{m} u^{(m)}+\cdots+b_{2} \ddot{u}+b_{1} \dot{u}+b_{0} u(t)
$$

where

$$
y^{(n)}=d / d t^{n} y
$$

- To solve an input/output differential equation, we need to know
Input:

Initial Conditions (ICs): $\underbrace{y(0), \dot{y}(0), \cdots, \quad y^{(n-1)}(0)}_{n}$

- To obtain I/O models:
- Identify input/output variables.
- Derive equations of motion.
- Combine equations of motion by eliminating all variables except the input and output variables and their derivatives.

Input/Output Representation

- Example

Vibration Absorber

$$
\begin{array}{ll}
\text { EOM: } & M_{1} \ddot{z}_{1}+B_{1} \dot{z}_{1}+\left(K_{1}+K_{2}\right) z_{1}-K_{2} z_{2}=f(t) \\
& M_{2} \ddot{z}_{2}+K_{2} z_{2}-K_{2} z_{1}=0
\end{array}
$$

- Find input/output representation between
input $f(t)$ and output z_{2}.
- Need to eliminate $Z_{\text {}}$ and its time
derivative of all orders

$$
\begin{aligned}
& M_{1} \underbrace{\frac{1}{K_{2}}\left\{M_{2} z_{2}^{(4)}+K_{2} \ddot{z}_{2}\right\}}_{\tilde{z}_{1}}+B_{1} \underbrace{\frac{1}{K_{2}}\left\{M_{2} z_{2}^{(3)}+K_{2} \dot{z}_{2}\right\}}_{z_{1}}+\left(K_{1}+K_{2}\right) \underbrace{\frac{1}{K_{2}}\left\{M_{2} \ddot{z}_{2}+K_{2} z_{2}\right\}}_{z_{1}}-K_{2} z_{2}=f(t) \\
& z_{2}^{(4)}+\frac{B_{1}}{M_{1}} z_{2}^{(3)}+\frac{M_{1} K_{2}^{z_{1}}+M_{2}\left(K_{1}+K_{2}\right)}{M_{1} M_{2}} \ddot{z}_{2}+\frac{B_{1} K_{2}}{M_{1} M_{2}} \dot{z}_{2}+\frac{K_{1}^{z_{1}} K_{2}}{M_{1} M_{2}} z_{2}=\frac{K_{2}}{M_{1} M_{2}} f
\end{aligned}
$$

Input/Output Models

State-Space Models

- State Space Models:
- consider the internal behavior of a system
- can easily incorporate complicated output variables
- have significant computation advantage for computer simulation
- can represent multi-input multi-output (MIMO) systems and nonlinear systems
- Input/Output Models:
- are conceptually simple
- are easily converted to frequency domain transfer functions that are more intuitive to practicing engineers
- are difficult to solve in the time domain (solution: Laplace transformation)

State Space Equations

Dynamic Equations

$$
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)
$$

Observation Equations

$$
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
$$

\mathbf{x} is the state vector of the system, nx 1 ;

```
MATLAB function:
SYS = SS (A,B,C,D
SYS = SS (A,B,C,D,T)
SYS = SS
SYS = SS (D)
SYS =
SS (A,B,C,D,LTISYS)
SYS = SS(SYS)
```

n is the order of the system;
\mathbf{u} is the input vector, mx 1 ;
\mathbf{y} is the output vector, px 1 ;
\mathbf{A} is the system (or coefficient) matrix, nxn;
\mathbf{B} is the input (or driving) matrix, nxm;
C is the observation matrix, pxn;
D is the feedforward matrix, pxm.

