MENG366

Transfer Functions \& Block Diagrams

Dr. Saeed Asiri

saeed@asiri.net

Linear System

Transfer Function

(a)

(b)

Note: The input, $r(t)$, stands for reference input.
The output, $c(t)$, stands for controlled variable.

Transfer Function

The output $c(t)$ is related to the input $r(t)$ by

$$
a_{n} \frac{d^{n} c}{d t^{n}}+a_{n-1} \frac{d^{n-1} c}{d t^{n-1}}+\ldots+a_{0} c=b_{m} \frac{d^{m} r}{d t^{m}}+b_{m-1} \frac{d^{m-1} r}{d t^{m-1}}+\ldots+b_{0} r
$$

where a 's and b 's are system parameters
Using Laplace transform with zero initial conditions

$$
\left(a_{n} s^{n}+a_{n-1} s^{n-1}+. .+a_{0}\right) C(s)=\left(b_{m} r^{m}+b_{m-1} r^{m-1}+\ldots+b_{0}\right) R(s)
$$

where $C(s) \& R(s)$ are the Laplace transforms of $c(t) \& r(t)$

- سلطان القحطاني
- هيثم
- عزام
- محمد المدني

Transfer Function

$$
\frac{C(s)}{R(s)}=G(s)=\frac{\left(b_{m} r^{m}+b_{m-1} r^{m-1}+\ldots+b_{0}\right)}{\left(a_{n} s^{n}+a_{n-1} s^{n-1}+. .+a_{0}\right)}
$$

where $G(s)=$ transfer function of the system
$R(s)$

$$
\frac{\left(b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{0}\right)}{\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}\right)}
$$

$G(\mathrm{~s})$

$$
C(s)=G(s) R(s)
$$

Poles \& Zeros of Transfer Function

$$
\frac{C(s)}{R(s)}=G(s)=\frac{\left(b_{m} r^{m}+b_{m-1} r^{m-1}+\ldots+b_{0}\right)}{\left(a_{n} s^{n}+a_{n-1} s^{n-1}+. .+a_{0}\right)}=\frac{N(s)}{D(s)}
$$

Definitions
Zeros $=$ roots of $N(s)$, i.e. the values at which $N(s)=0$. At these values the numerator becomes ZERO

Poles $=$ roots of $D(s)$, i.e. the values at which $D(s)=0$. At these values the denominator vanishes \& the system output (for any finite input) goes to infinity.

Transfer firom DE

Example.1:

Find the transfer function represented by:

$$
\frac{d c(t)}{d t}+2 c(t)=r(t)
$$

Solution
with zero initial conditions

$$
s C(s)+2 C(s)=R(s)
$$

or

$$
G(s)=\frac{C(s)}{R(s)}=\frac{1}{s+2}
$$

Response from T. $\mathbf{I n}^{\text {n }}$

Example.2:

Find the time response of :

$$
\frac{d c(t)}{d t}+2 c(t)=r(t)
$$

For a unit step input $r(t)$ (i.e. $r(t)=u(t))$.

Solution as the transfer function is

$$
G(s)=\frac{C(s)}{R(s)}=\frac{1}{s+2}
$$

As $r(t)=u(t) \rightarrow R(s)=1 / s$

Response from T. $\mathbf{I n}^{-1}$

$$
C(s)=G(s) R(s)=\frac{1}{s(s+2)}
$$

or by expanding into partial fraction

$$
C(s)=\frac{1}{2 s}-\frac{1}{2(s+2)}
$$

Taking the inverse Laplace transform

$$
c(t)=\frac{1}{2}-\frac{1}{2} e^{-2 t}
$$

Response from T. $\mathbf{f}^{\text {n }}$

With MATLAB

>> syms t s
>> ilaplace(1/(s*(s+2)),s,t)
ans $=$
$-1 / 2 * \exp (-2 * t)+1 / 2$

Response from T. $\mathbf{f}^{\text {n }}$

The Transfer Function

$$
G(s)=\frac{C(s)}{R(s)}=\frac{1}{s+2}
$$

has Poles at $s=-2$, No Zeros

MATLAB Code
$\gg \mathrm{n}=1$;
$\gg d=\left[\begin{array}{ll}1 & 2\end{array}\right] ;$
>>
[z,p,k]=tf2zp(n,d)

