بسـم الله الرحمن الرحيم

King Abdulaziz University
Engineering College
Department of Production and Mechanical System Design

MENG 366 Automatic Control
Final Exam
Closed-book Exam
Saturday: 25/11/1424 H
Time Allowed: Two Hours

Name:	Sec. No.:	ID No.:

Question 1		10
Question 2		10
Question 3		10
Question 4		10
Question 5		10
TOTAL		50

Oix in

Instructions

1. There are totally 5 problems in this exam.
2. Show all work for partial credit.
3. Assemble your work for each problem in logical order.
4. Justify your conclusion. I cannot read minds.

بسـم الله الرحمن الرحيم

Automatic Control
MENG366
Final Exam

Closed Book Exam
Time: 1 Hour
Wednesday: 25/11/1424 H

1. Are these statements true or false?

True False
a. The initial value theorem relates the steady state behavior of $s F(s)$ in the neighborhood of $\mathrm{s}=0$.
b. In control theory, the transfer functions are commonly used to characterize the input-output relationship of linear timeinvariant systems
c. The transient response of a practical control system often exhibits damped oscillations before reaching a steady state.
d. A linear time-invariant control system is stable if the output eventually comes back to its equilibrium state when the system is subjected to initial conditions.
e. The open-loop poles are the roots of the characteristics equation.
f. The main advantage of using the Bode plot is that multiplication of magnitudes can be converted into addition.
g. Nyquist plot are polar plots, while Bode plots are rectangular plots.
h. The Nyquist stability criterion determines the stability of an open-loop system from its closed-loop poles.
i. If there is one clockwise encirclement of Nyquist contour of $G(s) H(s)$ of the $-1+0 j$ point, the system is NOT stable.
j. While conventional control theory is based on the transfer function, modern control theory is based on the description of system in state space.

2. Consider the system shown in Figure (1)

Figure (1)
a) Find the open-loop transfer function of the system.

The the open-loop transfer function of the system is $G(s) H(s)=\frac{K(s+3)}{s(s+1)\left(s^{2}+4 s+5\right)}$
b) Find the closed-loop transfer function of the system.

The closed-loop transfer function of the system is:

$$
\frac{G(s)}{1+G(s) H(s)}=\frac{\frac{K(s+3)}{s\left(s^{2}+4 s+5\right)}}{1+\frac{K(s+3)}{s(s+1)\left(s^{2}+4 s+5\right)}}=\frac{K(s+3)(s+1)}{s(s+1)\left(s^{2}+4 s+5\right)+K(s+3)}
$$

After simplifications:
$\frac{G(s)}{1+G(s) H(s)}=\frac{K(s+3)(s+1)}{s^{4}+5 s^{3}+9 s^{2}+(5+K) s+3 K}$
c) Find the characteristics equation of the system.

The characteristics equation is $s^{4}+5 s^{3}+9 s^{2}+(5+K) s+3 K=0$
d) Using Routh's stability criterion, determine all values of K for which the system is STABLE.

s^{4}	1	9	$3 K$
s^{3}	5	$5+K$	
s^{2}	$\frac{40-K}{5}$	$3 K$	
s	$(5+K)-\frac{75 K}{40-K}$	0	
s^{0}	$3 K$		

$$
\begin{array}{ll}
\frac{40-K}{5}>0 \quad \text { or, } & K<40 \\
(5+K)-\frac{75 K}{40-K}>0 & \text { or, } \quad-44.49<K<4.49 \\
3 K>0 \quad \text { or, } & K>0
\end{array}
$$

The stability condition is $0<K<4.49$
3. Obtain a state space representation of the mechanical system shown below in Figure (2) where u_{1} and u_{2} are inputs and y_{1} and y_{2} are outputs.

Figure (2)

Solutions:

$\sum \vec{F}=m \vec{a}$

$+k_{1} y_{1}+c_{1}\left(\dot{y}_{1}-\dot{y}_{2}\right)-u_{1}=-m_{1} \ddot{y}_{1}$
$m_{1} \ddot{y}_{1}+c_{1} \dot{y}_{1}+k_{1} y_{1}-c_{1} \dot{y}_{2}=u_{1}$

$k_{2} y_{2}-c_{1}\left(\dot{y}_{1}-\dot{y}_{2}\right)-u_{2}=-m_{2} \ddot{y}_{2}$
$m_{2} \ddot{y}_{2}+c_{1} \dot{y}_{2}+k_{2} y_{2}-c_{1} \dot{y}_{1}=u_{2}$

Hence, the two equations of motion are:
$m_{1} \ddot{y}_{1}+c_{1} \dot{y}_{1}+k_{1} y_{1}-c_{1} \dot{y}_{2}=u_{1}$
$m_{2} \ddot{y}_{2}+c_{1} \dot{y}_{2}+k_{2} y_{2}-c_{1} \dot{y}_{1}=u_{2}$
state space variables
$x_{1}=y_{1} \quad x_{2}=\dot{y}_{1} \quad x_{3}=y_{2} \quad x_{4}=\dot{y}_{2}$
state space equation
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4}\end{array}\right]=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -k_{1} m_{1}{ }^{-1} & -c_{1} m_{1}{ }^{-1} & 0 & c_{1} m_{1}{ }^{-1} \\ 0 & 0 & 0 & 1 \\ 0 & c_{1} m_{2}{ }^{-1} & -k_{2} m_{2}{ }^{-1} & -c_{1} m_{2}{ }^{-1}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ m_{1}{ }^{-1} & 0 \\ 0 & 0 \\ 0 & m_{2}{ }^{-1}\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$
$\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+0\left\{\begin{array}{l}u_{1} \\ u_{2}\end{array}\right\} \quad$ (i.e. $\left.[D]=0\right)$