State Space Equations

Block diagram of a state based controller

Solving the State Equations= Free Response

$$
\mathbf{x}_{\mathrm{IC}}(t)=\mathrm{L}^{-1}\left\{[\mathbf{I}-\mathbf{A}]^{-1}\right\} \mathbf{x}(0)=\Phi(t, 0) \mathbf{x}(0)=\exp (\mathbf{A} t) \mathbf{x}(0)
$$

where $\Phi(t, 0)$ is called the state transition matrix and $\exp (\mathbf{A} t)$ is called the matrix exponential function and is defined as,

$$
\exp (\mathbf{A} t)=\mathbf{e}^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} t^{2}+\cdots+\frac{1}{i!} \mathbf{A}^{i} t^{i}+\cdots
$$

```
MATLAB function:
INITIAL (SYS ,X0)
INITIAL (SYS,XO,TFINAL)
INITIAL (SYS,XO,T)
INITIAL (SYS1,SYS2 , . . ,X0,T)
```


Solving the State Equations= Forced Response

$$
\begin{aligned}
& \mathrm{L}^{-1}\{g(s) u(s)\}=\int_{-\infty}^{\infty} g(t-\tau) u(\tau) d \tau \quad \text { Convolution Integral } \\
& \Rightarrow \mathbf{x}_{\text {forede }}(t)=\int_{0}^{t} \exp \{\mathbf{A}(t-\tau)\} \mathbf{B u}(\tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
& \text { MATLAB function: } \\
& \text { IMPULSE : impulsive input } \\
& \text { STEP: step input } \\
& \text { LSIM: arbitrary input }
\end{aligned}
$$

State Space Representations

For a specific transfer function or block diagram representation of a system there is no unique state space representation.

We may choose state variables that are:

1) physically meaningful or
2) mathematically convenient.

Some representations are particularly useful and have been standardized as "canonical" forms.

State Space Model to Transfer Function Model

$$
\mathrm{s} \mathbf{x}(\mathrm{~s})-\mathbf{x}(0)=\mathrm{A} \mathbf{x}(\mathrm{~s})+\mathrm{Bu}(\mathrm{~s})
$$

Solving for $\mathbf{x}(\mathrm{s})$,

```
MATLAB function:
[NUM,DEN] =
SS2TF(A,B,C,D,iu)
```

$\mathbf{x}(\mathrm{s})=\operatorname{inv}(\mathrm{sI}-\mathrm{A}) \mathbf{x}(0)+\operatorname{inv}(\mathrm{sI}-\mathrm{A}) \mathrm{Bu}(\mathrm{s})$.

So,

$$
\begin{aligned}
\mathbf{y}(\mathrm{s}) & =\operatorname{Cx}(\mathrm{s})+\operatorname{Du}(\mathrm{s}) \\
& =\operatorname{Cinv}(\mathrm{sI}-\mathrm{A}) \mathrm{Bu}(\mathrm{~s})+\operatorname{Du}(\mathrm{s}) \quad \text { for } \mathbf{x}(0)=\mathbf{0} . \\
& =[\operatorname{Cinv}(\mathrm{sI}-\mathrm{A}) \mathrm{B}+\mathrm{D}] \mathbf{u}(\mathrm{s}) \\
& =\{[\operatorname{Cadj}(\mathrm{sI}-\mathrm{A}) \mathrm{B}+\operatorname{Ddet}(\mathrm{sI}-\mathrm{A})] / \operatorname{det}(\mathrm{sI}-\mathrm{A})\} \mathbf{u}(\mathrm{s})
\end{aligned}
$$

$\operatorname{det}(\mathrm{sI}-\mathrm{A})=0$ is the characteristic equation of the system and $[\operatorname{Cadj}(\mathrm{sI}-\mathrm{A}) \mathrm{B}+\operatorname{Ddet}(\mathrm{sI}-\mathrm{A})]$ is the pxm matrix of system zeros.

State Space Model to Transfer Function Model

State equations as functions of time

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

In the s-domain

$$
\begin{aligned}
s X- & X_{0}=A X+B U \\
& X(s I-A)=B U+X_{0} \\
& X=(s I-A)^{-1} B U+(s I-A)^{-1} X_{0} \\
Y= & C X+D U \\
& Y=C\left((s I-A)^{-1} B U+(s I-A)^{-1} X_{0}\right)+D U \\
& Y=\left(C(s I-A)^{-1} B+D\right) U+C(s I-A)^{-1} X_{0}
\end{aligned}
$$

