	بسم الله الرحمن الرحيم	
Automatic Control		Closed Book Exam
MENG366		Time 1 ¹ / ₂ hrs
Third Exam		Wednesday: 23/10/1424 H

Student Name:					Sec. No	0.:	ID No.:		
Q1:	/10	Q2:	/10	Q3:	/10	Q4:	/10	Total:	/40

- 1. The feedforward transfer function, G(s) of the unity feedback system shown in Fig.1a is represented in frequency domain by the asymptotic Bode diagram shown in Fig.1b.
 - a) Find the open-loop transfer function of the system, G(s).
 - b) Find the closed-loop transfer function of the system, C(s)/R(s).
 - c) Find the response of this system to a unit step input (i.e. R(s) = 1/s).
 - d) Sketch the response, c(t), of the system.

Answer:

a) The open-loop transfer function is: $G(s) = \frac{s}{10+s}$

b) The closed-loop transfer function is: $\frac{G(s)}{1+G(s)} = \frac{\frac{s}{10+s}}{1+\frac{s}{10+s}} = \frac{s}{10+2s}.$

c) The unit step response of this system is: $C(s) = \frac{1}{10+2s}$ and $c(t) = \frac{1}{2}e^{-5t}$.

2. Consider the unity-feedback system with the following G(s):

$$G(s) = \frac{1}{s+1}$$

- a) Calculate the magnitude and phase of G(s) for $\omega = 0.1, 0.2, 0.5, 1, 2, 5$, and 10 rad/sec.
- b) Sketch the asymptotic Bode plots for G(s).
- c) Sketch the Nyquist plot for G(s).
- d) From the Bode plots, determine the magnitude and the phase of G(s) for $\omega = 0.1, 0.2, 0.5, 1, 2, 5$, and 10 rad/sec.
- e) On the Nyquist plot, locate G(s) for $\omega = 0.1, 0.2, 0.5, 1, 2, 5$, and 10 rad/sec.
- f) Comment on your results.

Answer:

a)

$$G(j\omega) = \frac{1}{j\omega + 1}$$
$$G(j\omega) = \frac{1}{\sqrt{\omega^2 + 1}}$$
$$G(j\omega) = -\tan^{-1}(\omega)$$

ω	G(ja)	$G(j\omega)$	
	Linear	dB	Degree
0.1	0.995	-0.0432	-5.7106
0.2	0.981	-0.1703	-11.3099
0.5	0.894	-0.9691	-26.5651
1	0.707	-3.0103	-45
2	0.447	-6.9897	-63.4349
5	0.196	-14.1497	-78.6901
10	0.1	-20.0432	-84.2894

b) See Fig.2

Fig.2

Consider the following transfer function: 3.

$$G(s) = \frac{1000(s+0.5)}{s(s+10)(s+50)}$$

- a) Plot the Bode magnitude and phase for the system.b) Find the gain margin and the phase margin of the system.c) Is the system stable? Why?

Answer:

$$G(s) = \frac{1000\left(\frac{1}{2}\right)(2s+1)}{(10)s(0.1s+1)(50)(0.02s+1)}$$

$$G(s) = \frac{(2s+1)}{s(0.1s+1)(0.02s+1)}$$

From the Bode plot, the system is stable and the gain margin is +7.5 dB and the phase margin is +40 deg.

4. Consider the unity-feedback control system having the following open-loop transfer function:

$$G(s)H(s) = \frac{K(s+3)}{s(s-1)}$$
 (K > 1)

The Nyquist plot (polar plot) of the open-loop frequency response is shown in Fig.4. Investigate the stability of the closed-loop system.

Answer:

The open-loop transfer function has one unstable pole, or P=1.

The Nyquist plot shown in Fig.4 indicates that the -1+0j point is encircled by the G(s)H(s) locus once in the tawafwise direction. Therefore, N=-1.

Hence, N+P=0 which means that there is no closed-loop pole lies in the right-half s plane and the closed-loop system is STABLE.