> بسـم الله الرحمن الرحيم

King Abdulaziz University
Engineering College
Department of Production and Mechanical System Design

Automatic Control
MENG366
Final Exam

Closed Book Exam
Time： 2 Hours
Saturday：17／4／1425 H

Name：	Sec．No．：	ID No．：

Question 1		25
Question 2		25
Question 3		25
Question 4		25
TOTAL		100

田入米田

1．There are totally 4 problems in this exam．
2．Show all work for partial credit．
3．Assemble your work for each problem in logical order．
4．Justify your conclusion．I cannot read minds．

Automatic Control
MENG366
Final Exam

Closed Book Exam
Time: 2 Hours
Saturday: 17/4/1425 H

Q1. The open-loop transfer function, $G(s)$, for a feedback control system

$$
G(s)=\frac{K}{(s+1)(s+4)(s+9)}=\frac{K}{s^{3}+14 s^{2}+49 s+36}
$$

a) Use the Routh's array technique to determine the limits on K for a stable closed-loop system.
b) Sketch the root locus for the system as K varies from 0 to $+\infty$. You MUST draw on the graph paper shown in Figure 1. Show ALL important calculations.
c) Estimate the value of K when complex roots have a damping ratio of 0.707 (at $-2.1+j 2.1$)
d) Is the point $s=-1+j 7.0$ on (or "almost on") the root locus? You must prove your answer!!!

Figure 1

Q2. Determine the gain margin and phase margin for the system whose Bode plots are shown in Figure 2. Is the system stable or not? State why?

Figure 2

Q3. A unity feedback control system is shown in Figure 3:

Figure 3
a) Find the natural frequency, damping ratio, and damped natural frequency of the closed loop system.
b) Determine the maximum overshoot $\% \mathrm{OS}$, peak time T_{p}, and settling time T_{s} for a step input to the closed loop system.
c) Sketch the unit step response of the closed loop system on the graph below in Figure 4 and clearly identify the steady-state error.
d) Analytically verify the steady-state error for c).

Figure 4
Recall that for a $2^{\text {nd }}$ order system,

$$
\% O S=100 e^{-\zeta \pi / \sqrt{1-\zeta^{2}}} \rightarrow \zeta=\frac{-\ln (\% O S / 100)}{\sqrt{\pi^{2}+\ln ^{2}(\% O S / 100)}} \quad T_{s}=\frac{4}{\zeta \omega_{n}} \quad T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}
$$

Q4. Consider the following system:

$$
2 \ddot{x}+3 \dot{x}-5 x=2 \dot{u}+5 u
$$

a) What is the order of this system?
b) Calculate ω_{n} and ζ of the system.
c) Is the system undamped, underdamped, critically-damped, or overdamped?
d) Find the transfer function of the system.
e) Find the state space matrices (i.e. A, B, C, and D).
f) Discuss the state controllability.