Assuming the system starts at rest,

$$
\begin{aligned}
& Y=\left(C(s I-A)^{-1} B+D\right) U \\
& \frac{Y}{U}=\left(C(s I-A)^{-1} B+D\right) \quad \text { (the transfer function) }
\end{aligned}
$$

Controller Canonical Form

Consider the transfer function

$$
\frac{y(s)}{u(s)}=\sum_{i=0}^{n-1} b_{i} s^{i} / \sum_{j=0}^{n} a_{j} s^{n-j}, a_{0}=1
$$

Define

$$
y=\sum_{i} b_{i} x_{c_{i}}, \text { and } \quad \dot{x}_{c_{i}}=x_{c_{i-1}}, i=2, \ldots n
$$

Structure of the state space model

$$
\begin{aligned}
\dot{\mathbf{x}}_{\mathbf{c}} & =\mathbf{A}_{\mathbf{c}} \mathbf{x}_{\mathbf{c}}+\mathbf{B}_{\mathbf{c}} \mathbf{u} \\
\mathbf{A}_{\mathbf{c}} & =\left[\begin{array}{l}
-a_{1}-a_{2}-a_{3} \ldots \ldots \ldots a_{n-1}-a_{n} \\
\left.\mathbf{I}_{(n-1) \times(n-1)} \ldots \ldots \ldots \ldots . n-1\right) x 1
\end{array}\right]_{(n n n)} \\
\mathbf{B}_{\mathbf{c}} & =\left[\begin{array}{c}
1 \\
\vdots \\
0
\end{array}\right]_{(n x 1)} \quad, \mathbf{C}_{\mathbf{c}}=\left[\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right], \mathbf{D}_{\mathbf{c}}=\mathbf{0} .
\end{aligned}
$$

Controller Canonical Form

Controller canonical form is particularly useful:

- The coefficients of the numerator and denominator polynomials of the transfer function appear directly in the state variable model.
- All other elements are either 0 or 1 .
- The state variable model can be written by inspection, and vice versa. This is used in MATLAB to compute the state space model from the transfer function model with the function \mathbf{t} 2ss.
- It replicates itself if state variable feedback is used.

Controller Canonical Form

Consider a state variable feedback control law.

$$
\begin{aligned}
& u(t)=-K \mathbf{x}_{\mathbf{c}}(t), \mathbf{K}=\left[k_{1} \ldots \ldots k_{n}\right] \\
& \dot{\mathbf{x}}_{\mathbf{c}}=\mathbf{A}_{\mathbf{c}} \mathbf{x}_{\mathbf{c}}-\mathbf{B}_{\mathbf{c}} \mathbf{K} \mathbf{x}_{\mathbf{c}}=\left[\mathbf{A}_{\mathbf{c}}-\mathbf{B}_{\mathbf{c}} \mathbf{K}\right] \mathbf{x}_{\mathbf{c}} \\
& {\left[\mathbf{A}_{\mathbf{c}}-\mathbf{B} \mathbf{C} \mathbf{K}\right]=\left[\begin{array}{l}
-\left(a_{1}+k_{1}\right) \ldots \ldots \ldots \ldots .-\left(a_{n}+k_{n}\right) \\
\left.\mathbf{I}_{(n-1) x(n-1)} \ldots \ldots \ldots \ldots \ldots \ldots \ldots n-1\right) x 1
\end{array}\right]}
\end{aligned}
$$

Thus, the closed-loop characteristic equation is:

$$
s^{n}+\left(a_{1}+k_{1}\right) s^{n-1}+\left(a_{2}+k_{2}\right) s^{n-2}+\ldots \ldots \ldots .+\left(a_{n}+k_{n}\right)=0
$$

The feedback coefficients determine the closed-loop poles.