OUTPUT

Z =
Empty matrix: 0-by-1
$\mathrm{p}=-2$
$\mathrm{k}=1$

Response from T. $\mathbf{f}^{\text {n }}$

MATLAB Time Response

>> $\mathrm{t}=0: 0.01: 3$;
>> plot(t,(1/2-
$1 / 2 * \exp (-2 * t)))$
\gg grid
>> xlabel('Time')
>>

ylabel('Response')

Response from T. $\mathbf{f}^{\text {n }}$

www.skills.edu.sa

$$
\frac{d c(t)}{d t}+2 c(t)=r(t)
$$

MATLAB Time Response

$\% * ~$	***

\% ${ }^{*} * * * * * * *$ Step	
Input $* ~$	

syms stc C ct	
eqn $=\operatorname{sym}\left({ }^{\text {(}}\right.$ (c$)(\mathrm{t})+2^{*} \mathrm{c}(\mathrm{t})=1$ ');	
lteqn=laplace(eqn,t,s)	
neweqn=subs(lteqn, \{ 'laplace(c(t),t,s)','c(0)'\}, \{ C, 0\})	
cs=solve(neweqn, C)	
ct=ilaplace(cs,s,t)	
$\% *$	**

ezplot(ct,[0 3])
grid
xlabel('Time - s')
ylabel('Response - c(t)')
\% $\%$ **

Block Diagram

- A graphical tool can help us to visualize the model of a system and evaluate the mathematical relationships between their elements, using their transfer functions.
- In many control systems, the system of equations can be written so that their components do not interact except by having the input of one part be the output of another part.
- In these cases, it is very easy to draw a block diagram that represents the mathematical relationships in similar manner to that used for the component block diagram.

Reminder: Component Block Diagram

Block Diagram

- It represents the mathematical relationships between the elements of the system.

- The transfer function of each component is placed in box, and the input-output relationships between components are indicated by lines and arrows.

Block Diagram Algebra

- Using block diagram, we can solve the equations by graphical simplification, which is often easier and more informative than algebraic manipulation, even though the methods are in every way equivalent.
- It is convenient to think of each block as representing an electronic amplifier with the transfer function printed inside.
- The interconnections of blocks include summing points, where any number of signals may be added together.

Block Diagrams

- A line is a signal

- A block is a gain
- A circle is a sum
- Due to h.f. noise,
 use proper blocks: num deg \leq den deg
- Try to use just horizontal or vertical lines
- Use additional " (5) " to help

skle $1^{\text {st }} \& 2^{\text {nd }}$ Element $1^{\text {st }} \& 2^{\text {nd }}$ Elementary Block Diagrams

- Block in series:

$$
\frac{Y_{2}(s)}{U_{1}(s)}=G_{1} G_{2}
$$

- Blocks in parallel with their outputs added:

$$
\frac{Y_{2}(s)}{U_{1}(s)}=G_{1}+G_{2}
$$

$3^{\text {rd }}$ Elementary Block Diagram

- Single-loop negative feedback

Two blocks are connected in a feedback arrangement so that each feeds into the other:

- The overall transfer function is given by:

$$
\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{1} G_{2}}
$$

Feedback Rule

$$
\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{1} G_{2}}
$$

The gain of a single-loop negative feedback system is given by the forward gain divided by the sum of 1 plus the loop gain

System Connections

$G(s)=G_{2}(s) G_{1}(s)$
Parallel System

$1^{\text {st }}$ Elementary Principle of Block Diagram Algebra

$2^{\text {nd }}$ Elementary Principle of Block Diagram Algebra

$3^{\text {rd }}$ Elementary Principle of Block Diagram Algebra

Example 1: Transfer function from a Simple Block Diagram

Example 2: TF from the Block Diagram

Example 2: $T F$ from the Block Diagram

Example 2: $T F$ from the Block Diagram

Example 2: $T F$ from the Block Diagram

Example 2: $T F$ from the Block Diagram

Example 2: $T F$ from the Block Diagram

Example 2: $T F$ from the Block Diagram

Example 2: TF from the Block Diagram

$$
T(s)=\frac{G_{1} G_{2} G_{5}+G_{1} G_{6}}{1-G_{1} G_{3}+G_{1} G_{2} G_{4}}
$$

Block Diagram Reduction

- Series:

$$
\begin{aligned}
& \mathbf{x} \longrightarrow \mathrm{G}_{1} \longrightarrow \mathrm{G}_{\mathbf{2}} \longrightarrow \mathbf{y} \\
& \mathbf{x} \longrightarrow \xrightarrow[G_{1} G_{2}]{\downarrow}{ }^{\downarrow}
\end{aligned}
$$