Alternative method:

The two equations of motion can be rewritten in matrix form as follows:
$\left[\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right]\left\{\begin{array}{l}\ddot{y}_{1} \\ \ddot{y}_{2}\end{array}\right\}+\left[\begin{array}{cc}c_{1} & -c_{1} \\ -c_{1} & c_{2}\end{array}\right]\left\{\begin{array}{l}\dot{y}_{1} \\ \dot{y}_{2}\end{array}\right\}+\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}u_{1} \\ u_{2}\end{array}\right\}$

Now define the following matrices:
$[M]=\left[\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right], \quad[\bar{C}]=\left[\begin{array}{cc}c_{1} & -c_{1} \\ -c_{1} & c_{2}\end{array}\right], \quad$ and $[K]=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]$
One can represent the state matrices as following:
$[A]=\left[\begin{array}{cc}{[I]} & {[0]} \\ -[M]^{-1}[\bar{C}] & -[M]^{-1}[K]\end{array}\right], \quad[B]=\left[\begin{array}{c}{[0]} \\ -[M]^{-1}\end{array}\right],[C]=[[0] \quad[I]]$, and $[D]=0$
$[M]^{-1}=\frac{1}{m_{1} m_{2}}\left[\begin{array}{cc}m_{2} & 0 \\ 0 & m_{1}\end{array}\right]=\left[\begin{array}{cc}m_{1}^{-1} & 0 \\ 0 & m_{2}^{-1}\end{array}\right]$
$[M]^{-1}[\bar{C}]=\left[\begin{array}{cc}m_{1}^{-1} & 0 \\ 0 & m_{2}^{-1}\end{array}\right]\left[\begin{array}{cc}c_{1} & -c_{1} \\ -c_{1} & c_{2}\end{array}\right]=\left[\begin{array}{cc}c_{1} m_{1}^{-1} & -c_{1} m_{1}^{-1} \\ -c_{1} m_{2}^{-1} & c_{2} m_{2}^{-1}\end{array}\right]$
$[M]^{-1}[K]=\left[\begin{array}{cc}m_{1}^{-1} & 0 \\ 0 & m_{2}^{-1}\end{array}\right]\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]=\left[\begin{array}{cc}k_{1} m_{1}^{-1} & 0 \\ 0 & k_{2} m_{2}^{-1}\end{array}\right]$
$[A]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -c_{1} m_{1}{ }^{-1} & c_{1} m_{1}{ }^{-1} & -k_{1} m_{1}{ }^{-1} & 0 \\ c_{1} m_{2}{ }^{-1} & -c_{2} m_{2}{ }^{-1} & 0 & -k_{2} m_{2}{ }^{-1}\end{array}\right]$,
$[B]=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ m_{1}^{-1} & 0 \\ 0 & m_{2}^{-1}\end{array}\right],[C]=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$[D]=0$
4. Referring to the system shown in Figure (3), determine the values of K_{1} and K_{2} such that maximum overshoot will be 4.6% and settling time will be 1.5 second (2% percent criteria).

Figure (3)

Solution:

$$
\begin{aligned}
& \frac{C(s)}{R(s)}=\frac{K_{1}}{s^{2}+\left(2+K_{1} K_{2}\right) s+K_{1}} \\
& M_{P}=e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}}=0.046 \Rightarrow \zeta=0.7 \\
& t_{s}=\frac{4}{\zeta \omega_{n}}=1.5 \Rightarrow \omega_{n}=3.8 \\
& K_{1}=\omega_{n}^{2}=3.8^{2}=14.51 \\
& 2+K_{1} K_{2}=2 \zeta \omega_{n}=2(0.7)(3.8)=6.46 \Rightarrow K_{2}=0.3
\end{aligned}
$$

5. Consider the following equation of motion of a mechanical system:

$$
\ddot{y}+5 \dot{y}+6 y=\dot{u}+6 u
$$

a) Determine the transfer function $Y(s) / U(s)$ of the system.

Solution:

Take Lablace for both sides:
$Y s^{2}+5 Y s+6 Y=U s+6 U$
$\frac{Y(s)}{U(s)}=\frac{s+6}{s^{2}+5 s+6}$
b) Obtain the state space representation of the system in controllable canonical form.

Solution:

$\ddot{y}+5 \dot{y}+6 \quad y=0 \ddot{u}+\dot{u}+6 u$
$\ddot{y}+a_{1} \dot{y}+a_{2} y=b_{0} \ddot{u}+b_{1} \dot{u}+b_{2} u$
Controllable canonical form
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -6 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u$
$y=\left[\begin{array}{ll}6 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+0 u$
c) Is the system completely state controllable? Why?

Solution:

Controllability matrix:
$\left[\begin{array}{ll}B & A B\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 1 & 5\end{array}\right]$
Since the controllability matrix is of rank 1 , then the system is not completely state controllable.
d) Is the system completely state observable? Why?

Solution:

Observability matrix:

$$
\left[\begin{array}{ll}
C^{*} & A^{*} C^{*}
\end{array}\right]=\left[\begin{array}{cc}
6 & 0 \\
1 & -5
\end{array}\right]
$$

Since the observability matrix is of rank 2 , then the system is completely state observable.