State Space Representations

Example 1.1: Conversion from Transfer-Function Model to StateSpace Model

$$
\frac{Y(s)}{U(s)}=\frac{s}{s^{3}+14 s^{2}+56 s+160}
$$

```
MATLAB code:
n=[1 0]; d=[1 14 56 160];
[Ac,Bc,Cc,Dc]=tf2ss(n,d) % Controller canonical form
system=tf(n,d)
[a,b,c,d]=ssdata(system) % Not controller canonical form
```


State Space Representations

Example 1.1:

$$
s^{\wedge} 3+14 s^{\wedge} 2+56 s+160
$$

$\mathrm{Ac}=$		
-14	-56	-160
1	0	0
0	1	0
$\mathrm{Bc}=$		
1		
0		
0		
$\mathrm{Cc}=$		
0	1	0
$\mathrm{Dc}=$		
0		

$$
\begin{aligned}
& \mathrm{a}= \\
& \begin{array}{lll}
-14 & -7 & -5
\end{array} \\
& 8 \quad 0 \quad 0 \\
& 0 \quad 4 \quad 0 \\
& \mathrm{~b}= \\
& 0.2500 \\
& 0 \\
& 0 \\
& \mathrm{c}= \\
& 0 \quad 0.5000 \\
& \mathrm{~d}= \\
& 0
\end{aligned}
$$

Similarity between phase=variable \& controller canonical forms

Signal-flow graphs for obtaining forms for

$$
G(s)=C(s) / R(s)=\left(s^{2}+7 s+2\right) /\left(s^{3}+9 s^{2}+26 s+24\right):
$$

(a)
a. phase-variable form;

(b)
b. controller canonical form

Modal Canonical Form

For non-repeated roots

MATLAB function:

$[\mathrm{R}, \mathrm{P}, \mathrm{K}]=\operatorname{RESIDUE}(\mathrm{B}, \mathrm{A})$
$[\mathrm{B}, \mathrm{A}]=\operatorname{RESIDUE}(\mathrm{R}, \mathrm{P}, \mathrm{K})$

$$
y(s) / u(s)=\sum_{i=1}^{n} r_{i} /\left(s-p_{i}\right) \quad \text { for } \quad p_{i} \neq p_{j} \quad i \neq j
$$

Let $\quad x_{m_{i}}(s) / u(s)=r_{i} /\left(s-p_{i}\right)$
So,

$$
\begin{aligned}
& \dot{x}_{m_{i}}(t)=p_{i} x_{m_{i}}(t)+r_{i} u(t) \\
& \mathrm{y}(\mathrm{t})=\sum_{i=1}^{\mathrm{n}} x_{m_{i}}(t)=[1 \ldots \ldots .1] \mathbf{x}
\end{aligned}
$$

Modal Canonical Form = Vector=Matrix Format

The state variables in this format are uncoupled. they are called the modes. In vector-matrix notation,

$$
\dot{\mathbf{x}}_{\mathbf{m}}(t)=\left[\begin{array}{cccc}
p_{1} & 0 & \cdots & 0 \\
0 & p_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & p_{n}
\end{array}\right] \mathbf{x}_{\mathbf{m}}(t)+\left[\begin{array}{c}
r_{1} \\
\vdots \\
\vdots \\
r_{n}
\end{array}\right] u(t)
$$

and

$$
y=[1 \ldots 1] \mathbf{x}_{\mathbf{m}}
$$

Definition of Controllability

-If an input can be found that takes every state variable from an arbitrary initial state to a desired final state in a finite amount of time, the system is said to be controllable; otherwise the system is uncontrollable.
-The controllability of a system in modal canonical form can be determined by inspection.

- A system is controllable iff all of its modes can be affected by the control (input) variable(s).

Consider a scalar system

$$
\begin{aligned}
& \dot{x}=p x+r u \\
& x(T)=e^{p\left(T-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{T} e^{p(T-\tau)} r u(\tau) d \tau
\end{aligned}
$$

For $\mathrm{u}=$ constant $=\mathrm{U}$,

$$
\mathrm{U}=\frac{x(T)-e^{p\left(T-t_{0}\right)}}{r \int e^{p(T-\tau)} d \tau}
$$

Thus, the scalar system is controllable iff r is not zero and the controllability of each mode can be assessed by inspection of the modal canonical form.