- Parallel:

Block Diagram Reduction

- Feedback:

- Proof: $\begin{aligned} & e=x-b, b=G_{2} y, y=G_{1} e \Rightarrow y=\frac{G_{1}}{1+G_{1} G_{2}} x \\ & e=x-G_{2} G_{1} e \\ & \left(1+G_{1} G_{2}\right) e=x \Rightarrow e=\frac{1}{1+G_{1} G_{2}} x\end{aligned}$

Block Diagram Reduction

Block Diagram Reduction

```
>> S=tf('s')
Transfer function:
S
>> G1=(s+1)/(s+2)
Transfer function:
s + 1
-----
s+2
>> G2=5/(s+5)
Transfer function:
    5
s+5
```

\gg G=G1*G2
Transfer function:
$5 s+5$

$s^{\wedge} 2+7 s+10$
>> H=G1+G2
Transfer function:
$s^{\wedge} 2+11$ s + 15

$s^{\wedge} 2+7 s+10$
>> HF=feedback(G1, G2)
Transfer function:
$s^{\wedge} 2+6 s+5$
$s^{\wedge} 2+12 s+15$

Quarter car suspension

Series

Feedback

Block Diagram Reduction

```
>> b=sym('b');
>> m=sym('m');
>> k=sym('k');
>> s=sym('s');
>> G1=b*s+k
G1 =
b*s+k
>> G2=1/m*1/s*1/s
G2 =
1/m/s^2
>> G=G1*G2
G =
(b*S+k)/m/s^2
>> Gcl=G/(1+G)
```

$\mathrm{Gcl}=$
(b*s+k)/m/s^2/(1+(b*s+k)/m/s^2)
>> simplify(Gcl)
ans =
(b*s+k)/(m*s^2+b*s+k)

Block Diagram Reduction

- Move a block (G1) across a into all touching lines:
- e.g.

Block Diagram Reduction

MENG366 - Dr. Saeed Asir

Block Diagram Reduction

Block Diagram Reduction

Block Diagram Reduction

Find TF from U to Y :

- No pure series/parallel/feedback
- Needs to move a block, but which one?

Key: move one block to create pure series or parallel or feedback!
So move $\frac{10 \text { either left or right. }}{s(s+20)}$

Block Diagram Reduction

Block Diagram Reduction

(a)

(b)

Block Diagram Reduction

(b)

$\underset{\text { Sued Alin }}{\mathrm{H}}(\mathrm{s}) \mathrm{G} 2(\mathrm{~s})$

(b)

(c)

Block Diagram Reduction

Can use superposition:
First set $\mathbf{D}=\mathbf{0}$, find Y due to R
Then set $R=0$, find Y due to D
Finally ${ }_{6}$ add the two component to get the overall Y

Block Diagram Reduction

First set $\mathbf{D}=\mathbf{0}$, find Y due to \mathbf{R}

Block Diagram Reduction Then set $\mathrm{R}=0$, find Y due to D

(b)

Block Diagram Reduction

Finally, add the two component to get the overall Y

$$
Y(s)=\frac{G_{1} G_{2}}{1+G_{1} G_{2} H_{1}} R(s)-\frac{G_{2}}{1+G_{1} G_{2} H_{1}} D(s)
$$

Block Diagram Reduction

Block Diagram Reduction

(a)

(b)

POP. Quiz. 3

Signal Flow Graph

- Compact alternative notation to the block diagram.
- It characterizes the system by a network of directed branches and associated transfer functions.
- The two ways of depicting signal are equivalent.

Signal Flow Graph

Signal Flow Graph

Signal Flow Graph

Mason's Rule

Mason's gain rule is as follows: the transfer function of a system with signal-input, signal-output flow graphs is

$$
T(s)=\frac{p_{1} \Delta_{1}+p_{2} \Delta_{2}+p_{3} \Delta_{3}+\cdots}{\Delta}
$$

$\Delta=1-($ sum of all loop gains) + (sum of products of gains of all combinations if 2 nontouching loops)- (sum of products of gains of all combinations if 3 nontouching loops)+...

A path is any succession of branches, from input to output, in the direction of the arrows, that does not pass any node more than once.

A loop is any closed succession of branches in the direction of the arrows that does not pass any node more than once.

Block Diagram Reduction

Example 3:

Example 4:

Find: $\underline{y_{5}}$
y_{3}