Transforming State Equations

$$
\mathbf{x}=\mathbf{T z}
$$

then $\dot{\mathbf{x}}=\mathbf{T} \dot{\mathbf{z}}=\mathbf{A T z}+\mathbf{B u}$
or $\quad \dot{\mathbf{z}}=\mathbf{T}^{-1} \mathbf{A T z}+\mathbf{T}^{-1} \mathbf{B u}=\mathbf{F z}+\mathbf{G u}$
and $\quad \mathbf{y}=\mathbf{C T z}+\mathbf{D u}=\mathbf{H z}+\mathbf{J u}$.

So that the state space models are related by the matrix transformations:
$\mathbf{F}=\mathbf{T}^{-1} \mathbf{A T}$
$\mathbf{G}=\mathbf{T}^{-1} \mathbf{B}$
$\mathbf{H}=\mathbf{C T}$
$\mathbf{J}=\mathbf{D}$.

Transforming to control canonical form

Suppose we wanted to transform an arbitrary state variable description ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$) to the control canonical form. Is it possible?

From the general transformation equations,

$$
\mathbf{A}_{\mathbf{c}} \mathbf{T}=\mathbf{T} \mathbf{A}
$$

Considering the three-dimensional case and letting:

$$
\mathbf{T}=\left[\begin{array}{lll}
\mathbf{t}_{\mathbf{1}} & \mathbf{t}_{2} & \mathbf{t}_{3}
\end{array}\right]^{T},
$$

Transforming to control canonical form

$$
\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & \mathrm{O} \\
\mathrm{O} & 1 & \mathrm{O}
\end{array}\right]\left[\begin{array}{c}
\mathbf{t}_{1}^{\mathrm{T}} \\
\mathbf{i}_{2}^{\mathrm{T}} \\
\mathbf{t}_{3}^{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{1}^{\mathrm{T}} \\
\mathbf{t}_{2}^{\mathrm{T}} \\
\mathbf{t}_{3}^{\mathrm{T}}
\end{array}\right] \mathbf{A}
$$

From the last row, $\boldsymbol{t}_{2}^{\mathrm{T}}=\mathbf{t}_{3}^{\mathrm{T}} \mathbf{A}$.
From the second row, $\mathbf{t}_{1}^{\mathrm{T}}=\mathbf{t}_{2}^{\mathrm{T}} \mathbf{A}$.

$$
\begin{aligned}
& \text { Also, since } \mathbf{B}_{\mathbf{c}}=\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{O} \\
\mathbf{O}
\end{array}\right]=\mathbf{T B}=\left[\begin{array}{l}
\mathbf{t}_{1}^{\mathrm{T}} \\
\mathbf{t}_{2}^{\mathrm{T}} \\
\mathbf{t}_{3}^{\mathrm{T}}
\end{array}\right] \mathbf{B}, \\
& \mathbf{1}=\mathbf{t}_{1}^{T} \mathbf{B}=\mathbf{t}_{2}^{T} \mathbf{A} \mathbf{B}=\mathbf{t}_{3}^{T} \mathbf{A}^{2} \mathbf{B} \\
& \mathbf{O}=\mathbf{t}_{2}^{T} \mathbf{B}=\mathbf{t}_{3}^{T} \mathbf{A} \mathbf{B} \\
& \mathbf{O}=\mathbf{t}_{3}^{T} \mathbf{B} \\
& \text { Or } \\
& \mathbf{t}_{3}^{T}\left[\mathbf{B}, \mathbf{A B}, \mathbf{A}^{2} \mathbf{B}\right]=\left[\begin{array}{lll}
\mathbf{O} & \mathbf{O} & \mathbf{1}
\end{array}\right] .
\end{aligned}
$$

Transforming to control canonical form

Solving for \mathbf{t}_{3}^{T},
$\mathbf{t}_{3}^{T}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B}\end{array}\right]^{-1}$
From which we can solve for \mathbf{t}_{2}^{T} and \mathbf{t}_{1}^{T} from the equation derived above if, and only if, $\left[\begin{array}{lll}\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B}\end{array}\right]^{-1}$ exists!

General Case: In general we define the controllability matrix, \mathbf{C}, as:

$$
\left.\begin{array}{l}
\boldsymbol{C}=\left[\begin{array}{llll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{\mathbf{2}} \mathbf{B} & \cdots
\end{array} \mathbf{A}^{\mathbf{n - 1} \mathbf{B}}\right] \\
\mathbf{t}_{n}^{T}=\left[\begin{array}{llll}
\mathrm{O} & \cdots & \mathrm{O} & 1
\end{array}\right] \boldsymbol{C}^{-1}
\end{array}\right] \begin{gathered}
\\
\mathbf{T}=\left[\begin{array}{c}
\mathbf{t}_{n}^{T} \mathbf{A}^{\mathbf{n - 1}} \\
\mathbf{t}_{n}^{T} \mathbf{A}^{\mathbf{n - 2}} \\
\vdots \\
\mathbf{t}_{n}^{T}
\end{array}\right]
\end{gathered}
$$

Controllability = an alternate viewpoint e

- We have just seen that an arbitrary state space representation can be transformed to the control canonical form iff the controllability matrix is nonsingular.
- Once in controller canonical form the closed-loop poles can be arbitrarily placed using state variable feedback.
- Thus, a system is controllable iff its closed-loop poles can be arbitrarily selected using state variable feedback.
- All viewpoints of controllability are compatible.

Example 1.2: Forming the Controllability Matrix

For the canonical state-space model defined in Example 1.2.1.1

$$
\mathrm{CO}=\operatorname{ctrb}(\mathrm{Ac}, \mathrm{Bc})
$$

$\mathrm{CO}=$	
1	-14
0	140
0	1
0	-14
0	1

Now we can check its determinant to make sure its inverse exists: $\operatorname{det}(\mathrm{CO})$
ans $=1$

Therefore, the system is controllable.

Example 1.3: An Uncontrollable System

```
Let a=[1 1;0 1];b=[1;0];CO=ctrb(a,b);det(CO)
ans =
    0
```

Since the controllability matrix is singular the system is uncontrollable. Note the transfer function model has pole-zero cancellation at $\mathrm{s}=-1$. This is symptomatic of an uncontrollable mode.
[zeros,poles]=ss2zp(a,b,[11],0)
zeros =
1.0000
poles $=$
1
1

Transforming to modal canonical form

$\dot{\mathbf{z}}=\mathbf{V}^{-1} \dot{\mathbf{x}}=\mathbf{V}^{-1} \mathbf{A x}+\mathbf{V B u}=\mathbf{V}^{-1} \mathbf{A V} \mathbf{z}+\mathbf{V}^{-1} \mathbf{B u}=\mathbf{A}_{\mathrm{m}} \mathbf{z}+\mathbf{B}_{\mathrm{m}} \mathbf{u}$.

So, $\quad \mathbf{A}_{\mathbf{m}}=\mathbf{V}^{-1} \mathbf{A V} \quad$ or $\quad \mathbf{V A}_{\mathbf{m}}=\mathbf{A V}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]\left[\begin{array}{cccc}0 & p_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & p_{n}\end{array}\right]$.
Thus, $\quad \mathbf{A} \mathbf{v}_{i}=p_{i} \mathbf{v}_{i}$ for $i=1 \cdots n \quad$ Eigenvalue Problem where
$\left\{p_{i}\right\}$ are the eigenvalues of \mathbf{A}, i.e., $\operatorname{det}\left(\mathbf{A}-\mathrm{p}_{\mathrm{i}} \mathbf{I}\right)=0$; and $\left\{\mathbf{v}_{i}\right\}$ are the eigenvectors of \mathbf{A}.

$$
\begin{aligned}
& \text { MATLAB function: } \\
& \mathrm{E}=\mathrm{EIG}(\mathrm{X}) \\
& {[\mathrm{V}, \mathrm{D}]=\mathrm{EIG}(\mathrm{X})} \\
& {[\mathrm{V}, \mathrm{D}]=\mathrm{EIG}\left(\mathrm{X}, \text { ' nobalance }^{\prime}\right)} \\
& \mathrm{E}=\mathrm{EIG}(\mathrm{~A}, \mathrm{~B}) \\
& {[\mathrm{V}, \mathrm{D}]=\mathrm{EIG}(\mathrm{~A}, \mathrm{~B})} \\
& \hline
\end{aligned}
$$

